CN105277136A - 基于双波长数字全息技术的透射式显微成像装置及其方法 - Google Patents

基于双波长数字全息技术的透射式显微成像装置及其方法 Download PDF

Info

Publication number
CN105277136A
CN105277136A CN201510631815.4A CN201510631815A CN105277136A CN 105277136 A CN105277136 A CN 105277136A CN 201510631815 A CN201510631815 A CN 201510631815A CN 105277136 A CN105277136 A CN 105277136A
Authority
CN
China
Prior art keywords
laser
condenser
camera
light
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510631815.4A
Other languages
English (en)
Other versions
CN105277136B (zh
Inventor
张玉珍
孙佳嵩
左超
冯世杰
陈钱
顾国华
胡岩
张良
陶天阳
李加基
张佳琳
孔富城
林飞
张敏亮
范瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510631815.4A priority Critical patent/CN105277136B/zh
Publication of CN105277136A publication Critical patent/CN105277136A/zh
Application granted granted Critical
Publication of CN105277136B publication Critical patent/CN105277136B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Holo Graphy (AREA)

Abstract

本发明公开了一种基于双波长数字全息技术的透射式显微成像装置及其方法,采用了双波长数字全息技术,使用两个不同波长的激光同时照射待测样品,并用一个彩色相机在两个不同颜色通道中同时采集到两幅全息干涉图,然后分别求出两个波长下的包裹相位图,最终再用这两幅双波长包裹相位图光学解包裹,求出样品的非包裹相位图。本发明进行数字全息显微成像,避免了复杂的相位解包裹过程,降低了后期计算处理的复杂度,提高了相位重建精度。

