CN105292395A - 一种船用陀螺减摇器及其减摇陀螺转子系统 - Google Patents

一种船用陀螺减摇器及其减摇陀螺转子系统 Download PDF

Info

Publication number
CN105292395A
CN105292395A CN201510724324.4A CN201510724324A CN105292395A CN 105292395 A CN105292395 A CN 105292395A CN 201510724324 A CN201510724324 A CN 201510724324A CN 105292395 A CN105292395 A CN 105292395A
Authority
CN
China
Prior art keywords
precession
electromagnet
rotor
subtract
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510724324.4A
Other languages
English (en)
Other versions
CN105292395B (zh
Inventor
陈少楠
陈其
游贵彪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiwu Technology Co Ltd
Original Assignee
Shanghai Jiwu Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiwu Technology Co Ltd filed Critical Shanghai Jiwu Technology Co Ltd
Priority to CN201510724324.4A priority Critical patent/CN105292395B/zh
Publication of CN105292395A publication Critical patent/CN105292395A/zh
Application granted granted Critical
Publication of CN105292395B publication Critical patent/CN105292395B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

本发明提供了一种船用陀螺减摇器及其减摇陀螺转子系统。减摇陀螺转子系统的转子框架通过进动轴与基座轴承连接,基座固连在船体结构上。当船体横摇时,基座随船体一同横摇。此横摇运动使高速转子产生一个推动转子进动的进动力矩,此进动力矩方向相对于转子框架确定。高速旋转的转子主体在进动中产生一个和船舶横摇方向相反的减摇力矩,实现船舶减摇。此减摇力矩方向相对于转子框架确定。为了实现定位轴承的卸载,本发明在进动力矩方向和减摇力矩方向上通过磁悬浮式轴承施加一定的与进动力矩、减摇力矩方向相反的磁作用力,由此可避免转子主体的进动力矩和减摇力矩直接全部作用于高速旋转的定位轴承上,实现定位轴承的卸载,减小了摩擦损失,提高轴承的使用寿命。