Description

基于双波长数字全息技术的透射式显微成像装置及其方法
技术领域
本发明属于光学测量、成像技术,特别是一种基于双波长数字全息技术的透射式显微成像装置及其方法。
背景技术
随着半导体器件、微光学元件、微光机电系统等微结构元件的广泛应用,需要一种具有高分辨率、高精度、非接触、无损快捷等特性的测量手段对其进行深入检测,如物体三维形貌、表面缺陷、裂缝、面形误差等方面。在物体表面形貌测量中,数字全息显微术具有非接触、无损伤、高分辨率以及处理迅速等优点尤其是随着半导体和微电子技术的发展,CCD和CMOS性能的不断提高,以及计算机技术的发展,数字全息显微术受到越来越多的关注,应用前景也越来越广泛。
但由于数字全息术采用的是反正切函数来计算物体的相位分布,故受函数周期性以及主值区间的限制,当光通过物体后产生的最大光程差大于所用记录光波波长时,计算获得的物体相位分布都是包裹在之间的,称为包裹图像,所以还需要进行相位解包裹来恢复被测物体的实际相位分布。但是当前的相位解包裹算法大多存在一定的问题,尚未寻找到一种误差较小且广泛适用的算法,这使得物体表面形貌的测量具有一定难度,尤其是对于一些结构复杂或者表面梯度较大的物体。如果使用的记录波长大于最大光程差,就可以直接展开相位,不再需要解包裹处理。但这只适用于少数情况,大多数测量中并不存在如此长波长的激光器。随着数字全息研究热点的高涨,国外各高校和研究机构对相位解包裹的理论和方法做了很多的研究工作。二维相位解包裹的研究始于20世纪70年代末,90年代后,由于二维图像处理的需要,二维相位解包裹技术得到迅速发展。二维相位去包裹可以通过Takeda提出的行列逐点算法来实现,它是最早的二维相位去包裹算法,这一算法是根据相位解包裹的原始意图得到的,即通过逐点积分实现的。但行列逐点算法只能对理想无误差的图像正确快速地去包裹,对实际测量获得的包裹图处理时会产生严重的失真现象。为此,国内外经过大量的研究,提出了针对各种情况的二维相位解包裹算法,迄今为止算法的种类已经不下40种。比如2006年西北工业大学的王军等人提出了相位图去包裹的一种新的综合方法([1]王军,赵建林,范琦等.相位图去包裹的一种新的综合方法.中国激光.2006,33(6):795-799)。建立了一个消除局部不连续点的模型,可有效地消除包裹相位图中的不连续点。国防科大的雷志辉等人提出一种基于双频投影条纹的全自动相位解包裹方法([2]雷志辉,李健兵.基于双频投影条纹的全自动相位解包裹方法.光学学报.2006,26(1):39-42),推导了利用该双频条纹的相位主值获取真实相位场的公式。在利用公式进行解包裹时,各点的相位求取都是单独进行的,因此不会出现误差传递的现象,同时求解的相位场保持了相移法求解的相位精度。但是这些方法在相位精确解包裹的同时,大多算法复杂,计算量大。如何实现精度又高速度又快的相位解包裹成为了数字全息显微成像中一项技术难题。
发明内容
本发明的目的在于提供一种基于双波长数字全息技术的透射式显微成像装置及其方法,以解决数字全息显微成像中快速相位解包裹问题。
实现本发明目的的技术解决方案为:一种基于双波长数字全息技术的透射式显微成像装置,包括第一激光器、第二激光器、第一分束镜、第一集光镜、第一聚光镜针孔光阑、第一聚光镜、第一平面镜、显微物镜、镜筒透镜、第二集光镜、第二聚光镜针孔光阑、第二聚光镜、衰减片、第二平面镜、第二分束镜、相机、第三平面镜,其中第一分束镜将第一激光器发出的激光分成两路,其中一路激光经过第一集光镜汇聚到第一聚光镜针孔光阑,光通过第一聚光镜针孔光阑发散后被第一聚光镜收集变成平行光经过第一平面镜反射照射待测样品,透射过待测样品的光被显微物镜收集,并经过镜筒透镜放大再次变成平行光经过第二分束镜反射后垂直照射相机的成像平面,这一路称为物光;另一路激光经过第二集光镜汇聚到第二聚光镜针孔光阑,光通过第二聚光镜针孔光阑发散后被第二聚光镜收集变成平行光,再经过衰减片衰减和第二平面镜反射后倾斜照射相机的成像平面,这一路参考光与物光干涉,形成的干涉图由相机记录下来;与此同时,第二激光器发出的激光经过第三平面镜反射后经过第一分束镜被反射,然后和第一激光器发出的激光经过相同的光路,在相机成像平面形成干涉图并被记录下来。
本发明与现有技术相比,其显著优点:(1)采用了双波长数字全息技术,使用两个不同波长的激光同时照射待测样品,并用一个彩色相机在两个不同颜色通道中同时采集到两幅全息干涉图,然后分别求出两个波长下的包裹相位图,最终再用这两幅双波长包裹相位图光学解包裹,求出样品的非包裹相位图。(2)使用本发明进行数字全息显微成像,避免了复杂的相位解包裹过程,降低了后期计算处理的复杂度,提高了相位重建精度。
下面结合附图对本发明作进一步详细描述。
附图说明
图1(a)-图1(b)为基于双波长数字全息技术的透射式显微成像装置的两种等价装置的示意图:图1(a)是使用分束镜进行分光的一种基于双波长数字全息技术的透射式显微成像装置的示意图;图1(b)是使用光纤与光纤分路器进行分光的一种基于双波长数字全息技术的透射式显微成像装置的示意图。
图2(a)-图2(f)为利用基于双波长数字全息技术的透射式显微成像装置对人体巨噬细胞进行数字全息显微成像的结果:图2(a)是彩色相机拍摄到的原始干涉图中红色通道的部分,即红色激光形成的干涉图;图2(b)是图2(a)经过傅立叶变换的频谱,图中用小框框出的是+1级谱;图2(c)是+1级谱平移到频谱中央后的结果;图2(d)是利用傅立叶逆变换求出的物体在红光下的包裹相位分布图;图2(e)是利用傅立叶逆变换求出的物体在绿光下的包裹相位分布图;图2(f)是利用双波长光学解包裹求出的物体的非包裹相位分布图。
具体实施方式
如图1(a)所示,本发明基于双波长数字全息技术的透射式显微成像装置,包括第一激光器1、第二激光器17、第一分束镜2、第一集光镜3、第一聚光镜针孔光阑4、第一聚光镜5、第一平面镜6、显微物镜8、镜筒透镜9、第二集光镜10、第二聚光镜针孔光阑11、第二聚光镜12、衰减片13、第二平面镜14、第二分束镜15、相机16、第三平面镜18,其中第一分束镜2将第一激光器1发出的激光分成两路,其中一路激光经过第一集光镜3汇聚到第一聚光镜针孔光阑4,光通过第一聚光镜针孔光阑4发散后被第一聚光镜5收集变成平行光经过第一平面镜6反射照射待测样品7,透射过待测样品7的光被显微物镜8收集,并经过镜筒透镜9放大再次变成平行光经过第二分束镜15反射后垂直照射相机16的成像平面,这一路称为物光;另一路激光经过第二集光镜10汇聚到第二聚光镜针孔光阑11,光通过第二聚光镜针孔光阑11发散后被第二聚光镜12收集变成平行光,再经过衰减片13衰减和第二平面镜14反射后倾斜照射相机16的成像平面,这一路参考光与物光干涉,形成的干涉图由相机16记录下来;与此同时,第二激光器17发出的激光经过第三平面镜18反射后经过第一分束镜2被反射,然后和第一激光器1发出的激光经过相同的光路,在相机16成像平面形成干涉图并被记录下来。
所述的第一聚光镜针孔光阑4放置在第一集光镜3的后焦面位置,同时也是第一聚光镜5的前焦面位置;第二聚光镜针孔光阑11放置在第二集光镜10的后焦面位置,同时也是第二聚光镜12的前焦面位置,这样保证了入射的激光经过针孔滤波后出射的是平行光。
本发明基于双波长数字全息技术的透射式显微成像装置具有另外等价的光学结构,如图1(b)所示,包括激光器1、第二激光器17、光纤分路器19、第一聚光镜5、第一平面镜6、显微物镜8、镜筒透镜9、第二聚光镜12、衰减片13、第二平面镜14、第二分束镜15与相机16,其中第一激光器1和第二激光器17发出的激光通过光纤耦合进入光纤分路器19,混合并且分成两路后再通过光纤耦合输出,每一路光纤输出都包含第一激光器1和第二激光器17发出的激光,两个输出的光纤头分别位于第一聚光镜5、第二聚光镜12的焦点位置,以保证经过第一聚光镜5、第二聚光镜12后出射的是平行光;在分成的两路光中,一路激光经过第一平面镜6反射后照射待测样品7,透射过待测样品7的光被显微物镜8收集,并经过镜筒透镜9放大后再次变成平行光经过第二分束镜15反射垂直照射相机16的成像平面,这一路称为物光光路;另一路激光经过衰减片13衰减和第二平面镜14反射后倾斜照射相机16的成像平面,这一路参考光与物光干涉,形成的干涉图由相机16记录下来。