Description

一种船用陀螺减摇器及其减摇陀螺转子系统
技术领域
本发明涉及船舶减摇技术领域,具体地,涉及一种船用陀螺减摇器及其减摇陀螺转子系统。
背景技术
在随机海面上航行船舶的横摇会影响船舶的适航性、安全性、船上设备的正常工作以及乘员的舒适性;对军舰而言,船舶的剧烈横摇严重影响其战斗力。长期以来,为抑制船舶横摇学界和业界作出了不懈努力。目前业界采用鳍减摇、舵减摇、减摇水仓等减摇装置,这些减摇装置各有特点,工程中普遍采用的鳍减摇和舵减摇装置减摇能力与船舶航速有关,在零航速下难以达到良好减摇效果,而且减摇装置一旦损坏,会对船舶航行产生附件阻力。减摇水仓虽能在零航速下减摇,但其占用空间大减摇效果不明显,应用受到限制。陀螺减摇装置由于其高速转子绕自转轴动量矩的存在,在转子低速进动下,即可获得很大的输出力矩来抑制船舶横摇,而且它安装方便,占用空间小,在船舶零航速下亦可产生很好的减摇效果,是一种很有前途的船舶减摇方案。
船舶陀螺减摇技术几乎在一百年以前就已经开始使用。其原理为当一个高速转子沿着与自转轴垂直的另一轴向进动时,会在第三轴向输出一个力矩。此力矩即可以用来抵抗波浪力矩实现船舶减摇。Schlick(1904)建议在船上放置一个巨大的陀螺来抑制船舶横摇。所设计的陀螺减摇装置在1906年装在一艘德国鱼雷艇上。后来Sperry在此基础上设计主动控制策略并获得了专利。1922年4月,由Westinghouse和Sperry的工程师设计建造的120吨陀螺减摇装置装载在大型客船HawkeyeState上,这是第一次将陀螺减摇装置装载在大型客船上。1932年意大利在排水量为41700吨的豪华班轮ConteDiSavoia安装了主动陀螺减摇装置,这是目前安装陀螺减摇装置最大的船舶。
目前陀螺减摇产品主要有Mitsubishi公司生产的ARG减摇陀螺和Seakeeper生产的减摇陀螺,应用范围主要集中在小型船舶上,实现了陀螺减摇产品的民用化。
Seakeeper公司生产的陀螺减摇器其转子工作于真空环境下,转子转速高,但轴承需要采用真空润滑脂,而且转子腔体需要能够长时间维持真空低压环境。尤其对于内置电机和转子,工作于真空环境会严重影响其散热能力。轴承在高转速下运转的同时还要承受很大的减摇力矩,这种高速重载的工况,使得轴承的选用非常困难。目前滚动轴承或滑动轴承在高速下都难以承受重载,这与陀螺减摇器的工作原理正好相悖,转子转速越高其减摇力矩输出能力越强。这种转速与载荷同步上升的特点使得在实际的产品设计中只能根据轴承在相应转速下所能承受的最大载荷进行设计,无法充分发挥转子高转速下的减摇力矩输出能力。
Mitsubishi公司生产的ARG陀螺减摇器由于运转在大气环境下,转子转速低功耗大。转速无法提升导致设备笨重,体积相对较大。设备运转中轴承摩擦产生的巨大热量需要通过空气对流进行散热,影响其使用范围。
Mitsubishi公司生产的ARG减摇陀螺和Seakeeper生产的减摇陀螺都采用垂直轴结构,角接触轴承支撑,整个转子的重量将由一个轴承来支撑,使其运行工况比其他轴承恶劣,磨损更严重,影响了设备的使用寿命,同时也增大了设备运转的功耗。
陀螺减摇产品大型化的技术难点主要集中在减摇陀螺转子系统上,传统的滚动轴承和滑动轴承难以承受转子高转速下极高的径向载荷,轴承磨损严重,设备功耗很大,使其难以与减摇鳍竞争。这也是陀螺减摇装置难以在大型船舶上广泛使用的主要原因。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种船用陀螺减摇器及其减摇陀螺转子系统,减轻了轴承载荷,减少了高速旋转的转子主体对轴承的磨损程度,降低了设备功耗,提高了轴承的使用寿命。
根据本发明提供的一种减摇陀螺转子系统,安装于陀螺减摇器的进动轴上,包括:转子主体、定位轴承、磁悬浮式轴承、转子框架;
所述转子主体通过所述定位轴承、磁悬浮式轴承与所述转子框架连接,所述转子框架通过所述定位轴承实现对所述转子主体径向的刚性支撑,所述转子框架通过所述磁悬浮式轴承实现对所述转子主体径向的磁力补充支撑,所述转子框架与所述进动轴连接。在转子主体高速旋转并向外输出进动力矩和减摇力矩的过程中,由定位轴承实现转子主体的精确定位,由磁悬浮式轴承承载转子的输出载荷,本发明将两类轴承的优势相结合,从而规避了彼此的弱势,最终实现轴承寿命的延长。
作为一种优化方案,所述磁悬浮式轴承的外圈与所述转子框架固定连接,内圈与所述转子主体固定连接;
所述外圈包括环形恒磁结构或环形分布的若干可控电磁铁,所述内圈包括环形恒磁结构,所述环形恒磁结构沿径向朝内和朝外都成单一极性。
作为一种优化方案,所述环形恒磁结构为永磁环,或环形分布的若干永磁单体,或环形分布的若干恒磁电磁铁,所述恒磁电磁铁周围为恒定磁场。
作为一种优化方案,外圈上的所述环形分布的若干可控电磁铁进一步包括:分布在所述进动轴轴向上的第一类进动电磁铁和第二类进动电磁铁,以及分布在垂直所述进动轴轴向上的第一类减摇电磁铁和第二类减摇电磁铁;
所述第一类进动电磁铁、第二类进动电磁铁、第一类减摇电磁铁、第二类减摇电磁铁的电流控制相互独立。
作为一种优化方案,所述定位轴承包括滚动轴承,或滑动轴承。
作为一种优化方案,所述磁悬浮式轴承的外圈与所述转子框架固定连接,内圈与所述转子主体固定连接;
所述外圈包括环形分布的若干可控电磁铁,所述内圈包括环形分布的软磁性材料。
作为一种优化方案,所述转子主体的两末端都设有所述定位轴承,且所述定位轴承相对于所述磁悬浮式轴承靠近所述转子主体末端。
基于同一发明构思,本发明还提出了一种船用陀螺减摇器,包括所述的减摇陀螺转子系统。
基于同一发明构思,本发明还提出了一种船用陀螺减摇器,包括:控制箱、进动轴和所述的减摇陀螺转子系统;
所述减摇陀螺转子系统安装在所述进动轴上,所述减摇陀螺转子系统以所述进动轴轴心为旋转中心在进动方向摆动,所述控制箱用于根据所述减摇陀螺转子系统在进动方向摆动的角度和船体横摇角度控制所述外圈中电磁铁的电流输入。
作为一种优化方案,所述外圈上的所述环形分布的若干可控电磁铁进一步包括:分布在所述进动轴轴向上的第一类进动电磁铁和第二类进动电磁铁,以及分布在垂直所述进动轴轴向上的第一类减摇电磁铁和第二类减摇电磁铁;