本发明基于双波长数字全息技术的透射式显微成像装置的待测样品7、显微物镜8、镜筒透镜9与相机16构成了远心光学结构,其中待测样品7位于显微物镜8的前焦面位置,同时显微物镜8的后焦面与镜筒透镜9的前焦面重合,该相机16位于镜筒透镜9的后焦面位置。所有平面镜的倾斜角度可自由调整,最后的倾斜角使反射的参考光与物光成3-8°夹角,以实现离轴干涉。衰减片13使用一片中性衰减片或由多片中性衰减片组成,或者由两片线偏振片组成,其作用是衰减参考光光强,使其与物光光强匹配,以提高干涉条纹的对比度。
本发明基于双波长数字全息技术的透射式显微成像装置的第一激光器1和第二激光器17分别发出红色和绿色的激光,两束激光可选波长范围分别为620nm≤λ1≤760nm,500nm≤λ2≤560nm。可以选取两束激光波长分别为λ1=632nm,λ2=525nm。相机16用彩色或单色相机,如果是单色相机,只需要在全息成像时让第一激光器1和第二激光器17分别打开,用单色相机16依次记录下两幅全息干涉图即可;如果是彩色相机,在全息成像时让第一激光器1和第二激光器17同时打开。这两束激光产生的干涉图同时被彩色相机记录并且可以从红色通道和绿色通道中区分开来。另外,本发明中的彩色相机也可以用单色相机代替,只需要在全息成像时让第一激光器1和第二激光器17分别打开,用单色相机依次记录下两幅全息干涉图即可。
本发明利用基于双波长数字全息技术的透射式显微成像装置进行数据采集与重建方法,步骤如下:
第一步:利用彩色相机16采集一幅彩色干涉图图像I;
第二步:从彩色干涉图图像I中的红色和绿色通道中分离出两幅单色干涉图Ir和Ig
第三步:利用傅立叶变换分别求出两幅干涉图的频谱Fr和Fg
第四步:分别选取频谱Fr和Fg中的+1级谱,滤除其余频谱;
第五步:分别找出+1级谱中能量最大值位置作为+1级谱的中心,然后将+1级谱平移到整幅频谱的中央,使+1级谱的中心与整幅频谱的中心重合。
第六步:对频谱做傅立叶逆变换,求出待测样品的包裹相位分布Pr和Pg
第七步:利用双波长技术进行相位解包裹,求出待测样品的非包裹相位分布P。利用双波长技术进行相位解包裹的公式如下:
Λ = λ r λ g λ r - λ g
其中,Pr,Pg分别表示红色和绿色通道求出的包裹相位,表示除以2π后取余数的函数,λrg分别表示红色和绿色激光的波长,本发明中λr=632nm,λg=525nm,Λ表示利用双波长技术进行相位解包裹求出的非包裹相位分布P对应的等效波长,本发明中Λ=3101nm。
为了测试基于双波长数字全息技术的透射式显微成像装置以及方法的有效性,我们选取人体巨噬细胞进行数字全息显微成像。图2(a)是彩色相机拍摄到的原始干涉图中红色通道的部分,即红色激光形成的干涉图;图2(b)是图2(a)经过傅立叶变换的频谱,图中用小框框出的是+1级谱;图2(c)是+1级谱平移到频谱中央后的结果;图2(d)是利用傅立叶逆变换求出的物体在红光下的包裹相位分布图;图2(e)是利用傅立叶逆变换求出的物体在绿光下的包裹相位分布图;图2(f)是利用双波长光学解包裹求出的物体的非包裹相位分布图。从图2(d)和图2(e)中可以看出直接由频谱求出的相位图不论在红光还是绿光下都是包裹相位图,相位包裹在[-π,π]之间,不利于观察和识别。而经过了双波长光学解包裹以后,从图2(f)中可以看出物体的相位信息得到了精确的解包裹,而且没有任何相位误差,证明使用本发明装置以及方法能够有效避免复杂的相位解包裹过程,降低后期计算处理的复杂度,提高相位重建精度。

Claims (9)

1.一种基于双波长数字全息技术的透射式显微成像装置,其特征在于包括第一激光器(1)、第二激光器(17)、第一分束镜(2)、第一集光镜(3)、第一聚光镜针孔光阑(4)、第一聚光镜(5)、第一平面镜(6)、显微物镜(8)、镜筒透镜(9)、第二集光镜(10)、第二聚光镜针孔光阑(11)、第二聚光镜(12)、衰减片(13)、第二平面镜(14)、第二分束镜(15)、相机(16)、第三平面镜(18),其中第一分束镜(2)将第一激光器(1)发出的激光分成两路,其中一路激光经过第一集光镜(3)汇聚到第一聚光镜针孔光阑(4),光通过第一聚光镜针孔光阑(4)发散后被第一聚光镜(5)收集变成平行光经过第一平面镜(6)反射照射待测样品(7),透射过待测样品(7)的光被显微物镜(8)收集,并经过镜筒透镜(9)放大再次变成平行光经过第二分束镜(15)反射后垂直照射相机(16)的成像平面,这一路称为物光;另一路激光经过第二集光镜(10)汇聚到第二聚光镜针孔光阑(11),光通过第二聚光镜针孔光阑(11)发散后被第二聚光镜(12)收集变成平行光,再经过衰减片(13)衰减和第二平面镜(14)反射后倾斜照射相机(16)的成像平面,这一路参考光与物光干涉,形成的干涉图由相机(16)记录下来;与此同时,第二激光器(17)发出的激光经过第三平面镜(18)反射后经过第一分束镜(2)被反射,然后和第一激光器(1)发出的激光经过相同的光路,在相机(16)成像平面形成干涉图并被记录下来。
2.根据权利要求1所述的基于双波长数字全息技术的透射式显微成像装置,其特征在于所述的第一聚光镜针孔光阑(4)放置在第一集光镜(3)的后焦面位置,同时也是第一聚光镜(5)的前焦面位置;第二聚光镜针孔光阑(11)放置在第二集光镜(10)的后焦面位置,同时也是第二聚光镜(12)的前焦面位置。
3.一种基于双波长数字全息技术的透射式显微成像装置,其特征在于包括激光器(1)、第二激光器(17)、光纤分路器(19)、第一聚光镜(5)、第一平面镜(6)、显微物镜(8)、镜筒透镜(9)、第二聚光镜(12)、衰减片(13)、第二平面镜(14)、第二分束镜(15)与相机(16),其中第一激光器(1)和第二激光器(17)发出的激光通过光纤耦合进入光纤分路器(19),混合并且分成两路后再通过光纤耦合输出,每一路光纤输出都包含第一激光器(1)和第二激光器(17)发出的激光,两个输出的光纤头分别位于第一聚光镜(5)、第二聚光镜(12)的焦点位置,以保证经过第一聚光镜(5)、第二聚光镜(12)后出射的是平行光;在分成的两路光中,一路激光经过第一平面镜(6)反射后照射待测样品(7),透射过待测样品(7)的光被显微物镜(8)收集,并经过镜筒透镜(9)放大后再次变成平行光经过第二分束镜(15)反射垂直照射相机(16)的成像平面,这一路称为物光光路;另一路激光经过衰减片(13)衰减和第二平面镜(14)反射后倾斜照射相机(16)的成像平面,这一路参考光与物光干涉,形成的干涉图由相机(16)记录下来。
4.根据权利要求1或3所述的基于双波长数字全息技术的透射式显微成像装置,其特征在于待测样品(7)、显微物镜(8)、镜筒透镜(9)与相机(16)构成了远心光学结构,其中待测样品(7)位于显微物镜(8)的前焦面位置,同时显微物镜(8)的后焦面与镜筒透镜(9)的前焦面重合,该相机(16)位于镜筒透镜(9)的后焦面位置。
5.根据权利要求1或3所述的基于双波长数字全息技术的透射式显微成像装置,其特征在于所有平面镜的倾斜角度可自由调整,最后的倾斜角使反射的参考光与物光成3-8°夹角,以实现离轴干涉。
6.根据权利要求1或3所述的基于双波长数字全息技术的透射式显微成像装置,其特征在于衰减片(13)使用一片中性衰减片或由多片中性衰减片组成,或者由两片线偏振片组成。
7.根据权利要求1或3所述的基于双波长数字全息技术的透射式显微成像装置,其特征在于第一激光器(1)和第二激光器(17)分别发出红色和绿色的激光,两束激光可选波长范围分别为620nm≤λ1≤760nm,500nm≤λ2≤560nm。
8.根据权利要求1或3所述的基于双波长数字全息技术的透射式显微成像装置,其特征在于相机(16)用彩色或单色相机,如果是单色相机,只需要在全息成像时让第一激光器(1)和第二激光器(17)分别打开,用单色相机(16)依次记录下两幅全息干涉图即可;如果是彩色相机,在全息成像时让第一激光器(1)和第二激光器(17)同时打开。
9.一种利用基于双波长数字全息技术的透射式显微成像装置进行数据采集与重建方法,其特征在于步骤如下:
第一步:利用彩色相机(16)采集一幅彩色干涉图图像I;
第二步:从彩色干涉图图像I中的红色和绿色通道中分离出两幅单色干涉图Ir和Ig
第三步:利用傅立叶变换分别求出两幅干涉图的频谱Fr和Fg
第四步:分别选取频谱Fr和Fg中的+1级谱,滤除其余频谱;
第五步:分别找出+1级谱中能量最大值位置作为+1级谱的中心,然后将+1级谱平移到整幅频谱的中央,使+1级谱的中心与整幅频谱的中心重合。
第六步:对频谱做傅立叶逆变换,求出待测样品的包裹相位分布Pr和Pg
第七步:利用双波长技术进行相位解包裹,求出待测样品的非包裹相位分布P。利用双波长技术进行相位解包裹的公式如下:
Λ = λ r λ g λ r - λ g
其中,Pr,Pg分别表示红色和绿色通道求出的包裹相位,表示除以2π后取余数的函数,λrg分别表示红色和绿色激光的波长,本发明中λr=632nm,λg=525nm,Λ表示利用双波长技术进行相位解包裹求出的非包裹相位分布P对应的等效波长。
CN201510631815.4A 2015-09-29 2015-09-29 基于双波长数字全息技术的透射式显微成像装置及其方法 Active CN105277136B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510631815.4A CN105277136B (zh) 2015-09-29 2015-09-29 基于双波长数字全息技术的透射式显微成像装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510631815.4A CN105277136B (zh) 2015-09-29 2015-09-29 基于双波长数字全息技术的透射式显微成像装置及其方法