所述第一类进动电磁铁、第二类进动电磁铁、第一类减摇电磁铁、第二类减摇电磁铁的电流控制相互独立;
所述控制箱控制所述外圈中电磁铁电流输入的过程包括:
根据所述转子主体的减摇力矩输出Mr控制所述第一类减摇电磁铁、第二类减摇电磁铁的电磁力输出,实现所述磁悬浮式轴承对所述转子主体减摇力矩的径向支撑控制,
根据所述转子主体的进动力矩输出Mp控制所述第一类进动电磁铁、第二类进动电磁铁的电磁力输出,实现所述磁悬浮式轴承对所述转子主体进动力矩的径向支撑控制;
其中,所述控制箱控制所述第一类减摇电磁铁和第二类减摇电磁铁输出的电磁力分别都大于所述第一类进动电磁铁和第二类进动电磁铁的电磁力;
所述控制箱计算减摇陀螺转子系统的减摇力矩输出Mr为:
M r = J w β · c o s ( β )
所述β为所述减摇陀螺转子系统在进动方向摆动的角度,所述为所述减摇陀螺转子系统在进动方向摆动的角速度,所述w为当前时刻所述转子主体自转的转速,所述J为所述转子主体相对于自转轴的转动惯量,
所述控制箱计算减摇陀螺转子系统的进动力矩输出Mp为:
所述β为所述减摇陀螺转子系统在进动方向摆动的角度,所述为船体横摇角速度,所述w为当前时刻所述转子主体自转的转速,所述J为所述转子主体相对于自转轴的转动惯量。本发明对磁悬浮式轴承的控制无需检测转子主体的当前具体位置,仅需要知道当前船体及陀螺减摇转子的运动状态,并在进动力和减摇力方向上施加适应性的电磁力即可避免过大的减摇力矩或进动力矩直接全部作用于高速旋转的滚动轴承或滑动轴承上,实现轴承的卸载,达到减小摩擦损失,降低设备功耗,提高轴承使用寿命的效果。
与现有技术相比,本发明具有如下的有益效果:
本发明的转子支承系统由电磁轴承和传统的滚动轴承或滑动轴承共同实现,结合了滚动轴承或滑动轴承刚度大,电磁轴承不接触无磨损的优点,可在很大程度上提高轴承的使用寿命,同时降低设备的功率损失,为陀螺减摇设备大型化提供了一个很好的解决方案。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍,显而易见,下面描述中的附图仅仅是本发明的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。附图中:
图1是可选的一种船用陀螺减摇器结构示意图;
图2是可选的一种减摇陀螺转子系统纵向剖面图;
图3-7是可选的几种磁悬浮式轴承的横截面示意图;
图8是可选的一种船用陀螺减摇器的控制流程;
图9是改进前后的轴承载荷对比曲线图。
1-减摇陀螺转子系统,2-进动轴,3-控制箱,4-基座,5-传感器,6-传动装置,7-转子主体,8-定位轴承,9-磁悬浮式轴承,901-磁悬浮式轴承的外圈,902-磁悬浮式轴承的内圈,10-转子框架,111-第一类进动电磁铁,112-第二类进动电磁铁,121-第一类减摇电磁铁,122-第二类减摇电磁铁。
具体实施方式
下文结合附图以具体实施例的方式对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,还可以使用其他的实施例,或者对本文列举的实施例进行结构和功能上的修改,而不会脱离本发明的范围和实质。
陀螺减摇器是船舶减摇装置中的一种,主要由减摇陀螺转子系统1、转子框架10进动控制装置、安装基座等部件构成。陀螺减摇器是一种两维陀螺,它利用了陀螺的定轴性原理,它对船体产生的减摇力矩来源于转子框架10进动时产生的反作用力矩。本发明提供一种减摇陀螺转子系统1的转子框架10通过进动轴2与基座4轴承连接,基座4固连在船体结构上。当船体横摇时,基座4随船体一同横摇。此横摇运动使高速转子产生一个推动转子进动的进动力矩,此进动力矩方向相对于转子框架10确定。高速旋转的转子主体在进动中产生一个和船舶横摇方向相反的减摇力矩,实现船舶减摇。此减摇力矩方向相对于转子框架10确定。为了进一步实现定位轴承8的卸载,本发明在此确定的进动力方向上按要求施加一定的与进动力矩、减摇力矩相反的电磁力,由此可避免转子主体7的进动力矩、减摇力矩直接全部作用于高速旋转的定位轴承8上,减小了摩擦损失,提高轴承的使用寿命。
在本发明提供的一种减摇陀螺转子系统1的实施例中,如图1、图2所示的实施例,减摇陀螺转子系统1安装于陀螺减摇器的进动轴2上,减摇陀螺转子系统1包括:转子主体7、定位轴承8、磁悬浮式轴承9、转子框架10;
所述转子主体7通过所述定位轴承8、磁悬浮式轴承9与所述转子框架10连接,所述转子框架10通过所述定位轴承8实现对所述转子主体7径向的刚性支撑,所述转子框架10通过所述磁悬浮式轴承9实现对所述转子主体7径向的磁力补充支撑,所述转子框架10与所述进动轴2连接。在转子主体7高速旋转并向外输出进动力矩和减摇力矩的过程中,由定位轴承8实现转子主体7的精确定位,由磁悬浮式轴承9承载转子的大部分输出载荷,本发明将两类轴承的优势相结合,从而规避了彼此的弱势,最终实现轴承寿命的延长。本发明所述磁悬浮轴承9是通过磁场作用力实现对转子主体7的径向支撑。
作为一种优化方案,所述定位轴承8包括滚动轴承,或滑动轴承。本实施例中的定位轴承8相对于所述磁悬浮式轴承9明显具有较强的支撑能力和支撑刚度。本实施例所述滚动轴承可以是单列轴承,或双列轴承,或多列轴承,本发明不限于此。本实施例所述滑动轴承可以是油润滑轴承、脂润滑轴承、水润滑轴承、固体润滑轴承等滑动轴承,由于本实施例中定位轴承8有支撑刚度要求,因此不宜使用水润滑轴承和气体轴承等承载能力低的滑动轴承。针对定位的刚度需求,本领域技术人员对于如何选用适当的轴承应当是明确的。
作为一种优化方案,所述磁悬浮式轴承的外圈与所述转子框架固定连接,内圈与所述转子主体固定连接;
所述外圈包括环形分布的若干可控电磁铁,所述内圈包括环形分布的软磁性材料。
所述软磁性材料包括硅钢片,坡莫合金和铁氧体等。环形分布的软磁性材料包括环形分布的软磁单体或环形软磁铁等,该内圈可以是环形的铁氧体、硅钢、坡莫合金,或以上软性材料单体成环形分布。
作为一种优化方案,所述转子主体7的两末端都设有所述定位轴承8,且所述定位轴承8相对于所述磁悬浮式轴承9靠近所述转子主体7末端。本实施例中定位轴承8设于转子主体7的两头,从而最优化地对高速旋转的转子主体7定位。相对地,所述磁悬浮式轴承9设置靠内,用于分担转子主体7的输出力矩,减轻两端定位轴承8的负担。但本实施例仅作为一种可选的优化方案,本发明不限于此。
作为一种优化方案,所述磁悬浮式轴承9的外圈901与所述转子框架10固定连接,内圈902与所述转子主体7固定连接;
所述外圈901包括环形恒磁结构或环形分布的若干可控电磁铁,所述内圈902包括环形恒磁结构,所述环形恒磁结构沿径向朝内和朝外都成单一极性。
作为可选的实施例,所述环形恒磁结构为永磁环,或环形分布的若干永磁单体,或环形分布的若干恒磁电磁铁,所述恒磁电磁铁周围为恒定磁场。
本发明所述环形恒磁结构是指自身所产生的磁场为恒定磁场的结构。所述环形恒磁结构沿径向朝内和朝外都成单一极性包括:在径向朝外为恒定大小的N极性,径向朝内为恒定大小的S极性;或在径向朝外为恒定大小的S极性,径向朝内为恒定大小的N极性。若所述环形恒磁结构为永磁环,则该永磁环为沿径向充磁。
作为可选的实施例,外圈901上的所述环形分布的若干可控电磁铁进一步包括:分布在所述进动轴2轴向上的第一类进动电磁铁111和第二类进动电磁铁,以及分布在垂直所述进动轴2轴向上的第一类减摇电磁铁121和第二类减摇电磁铁122;
所述第一类进动电磁铁111、第二类进动电磁铁112、第一类减摇电磁铁121、第二类减摇电磁铁122的电流控制相互独立。
本实施例中,与转子主体7固定并一起做高速自转的内圈902是磁场恒定的结构,而与转子框架10固定的外圈901部分则有磁场可变和磁场恒定两种可选方案,具体包括以下六种实施例,但本发明所述磁悬浮式轴承9不限于以下五种结构。
第一种结构为如图3所示的外圈901为可控电磁铁内圈902为磁钢的结构。所述磁钢即为一种常用的永磁单体。图3所示的实施例外圈901环形分布有六个电磁铁,六个电磁铁的铁芯又分别为一个完整的铁环向内的六个径向延伸部分,每个电磁铁都包括铁芯及其上绕设的线圈。本实施例所述的结构通过对线圈通电从而控制可控电磁铁在径向朝内圈902形成大小可变的S极或N极。内圈902为环形分布的一个个磁钢单体,由于磁钢周围稳定的磁场分布,因此可以在朝向外圈901的方向获得恒定的磁场分布。
图3中在进动轴2轴向上相对设有一个第一类进动电磁铁111和一个第二类进动电磁铁112;在垂直所述进动轴2的轴向上相对设有三个第一类减摇电磁铁121和三个第二类减摇电磁铁122。在实际情况中,减摇陀螺转子系统1在输出的减摇力矩将显著大于进动力矩,因此,本实施例在减摇力矩方向所设置的电磁铁数量明显大于在进动力矩方向所设置的电磁铁数量。本实施例中对可控电磁铁分4个模块进行电流控制,仅考虑减摇力矩方向和进动力矩方向的电磁力控制,大大减少了控制箱3的计算量,有利于保证控制系统的快速反应。通过控制流经第一类进动电磁铁111和第二类进动电磁铁112上线圈绕组的电流,产生相应径向磁力矩与转子主体7进动输出力矩相抵消,实现滚动轴承或滑动轴承进动力方向的径向卸载;通过控制流经三个第一类减摇电磁铁121和三个第二类减摇电磁铁122上线圈绕组的电流,产生相应径向磁力矩与转子主体7减摇输出力矩相抵消,实现滚动轴承或滑动轴承减摇力方向的径向卸载。本实施例中内圈902以环形分布的磁钢构件恒定磁场,可以降低制作工艺要求,磁钢的制作相对于永磁环更加便于加工,能够有效控制制造成本。
滚动轴承和滑动轴承具有支撑刚度大,承载能力强,运转速度低,磨损严重的特点,而磁悬浮式轴承9则具有转速高,无磨损,功耗小,承载能力强,支撑刚度小的特点。由滚动轴承或滑动轴承实现转子的精确定位,由磁悬浮式轴承9承载转子的输出载荷则可以将两类轴承的优点结合在一起,而规避彼此的弱势。在高速转子主体7进动时,其减摇力矩输出单纯沿着进动轴2和转子主体7自转轴所在平面的法线方向,输出力方向相对于转子框架10不变,这为磁悬浮式轴承9的设计提供了很大的便利。本发明无需时刻精确检测转子的位置,也不用采用复杂的算法调节作为定子的每个电磁铁的各相电流大小。
第二种结构为如图4所示的外圈901为可控电磁铁内圈902为永磁环的结构。图4所示的实施例与图3所示的实施例仅在内圈902的结构上不同,以永磁环代替环形分布的磁钢,有利于磁场强度的增强以及磁场各个方向强度的均衡。其缺点是永磁环的制造工艺较为复杂,提高了制作成本。
图4所示的实施例还存在另一种变形,内圈902改为软磁性材料,如硅钢环,外圈902仍然保持可控电磁铁内圈的设计。这种变形所带来的变化体现在控制方法上。在这种变形结构的控制中,在转子主体偏向的反面控制可控电磁铁对硅钢环形成吸引力,如此相当于对远离的硅钢环施加了一个用于回复其位置的拉力。另一面,硅钢环所接近方向的可控电磁铁不通电流,对硅钢环无作用力。
第三种结构为如图5所示的外圈901为可控电磁铁或恒磁电磁铁、内圈902为恒磁电磁铁的结构。本实施例所述的恒磁电磁铁是指形成恒定电磁场的电磁铁,其不做控制变化。图5所示的实施例与图3、图4的区别也是内圈902结构,以恒磁电磁铁内圈902代替图3中环形分布的磁钢和图4中的永磁环。本实施例中内圈902的可不做电流控制,仅需保持内圈902磁场恒定,其周围形成的磁场与图3和图4一样,都是恒定磁场。由此,本实施例可以仅通过控制外圈901可控电磁铁的电流实现减摇力矩方向和进动力矩方向上的电磁力变化控制。而当外圈901也是恒磁电磁铁时,外圈901、内圈902中电流恒定,外圈901、内圈902分别形成与如图6中永磁环效果相同的两个恒定磁场,其也可以作为图6所示实施例的替代方案。
第四种结构为如图6所示的外圈901、内圈902均为永磁环的结构,其中外圈901与内圈902之间呈斥力。图6所示的实施例外圈901内圈902之间作用力不可实时控制,由其本身性质所决定。在转子主体7处于中心位置状态下,外圈901与内圈902作用力平衡,而一旦转子主体7发生偏移,所述外圈901与内圈902靠近位置将因为距离的接近而增大与偏移方向相反的作用力,且相对的另一边的外圈901与内圈902距离拉远,减小了与该偏移方向相同的作用力,两项叠加,外圈901在与偏移方向相反的方向上对内圈902有作用力,由此分担部分转子对定位轴承8的压力。
第五种结构如图7所示的实施例,本实施例结构是将图6中外圈901的永磁环替换为环形分布的磁钢的结构,其中外圈901与内圈902之间呈斥力。其结构与图6类似,同样地,磁钢替换永磁环可以降低制造成本。
基于同一发明构思,如图1所示,本发明还提出了一种船用陀螺减摇器,包括所述的减摇陀螺转子系统1。
基于同一发明构思,本发明还提出了一种如图1所示的船用陀螺减摇器,包括:控制箱3、进动轴2所述的减摇陀螺转子系统1;
所述减摇陀螺转子系统1安装在所述进动轴2上,所述减摇陀螺转子系统1以所述进动轴2轴心为旋转中心在进动方向摆动,所述控制箱3用于根据所述减摇陀螺转子系统1在进动方向摆动的角度和船体横摇角度控制所述外圈901中电磁铁的电流输入。
在图8所示的实施例中,船用陀螺减摇器的所述控制箱3还包括数字控制器、磁悬浮式轴承驱动器和传感器。数字控制器用于根据传感器检测到的转子进动角和船体横摇角计算转子主体7的进动力矩和横摇力矩,从而确定对陀螺减摇器中磁悬浮式轴承9的电流控制。其中,检测转子进动角的传感器5可以安装在进动轴2上,所检测的进动轴2旋转角度就是转子的进动角度。所述控制箱5通过所述传动装置6对所述减摇陀螺转子系统1的进动力进行传递。
作为一种优化方案,所述外圈901上的所述环形分布的若干可控电磁铁进一步包括:分布在所述进动轴2轴向上的第一类进动电磁铁111和第二类动电磁铁,以及分布在垂直所述进动轴2轴向上的第一类减摇电磁铁121和第二类减摇电磁铁122;
所述第一类进动电磁铁111、第二类进动电磁铁112、第一类减摇电磁铁121、第二类减摇电磁铁122的电流控制相互独立。本实施例中对上述四类电磁铁可以以进行模块化控制,减小计算量。
对于转子主体7的减摇力矩输出,图3所示的第一种结构控制中,三个第一类减摇电磁铁121与三个第二类减摇电磁铁122相互配合,控制各线圈电流使得三个第二类减摇电磁铁122与磁钢相吸引且三个第一类减摇电磁铁121与磁钢相排斥,或使得三个第二类减摇电磁铁122与磁钢相排斥且三个第一类减摇电磁铁121与磁钢相吸引,从而在减摇力矩方向上形成一个统一的最大化径向力,且转子主体7上下两末端磁悬浮式轴承9产生的此径向力大小相等方向相反。
同理,对于转子主体7的进动力矩输出,图3所示的第一种结构控制中,第一类进动电磁铁111与第二类进动电磁铁112相互配合,控制各线圈电流使得第二类进动电磁铁112与磁钢相吸引且第一类进动电磁铁111与磁钢相排斥,或使得第二类进动电磁铁112与磁钢相排斥且第一类进动电磁铁111与磁钢相吸引,从而在进动力矩方向上也形成一个统一的最大化径向力,且转子主体7上下两末端磁悬浮式轴承9产生的此径向力大小相等方向相反。
作为一种优化方案,所述控制箱3控制所述外圈901中电磁铁电流输入的过程包括:
根据所述转子主体7的减摇力矩输出Mr控制所述第一类减摇电磁铁121、第二类减摇电磁铁122的电磁力输出,实现所述磁悬浮式轴承9对所述转子主体7减摇力矩的径向支撑控制,
根据所述转子主体7的进动力矩输出Mp控制所述第一类进动电磁铁111、第二类进动电磁铁112的电磁力输出,实现所述磁悬浮式轴承9对所述转子主体7进动力矩的径向支撑控制;
其中,所述控制箱3控制所述第一类减摇电磁铁121和第二类减摇电磁铁122输出的电磁力分别都大于所述第一类进动电磁铁111和第二类进动电磁铁112的电磁力;
所述控制箱3计算减摇陀螺转子系统1的减摇力矩输出Mr为:
所述β为所述减摇陀螺转子系统1在进动方向摆动的角度,所述为所述减摇陀螺转子系统1在进动方向摆动的角速度,所述w为当前时刻所述转子主体7自转的转速,所述J为所述转子主体7相对于自转轴的转动惯量,
所述控制箱3计算减摇陀螺转子系统1的进动力矩输出Mp为:
所述β为所述减摇陀螺转子系统1在进动方向摆动的角度,所述为船体横摇角速度,所述w为当前时刻所述转子主体7自转的转速,所述J为所述转子主体7相对于自转轴的转动惯量。本发明对磁悬浮式轴承9的控制无需检测转子主体7的当前具体位置,仅需要知道当前船体及陀螺减摇装置的运动状态,并在进动力和减摇力方向上施加适应性的电磁力即可避免过大的减摇力矩或进动力矩直接全部作用于高速旋转的滚动轴承或滑动轴承上,实现轴承的卸载,达到减小摩擦损失,降低设备功耗,提高轴承使用寿命的效果。
根据转子框架10进动角速度可计算出设备的减摇力矩输出值,根据此值调节磁悬浮式轴承9中四类电磁铁上所绕线圈的电流大小和方向,产生一个和减摇力矩方向相反的电磁力矩。转子主体7输出的减摇力矩通过磁悬浮式轴承9传递到转子框架10,进而传递到船体,实现减摇,而不用完全依赖滚动轴承或滑动轴承的机械接触传递减摇力矩,最终实现轴承卸载。
根据船体横摇角速度及陀螺减摇器的运动状态可计算出转子主体7进动力矩值,根据此值调节磁悬浮式轴承9中四类电磁铁上所绕线圈的电流大小和方向,产生一个和转子主体7进动力矩方向相反的电磁力矩。转子主体7进动力矩通过磁悬浮式轴承9传递到转子框架10,进而推动转子框架10进动,实现减摇,而不用完全依赖滚动轴承或滑动轴承的机械接触传递进动力矩,最终实现轴承卸载。
滚动轴承或滑动轴承一直处于轻载状态下工作,转子主体7可以更高的转速运转,提高了设备的减摇能力,在相同的减摇能力下可以减小设备总体的体积。由于可将滚动轴承或滑动轴承的载荷约束在一个很小的范围内,本发明为陀螺减摇设备的大型化提供了很好的解决方案。
图8为一种可选的船用陀螺减摇器实施例,控制箱3中数字控制器根据传感器获得减摇陀螺转子系统1的进动方向摆角(进动角)和船体横摇角度(横摇角)对磁悬浮式轴承9中四类电磁铁进行电流控制,从而适应性地分担转子主体7对定位轴承8的压力,为定位轴承8卸载,高速转动的转子主体7通过所述定位轴承8和磁悬浮式轴承9向外输出减摇力矩和进动力矩。图9为使用磁悬浮式轴承9前后的载荷分布情况对比示意图,其中可以明显看出,在使用磁悬浮式轴承9后,定位轴承8上的载荷大幅降低。
以上所述仅为本发明的较佳实施例,本领域技术人员知悉,在不脱离本发明的精神和范围的情况下,可以对这些特征和实施例进行各种改变或等同替换。另外,在本发明的教导下,可以对这些特征和实施例进行修改以适应具体的情况及材料而不会脱离本发明的精神和范围。因此,本发明不受此处所公开的具体实施例的限制,所有落入本申请的权利要求范围内的实施例都属于本发明的保护范围。

Claims (10)

1.一种减摇陀螺转子系统,安装于陀螺减摇器的进动轴上,其特征在于,包括:转子主体、定位轴承、磁悬浮式轴承、转子框架;
所述转子主体通过所述定位轴承、磁悬浮式轴承与所述转子框架连接,所述转子框架通过所述定位轴承实现对所述转子主体径向的刚性支撑,所述转子框架通过所述磁悬浮式轴承实现对所述转子主体径向的磁力补充支撑,所述转子框架与所述进动轴连接。
2.根据权利要求1所述的一种减摇陀螺转子系统,其特征在于,所述磁悬浮式轴承的外圈与所述转子框架固定连接,内圈与所述转子主体固定连接;
所述外圈包括环形恒磁结构或环形分布的若干可控电磁铁,所述内圈包括环形恒磁结构,所述环形恒磁结构沿径向朝内和朝外都成单一极性。
3.根据权利要求2所述的一种减摇陀螺转子系统,其特征在于,
所述环形恒磁结构为永磁环,或环形分布的若干永磁单体,或环形分布的若干恒磁电磁铁,所述恒磁电磁铁周围为恒定磁场。
4.根据权利要求2或3所述的一种减摇陀螺转子系统,其特征在于,外圈上的所述环形分布的若干可控电磁铁进一步包括:分布在所述进动轴轴向上的第一类进动电磁铁和第二类进动电磁铁,以及分布在垂直所述进动轴轴向上的第一类减摇电磁铁和第二类减摇电磁铁;
所述第一类进动电磁铁、第二类进动电磁铁、第一类减摇电磁铁、第二类减摇电磁铁的电流控制相互独立。
5.根据权利要求1-3任一所述的一种减摇陀螺转子系统,其特征在于,所述定位轴承包括滚动轴承,或滑动轴承。
6.根据权利要求1所述的一种减摇陀螺转子系统,其特征在于,所述磁悬浮式轴承的外圈与所述转子框架固定连接,内圈与所述转子主体固定连接;
所述外圈包括环形分布的若干可控电磁铁,所述内圈包括环形分布的软磁性材料。
7.根据权利要求1所述的一种减摇陀螺转子系统,其特征在于,所述转子主体的两末端都设有所述定位轴承,且所述定位轴承相对于所述磁悬浮式轴承靠近所述转子主体末端。
8.一种船用陀螺减摇器,其特征在于,包括如权利要求1-3或6-7任一所述的减摇陀螺转子系统。
9.一种船用陀螺减摇器,其特征在于,包括:控制箱、进动轴和如权利要求2-4或6任一所述的减摇陀螺转子系统;
所述减摇陀螺转子系统安装在所述进动轴上,所述减摇陀螺转子系统以所述进动轴轴心为旋转中心在进动方向摆动,所述控制箱用于根据所述减摇陀螺转子系统在进动方向摆动的角度和船体横摇角度控制所述外圈中电磁铁的电流输入。
10.根据权利要求9所述的一种船用陀螺减摇器,其特征在于,所述外圈上的所述环形分布的若干可控电磁铁进一步包括:分布在所述进动轴轴向上的第一类进动电磁铁和第二类进动电磁铁,以及分布在垂直所述进动轴轴向上的第一类减摇电磁铁和第二类减摇电磁铁;
所述第一类进动电磁铁、第二类进动电磁铁、第一类减摇电磁铁、第二类减摇电磁铁的电流控制相互独立;
所述控制箱控制所述外圈中电磁铁电流输入的过程包括:
根据所述转子主体的减摇力矩输出Mr控制所述第一类减摇电磁铁、第二类减摇电磁铁的电磁力输出,实现所述磁悬浮式轴承对所述转子主体减摇力矩的径向支撑控制,
根据所述转子主体的进动力矩输出Mp控制所述第一类进动电磁铁、第二类进动电磁铁的电磁力输出,实现所述磁悬浮式轴承对所述转子主体进动力矩的径向支撑控制;
其中,所述控制箱控制所述第一类减摇电磁铁和第二类减摇电磁铁输出的电磁力分别都大于所述第一类进动电磁铁和第二类进动电磁铁的电磁力;
所述控制箱计算减摇陀螺转子系统的减摇力矩输出Mr为:
M r = J w β · c o s ( β )
所述β为所述减摇陀螺转子系统在进动方向摆动的角度,所述为所述减摇陀螺转子系统在进动方向摆动的角速度,所述w为当前时刻所述转子主体自转的转速,所述J为所述转子主体相对于自转轴的转动惯量,
所述控制箱计算减摇陀螺转子系统的进动力矩输出Mp为:
所述β为所述减摇陀螺转子系统在进动方向摆动的角度,所述为船体横摇角速度,所述w为当前时刻所述转子主体自转的转速,所述J为所述转子主体相对于自转轴的转动惯量。
CN201510724324.4A 2015-10-29 2015-10-29 一种船用陀螺减摇器及其减摇陀螺转子系统 Active CN105292395B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510724324.4A CN105292395B (zh) 2015-10-29 2015-10-29 一种船用陀螺减摇器及其减摇陀螺转子系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510724324.4A CN105292395B (zh) 2015-10-29 2015-10-29 一种船用陀螺减摇器及其减摇陀螺转子系统

Publications (2)

Publication Number Publication Date
CN105292395A true CN105292395A (zh) 2016-02-03
CN105292395B CN105292395B (zh) 2017-10-27

Family

ID=55190392

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510724324.4A Active CN105292395B (zh) 2015-10-29 2015-10-29 一种船用陀螺减摇器及其减摇陀螺转子系统

Country Status (1)

Country Link
CN (1) CN105292395B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042876A (zh) * 2016-02-05 2017-08-15 江苏华阳重工股份有限公司 船用电机内置式转盘减摇装置
CN107757838A (zh) * 2016-08-19 2018-03-06 维姆有限责任公司 陀螺仪稳定器
CN109693762A (zh) * 2019-01-15 2019-04-30 上海矶怃科技有限公司 一种陀螺减摇装置
CN112533821A (zh) * 2018-05-31 2021-03-19 驭浪有限责任公司 陀螺船横摇稳定器
US11591052B2 (en) 2020-03-02 2023-02-28 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
NO20211291A1 (en) * 2021-10-28 2023-05-01 Sleipner Motor As Gyro stabilizer
CN116923657A (zh) * 2023-09-12 2023-10-24 兴化市远洋机械有限公司 一种模块化船舶减摇机构及其使用方法
US11807344B2 (en) 2020-09-30 2023-11-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel cavity seal arrangement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022072350A1 (en) 2020-09-30 2022-04-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel shaft through passage

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244513A1 (en) * 2003-06-04 2004-12-09 Adams John D. Gyroscopic roll stabilizer for boats
CN101049861A (zh) * 2007-04-16 2007-10-10 北京航空航天大学 完全非接触单框架磁悬浮控制力矩陀螺
EP2060811A1 (fr) * 2007-11-16 2009-05-20 Thales Palier magnétique centreur à double étages
CN101979888A (zh) * 2010-10-06 2011-02-23 潘家烺 能与普通转轴轴承组合消除轴承承载力的永磁能悬浮轴承
CN102859322A (zh) * 2010-02-17 2013-01-02 维姆有限责任公司 自适应的回转稳定器控制系统
CN203486115U (zh) * 2013-09-10 2014-03-19 上海羽翼船舶设备有限公司 用于减摇陀螺转子密封腔的真空发生装置
CN103818524A (zh) * 2012-11-16 2014-05-28 青岛科技大学 船舶力矩陀螺减摇装置及减摇方法
CN104118579A (zh) * 2014-08-06 2014-10-29 北京航空航天大学 一种四自由度单框架磁悬浮控制力矩陀螺

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040244513A1 (en) * 2003-06-04 2004-12-09 Adams John D. Gyroscopic roll stabilizer for boats
CN101049861A (zh) * 2007-04-16 2007-10-10 北京航空航天大学 完全非接触单框架磁悬浮控制力矩陀螺
EP2060811A1 (fr) * 2007-11-16 2009-05-20 Thales Palier magnétique centreur à double étages
CN102859322A (zh) * 2010-02-17 2013-01-02 维姆有限责任公司 自适应的回转稳定器控制系统
CN101979888A (zh) * 2010-10-06 2011-02-23 潘家烺 能与普通转轴轴承组合消除轴承承载力的永磁能悬浮轴承
CN103818524A (zh) * 2012-11-16 2014-05-28 青岛科技大学 船舶力矩陀螺减摇装置及减摇方法
CN203486115U (zh) * 2013-09-10 2014-03-19 上海羽翼船舶设备有限公司 用于减摇陀螺转子密封腔的真空发生装置
CN104118579A (zh) * 2014-08-06 2014-10-29 北京航空航天大学 一种四自由度单框架磁悬浮控制力矩陀螺

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107042876A (zh) * 2016-02-05 2017-08-15 江苏华阳重工股份有限公司 船用电机内置式转盘减摇装置
US10989534B2 (en) 2016-08-19 2021-04-27 Veem Ltd Gyrostabilisers
CN107757838A (zh) * 2016-08-19 2018-03-06 维姆有限责任公司 陀螺仪稳定器
EP3339804A1 (en) * 2016-08-19 2018-06-27 Veem Ltd Gyrostabilisers
US10794699B2 (en) 2016-08-19 2020-10-06 Veem Ltd Gyrostabilisers
CN107757838B (zh) * 2016-08-19 2022-02-08 维姆有限责任公司 陀螺仪稳定器
US11427289B2 (en) 2018-05-31 2022-08-30 Wavetamer Llc Gyroscopic boat roll stabilizer
CN113396101A (zh) * 2018-05-31 2021-09-14 驭浪有限责任公司 陀螺船横摇稳定器
CN112533821A (zh) * 2018-05-31 2021-03-19 驭浪有限责任公司 陀螺船横摇稳定器
US11649017B2 (en) 2018-05-31 2023-05-16 Wavetamer Llc Gyroscopic boat roll stabilizer
US11891157B2 (en) 2018-05-31 2024-02-06 Wavetamer Llc Gyroscopic boat roll stabilizer
US11873065B2 (en) 2018-05-31 2024-01-16 Wavetamer Llc Gyroscopic boat roll stabilizer
CN109693762A (zh) * 2019-01-15 2019-04-30 上海矶怃科技有限公司 一种陀螺减摇装置
US11591052B2 (en) 2020-03-02 2023-02-28 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11873064B2 (en) 2020-03-02 2024-01-16 Wavetamer Llc Gyroscopic boat roll stabilizer with bearing cooling
US11807344B2 (en) 2020-09-30 2023-11-07 Wavetamer Llc Gyroscopic roll stabilizer with flywheel cavity seal arrangement
WO2023075607A1 (en) 2021-10-28 2023-05-04 Sleipner Motor As Gyro stabilizer
NO20211291A1 (en) * 2021-10-28 2023-05-01 Sleipner Motor As Gyro stabilizer
CN116923657A (zh) * 2023-09-12 2023-10-24 兴化市远洋机械有限公司 一种模块化船舶减摇机构及其使用方法
CN116923657B (zh) * 2023-09-12 2023-12-26 兴化市远洋机械有限公司 一种模块化船舶减摇机构及其使用方法

Also Published As

Publication number Publication date
CN105292395B (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN105292395A (zh) 一种船用陀螺减摇器及其减摇陀螺转子系统
AU2004245915B2 (en) Gyroscopic roll stabilizer for boats
CN108313232B (zh) 基于二维矢量推进器和移动重物的组合式船舶减摇装置
US8555734B2 (en) Stabilising means
JP2021526102A (ja) ジャイロスコープ式ロールスタビライザ
US20070162217A1 (en) Counter-rotating regenerative flywheels for damping undesired oscillating motion of watercraft
Xiang et al. Suspension and titling of vernier-gimballing magnetically suspended flywheel with conical magnetic bearing and Lorentz magnetic bearing
CN101571160A (zh) 旋转环变型磁悬浮轴承及其旋转轴
US8203243B2 (en) Electromagnetic attraction type magnetic bearing and control method thereof
CN103818524A (zh) 船舶力矩陀螺减摇装置及减摇方法
TR201811331T4 (tr) Deni̇z araçlari i̇çi̇n ji̇roskopi̇k yalpa dengeleyi̇ci̇ düzenleme ve bunun yöntemi̇.
JP2020128196A (ja) マルチコプタ
CN107110285B (zh) 减摇装置及船舶
EP3927614B1 (en) Gyro stabilizer
CN212220504U (zh) 一种减摇陀螺
Musolino et al. A new passive maglev system based on eddy current stabilization
CN104697509B (zh) 一种七通道磁路解耦的磁悬浮陀螺仪
CN102832782A (zh) 一种基于电磁效应的力矩产生装置
CN108609111A (zh) 一种基于钢球滑轨和电磁连接的船舶分离式减横摇装置
CN211642539U (zh) 一种减摇陀螺转子系统
KR101667411B1 (ko) 해상 운송수단용 관성안정기 및 이의 제어방법
GB2470961A (en) Gyroscopic controllable moment generator adapted for use onboard a marine vessel
CN102820731A (zh) 一种欠驱动系统同轴驱动式辅助力矩发生器
RU2813627C1 (ru) Гиростабилизатор
CN109774855A (zh) 一种船舶减摇陀螺参数优化方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 201612 Shanghai City, Songjiang District Frestech Road No. 499 Building 2 floor 3 A zone

Patentee after: SHANGHAI JIWU TECHNOLOGY CO., LTD.

Address before: 201103 Shanghai city Minhang District No. 1078 rainbow Springs Road, building 4 floor 401C room eighth

Patentee before: SHANGHAI JIWU TECHNOLOGY CO., LTD.

CP02 Change in the address of a patent holder