Publications (2)

Publication Number Publication Date
CN105277136A true CN105277136A (zh) 2016-01-27
CN105277136B CN105277136B (zh) 2019-07-02

Family

ID=55146571

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510631815.4A Active CN105277136B (zh) 2015-09-29 2015-09-29 基于双波长数字全息技术的透射式显微成像装置及其方法

Country Status (1)

Country Link
CN (1) CN105277136B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106872408A (zh) * 2017-04-26 2017-06-20 赣南师范大学 一种浮游生物成像检测装置
CN109478704A (zh) * 2016-07-15 2019-03-15 光场实验室公司 用于全息超分辨率的编码能量波导
CN111273534A (zh) * 2020-03-19 2020-06-12 嘉应学院 双波长数字全息显微成像方法及装置
CN112835190A (zh) * 2021-01-04 2021-05-25 桂林电子科技大学 基于双芯光纤光操控和动态散斑照明显微成像方法和系统
CN114001643A (zh) * 2021-09-27 2022-02-01 上海工程技术大学 一种数字全息显微相位畸变补偿方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1523335A (zh) * 2003-09-05 2004-08-25 中国科学院上海光学精密机械研究所 光纤连接器端面参数测试装置
US6809845B1 (en) * 2002-09-25 2004-10-26 University Of South Florida Phase imaging using multi-wavelength digital holography
KR101056926B1 (ko) * 2009-02-20 2011-08-12 전북대학교산학협력단 Off-axis 방식의 이중 파장 디지털 홀로그래피를 이용한 3D 측정장치
CN103630086A (zh) * 2013-11-13 2014-03-12 华南师范大学 一种基于单色ccd的双波长同时相移干涉测量方法
CN104834201A (zh) * 2015-05-13 2015-08-12 北京工业大学 双波长偏振复用数字全息成像系统及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809845B1 (en) * 2002-09-25 2004-10-26 University Of South Florida Phase imaging using multi-wavelength digital holography
CN1523335A (zh) * 2003-09-05 2004-08-25 中国科学院上海光学精密机械研究所 光纤连接器端面参数测试装置
KR101056926B1 (ko) * 2009-02-20 2011-08-12 전북대학교산학협력단 Off-axis 방식의 이중 파장 디지털 홀로그래피를 이용한 3D 측정장치
CN103630086A (zh) * 2013-11-13 2014-03-12 华南师范大学 一种基于单色ccd的双波长同时相移干涉测量方法
CN104834201A (zh) * 2015-05-13 2015-08-12 北京工业大学 双波长偏振复用数字全息成像系统及方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
寇云莉等: "利用双波长数字全息术测量微小物体表面形貌", 《中国激光》 *
赵晖等: "基于彩色CMOS双波长数字全息显微术的细胞相位定量测量", 《激光与光电子学进展》 *
邓丽军等: "基于双波长数字全息术的微光学元件折射率分布及面形测量", 《光学学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109478704A (zh) * 2016-07-15 2019-03-15 光场实验室公司 用于全息超分辨率的编码能量波导
CN109478704B (zh) * 2016-07-15 2021-08-13 光场实验室公司 用于全息超分辨率的编码能量波导
CN106872408A (zh) * 2017-04-26 2017-06-20 赣南师范大学 一种浮游生物成像检测装置
CN106872408B (zh) * 2017-04-26 2023-05-30 赣南师范大学 一种浮游生物成像检测装置
CN111273534A (zh) * 2020-03-19 2020-06-12 嘉应学院 双波长数字全息显微成像方法及装置
CN111273534B (zh) * 2020-03-19 2021-05-04 嘉应学院 双波长数字全息显微成像方法及装置
CN112835190A (zh) * 2021-01-04 2021-05-25 桂林电子科技大学 基于双芯光纤光操控和动态散斑照明显微成像方法和系统
CN112835190B (zh) * 2021-01-04 2022-08-09 桂林电子科技大学 基于双芯光纤光操控和动态散斑照明显微成像系统
CN114001643A (zh) * 2021-09-27 2022-02-01 上海工程技术大学 一种数字全息显微相位畸变补偿方法及装置
CN114001643B (zh) * 2021-09-27 2023-07-25 上海工程技术大学 一种数字全息显微相位畸变补偿方法及装置

Also Published As

Publication number Publication date
CN105277136B (zh) 2019-07-02

Similar Documents

Publication Publication Date Title
CN105159044A (zh) 基于双波长数字全息技术的反射式显微成像装置
CN105277136A (zh) 基于双波长数字全息技术的透射式显微成像装置及其方法
CN102889853B (zh) 分光同步移相共光路干涉显微检测装置及检测方法
CN105066908B (zh) 一种基于多波长和多偏振态的数字全息三维形貌检测装置
CN102589414B (zh) 可实时测量的同步相移斐索干涉装置
CN106292238B (zh) 一种反射式离轴数字全息显微测量装置
CN102865811B (zh) 基于正交双光栅的同步移相共光路干涉显微检测装置及检测方法
CN102221342B (zh) 一种时域多波长外差散斑干涉测量物体变形的方法
CN102914257A (zh) 分光同步移相干涉显微检测装置及检测方法
CN103245285B (zh) 一种反射式点衍射载波同步移相干涉检测装置及检测方法
CN102914256A (zh) 基于正交双光栅的同步移相干涉检测装置及检测方法
CN103630086A (zh) 一种基于单色ccd的双波长同时相移干涉测量方法
CN106574871A (zh) 用于光束表征的设备和方法
CN107462150B (zh) 基于一维周期光栅和点衍射的双视场数字全息检测方法
CN105242512A (zh) 基于远心光学结构的透射式数字全息显微成像装置
CN108279068B (zh) 基于四波横向剪切干涉的激光光束质量动态测量装置
CN107356195B (zh) 基于二维周期光栅和点衍射的三视场数字全息检测装置与方法
CN102914259A (zh) 基于分光同步移相的干涉检测装置及检测方法
CN102954758B (zh) 基于同步载频移相的干涉检测装置与检测方法
CN102914258A (zh) 基于正交双光栅的同步移相干涉显微检测装置及检测方法
CN107421437B (zh) 基于二维相位光栅和点衍射的三视场数字全息检测装置与方法
CN103322912B (zh) 一种反射式点衍射离轴同步移相干涉检测装置与检测方法
CN102865810A (zh) 基于正交双光栅的同步相移共光路干涉检测装置及检测方法
CN108088368A (zh) 基于分光瞳的反射式离轴数字全息装置与方法
CN108180824A (zh) 双波长载频正交透射点衍射式共路数字全息测量装置与方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant