CN105277109A - Displacement sensor outputting digital frequencies - Google Patents
Displacement sensor outputting digital frequencies Download PDFInfo
- Publication number
- CN105277109A CN105277109A CN201510557424.2A CN201510557424A CN105277109A CN 105277109 A CN105277109 A CN 105277109A CN 201510557424 A CN201510557424 A CN 201510557424A CN 105277109 A CN105277109 A CN 105277109A
- Authority
- CN
- China
- Prior art keywords
- displacement sensor
- detection coil
- oscillator
- frequency output
- quartz crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000006073 displacement reaction Methods 0.000 title claims abstract description 41
- 239000013078 crystal Substances 0.000 claims abstract description 20
- 239000010453 quartz Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 20
- 238000001514 detection method Methods 0.000 claims description 34
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Transmission And Conversion Of Sensor Element Output (AREA)
- Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
Abstract
Description
技术领域 technical field
本发明属于位移传感器技术领域,具体涉及一种数字频率输出的位移传感器的设计。 The invention belongs to the technical field of displacement sensors, and in particular relates to the design of a displacement sensor with digital frequency output.
背景技术 Background technique
位移传感器广泛应用于各种领域,主要包括电阻应变片式、光栅式、电容式、电感式等。电阻应变片式位移传感器测量范围为0.1~100μm,仅适用于微小范围的精确测量;光栅式位移传感器测试范围大,分辨率高,但设备复杂不易携带,且光学信号不易存储和处理;电容式位移传感器成本低,功耗低,但其抗干扰能力差,易受环境影响。而且这些形式的传感器输出大多是模拟式的,不能直接与数字系统连接,因此,开发出能够直接输出数字信号的位移传感器正变得越来越重要。 Displacement sensors are widely used in various fields, mainly including resistance strain gauge type, grating type, capacitive type, inductive type, etc. The measurement range of the resistance strain gauge displacement sensor is 0.1-100 μm, which is only suitable for accurate measurement in a small range; the grating type displacement sensor has a large test range and high resolution, but the equipment is complex and difficult to carry, and the optical signal is not easy to store and process; The displacement sensor has low cost and low power consumption, but its anti-interference ability is poor and it is easily affected by the environment. Moreover, most of these forms of sensor output are analog and cannot be directly connected to digital systems. Therefore, it is becoming more and more important to develop displacement sensors that can directly output digital signals.
如专利CN104776791A提出了一种可以输出数字频率信号的位移传感器,该位移传感器包括位移体、LC谐振电路和谐振检测模块。其中,该位移传感器所述位移体穿过所述LC谐振电路的电感线圈,所述LC谐振电路的电感线圈沿所述位移体的中心轴线移动,引起所述LC谐振电路的电感线圈电感量发生改变,从而使所述LC谐振电路的频率随之变化。该位移传感器具有数字频率输出且结构简单的优点,但是,LC谐振电路的品质因数一般只能达到数百量级,信号的稳定性不够理想。 For example, patent CN104776791A proposes a displacement sensor capable of outputting digital frequency signals, the displacement sensor includes a displacement body, an LC resonant circuit and a resonance detection module. Wherein, the displacement body of the displacement sensor passes through the inductance coil of the LC resonant circuit, and the inductance coil of the LC resonant circuit moves along the central axis of the displacement body, causing the inductance of the inductance coil of the LC resonant circuit to occur Change, so that the frequency of the LC resonant circuit changes accordingly. The displacement sensor has the advantages of digital frequency output and simple structure. However, the quality factor of the LC resonant circuit can only reach hundreds of orders of magnitude, and the stability of the signal is not ideal.
因此,开发出结构简单且具有稳定性好、数字输出、灵敏度高、检测位移大的位移传感器有十分重要的意义。 Therefore, it is of great significance to develop a displacement sensor with simple structure, good stability, digital output, high sensitivity and large detection displacement.
发明内容 Contents of the invention
本发明的目的是为了解决现有技术中位移传感器大多是模拟式的,不能直接与数字系统连接的问题,提出了一种数字频率输出的位移传感器。 The purpose of the present invention is to solve the problem that most of the displacement sensors in the prior art are analog and cannot be directly connected to the digital system, and propose a displacement sensor with digital frequency output.
本发明的技术方案为:一种数字频率输出的位移传感器,包括探测线圈、石英晶体谐振器以及振荡器,所述探测线圈、石英晶体谐振器和振荡器形成串联回路。 The technical solution of the present invention is: a displacement sensor with digital frequency output, including a detection coil, a quartz crystal resonator and an oscillator, and the detection coil, the quartz crystal resonator and the oscillator form a series loop.
优选地,探测线圈为PCB印制线圈。 Preferably, the detection coil is a PCB printed coil.
优选地,探测线圈包括PCB板以及制作于PCB板上的印制线圈。 Preferably, the detection coil includes a PCB board and a printed coil fabricated on the PCB board.
优选地,探测线圈为螺线管式探测线圈。 Preferably, the detection coil is a solenoid type detection coil.
优选地,探测线圈的电感值小于100微亨。 Preferably, the inductance of the search coil is less than 100 microhenries.
优选地,石英晶体谐振器为金属封装形式。 Preferably, the quartz crystal resonator is in the form of a metal package.
优选地,石英晶体谐振器的标称频率为5-20MHz。 Preferably, the nominal frequency of the quartz crystal resonator is 5-20 MHz.
优选地,振荡器为皮尔斯振荡器或锁相环振荡器。 Preferably, the oscillator is a Pierce oscillator or a phase-locked loop oscillator.
本发明的有益效果是:本发明利用由探测线圈与石英晶体谐振器所形成的串联连接具有高品质因数的特点,有效提高了位移传感器的输出信号稳定性;本发明可在如湿度、灰尘、油污等恶劣环境中使用;本发明还具有大感频牵引率、数字频率输出,后续检测电路简单,且数字信号可直接接入数字系统中,有利于后期的传感信号采集和处理;本发明与现有传感器相比,具有结构简单,制作方便,实现了稳定性好、抗干扰能力强、灵敏度高等优点的位移测量。 The beneficial effects of the present invention are: the present invention utilizes the characteristics that the series connection formed by the detection coil and the quartz crystal resonator has a high quality factor, effectively improving the stability of the output signal of the displacement sensor; the present invention can be used in conditions such as humidity, dust, It can be used in harsh environments such as oil pollution; the invention also has a large sensing frequency traction rate and digital frequency output, and the follow-up detection circuit is simple, and the digital signal can be directly connected to the digital system, which is beneficial to the acquisition and processing of the sensing signal in the later stage; Compared with the existing sensor, it has the advantages of simple structure, convenient manufacture, and realizes the displacement measurement with the advantages of good stability, strong anti-interference ability and high sensitivity.
附图说明 Description of drawings
图1为本发明提供的一种数字频率输出的位移传感器电路结构图。 Fig. 1 is a circuit structure diagram of a displacement sensor with digital frequency output provided by the present invention.
图2为本发明实施例探测线圈侧视图。 Fig. 2 is a side view of the detection coil of the embodiment of the present invention.
图3为本发明实施例探测线圈俯视图。 Fig. 3 is a top view of the detection coil of the embodiment of the present invention.
图4为本发明实施例探测线圈与石英晶体谐振器串联部分的等效电路模型图。 Fig. 4 is an equivalent circuit model diagram of the serial part of the detection coil and the quartz crystal resonator according to the embodiment of the present invention.
附图标记说明:1—探测线圈、2—石英晶体谐振器、3—被测对象、4—振荡器、11—PCB板、12—印制线圈。 Description of reference signs: 1—detection coil, 2—quartz crystal resonator, 3—measured object, 4—oscillator, 11—PCB board, 12—printed coil.
具体实施方式 detailed description
下面结合附图对本发明的实施例作进一步的说明。 Embodiments of the present invention will be further described below in conjunction with the accompanying drawings.
本发明提供了一种数字频率输出的位移传感器,如图1所示,包括探测线圈1、石英晶体谐振器2以及振荡器4,探测线圈1、石英晶体谐振器2和振荡器4形成串联回路。 The present invention provides a displacement sensor with digital frequency output, as shown in Figure 1, comprising a detection coil 1, a quartz crystal resonator 2 and an oscillator 4, and the detection coil 1, the quartz crystal resonator 2 and the oscillator 4 form a series loop .
其中,探测线圈1采用PCB印制线圈或者螺线管式探测线圈等。本发明实施例中,探测线圈1为PCB印制线圈,如图2和图3所示,包括PCB板11以及制作于其上的印制线圈12。 Wherein, the detection coil 1 adopts a PCB printed coil or a solenoid type detection coil or the like. In the embodiment of the present invention, the detection coil 1 is a PCB printed coil, as shown in FIG. 2 and FIG. 3 , including a PCB board 11 and a printed coil 12 fabricated thereon.
探测线圈1的电感值小于100微亨。本发明实施例中,探测线圈1的电感值为14微亨。 The inductance of the detection coil 1 is less than 100 microhenries. In the embodiment of the present invention, the inductance of the detection coil 1 is 14 microhenries.
石英晶体谐振器2采用金属封装,其标称频率为5-20MHz。本发明实施例中,石英晶体谐振器2的标称频率为10MHz。 The quartz crystal resonator 2 is packaged in metal, and its nominal frequency is 5-20MHz. In the embodiment of the present invention, the nominal frequency of the quartz crystal resonator 2 is 10 MHz.
振荡器4采用皮尔斯振荡器或锁相环振荡器等类型的振荡器。 Oscillator 4 adopts a type of oscillator such as a Pierce oscillator or a phase-locked loop oscillator.
探测线圈1与石英晶体谐振器2串联部分的等效电路模型如图4所示,根据该等效电路模型,可以推导出该数字频率输出的位移传感器的感频特性表达式为: The equivalent circuit model of the series part of the detection coil 1 and the quartz crystal resonator 2 is shown in Figure 4. According to the equivalent circuit model, the frequency sensing characteristic expression of the displacement sensor with digital frequency output can be deduced as:
其中,L、C分别表示石英晶体的惯性质量和机械弹性,C0表示石英晶体谐振器2电极连接处的静态电容,Lx为探测线圈1的电感量。由公式(1)可知,探测线圈1的电感Lx变化会引起该位移传感器的输出频率f改变。 in, L and C respectively represent the inertial mass and mechanical elasticity of the quartz crystal, C 0 represents the static capacitance at the electrode connection of the quartz crystal resonator 2, and L x represents the inductance of the detection coil 1. It can be known from the formula (1) that the change of the inductance L x of the detection coil 1 will cause the output frequency f of the displacement sensor to change.
本发明工作时,如图2所示,探测线圈1与被测对象3平行放置,并在运动方向x上调整被测对象3与探测线圈1之间的相对位移量。被测对象3为金属导体,本发明实施例中,被测对象3为一铜片。数字频率输出的位移传感器的输出频率由探测线圈1与被测对象3之间的相对位移确定。 When the present invention works, as shown in FIG. 2 , the detection coil 1 is placed parallel to the measured object 3 , and the relative displacement between the measured object 3 and the detection coil 1 is adjusted in the moving direction x. The measured object 3 is a metal conductor, and in the embodiment of the present invention, the measured object 3 is a copper sheet. The output frequency of the displacement sensor with digital frequency output is determined by the relative displacement between the detection coil 1 and the measured object 3 .
本领域的普通技术人员将会意识到,这里所述的实施例是为了帮助读者理解本发明的原理,应被理解为本发明的保护范围并不局限于这样的特别陈述和实施例。本领域的普通技术人员可以根据本发明公开的这些技术启示做出各种不脱离本发明实质的其它各种具体变形和组合,这些变形和组合仍然在本发明的保护范围内。 Those skilled in the art will appreciate that the embodiments described here are to help readers understand the principles of the present invention, and it should be understood that the protection scope of the present invention is not limited to such specific statements and embodiments. Those skilled in the art can make various other specific modifications and combinations based on the technical revelations disclosed in the present invention without departing from the essence of the present invention, and these modifications and combinations are still within the protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510557424.2A CN105277109B (en) | 2015-09-02 | 2015-09-02 | A Displacement Sensor with Digital Frequency Output |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510557424.2A CN105277109B (en) | 2015-09-02 | 2015-09-02 | A Displacement Sensor with Digital Frequency Output |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105277109A true CN105277109A (en) | 2016-01-27 |
CN105277109B CN105277109B (en) | 2017-01-25 |
Family
ID=55146552
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510557424.2A Active CN105277109B (en) | 2015-09-02 | 2015-09-02 | A Displacement Sensor with Digital Frequency Output |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105277109B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108896623A (en) * | 2018-07-11 | 2018-11-27 | 西南交通大学 | It is a kind of for measuring the numerical frequency formula humidity sensor of gas relative humidity |
CN111307886A (en) * | 2020-03-06 | 2020-06-19 | 西南交通大学 | A digital frequency humidity sensor |
CN111342804A (en) * | 2020-03-06 | 2020-06-26 | 西南交通大学 | Frequency modulation circuit of quartz crystal oscillator |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85102388A (en) * | 1985-04-10 | 1986-04-10 | 陕西机械学院 | The eddy current mode displacement transducer of high precision and high sensitivity |
CN2043341U (en) * | 1988-12-15 | 1989-08-23 | 中国科学技术大学 | Microdisplacement transducer |
JPH04184983A (en) * | 1990-11-20 | 1992-07-01 | Agency Of Ind Science & Technol | Magnetic coupling type superconducting quantum interference device |
US20090140728A1 (en) * | 2007-11-29 | 2009-06-04 | Rollins George E | Apparatus and methods for proximity sensing circuitry |
CN101479561A (en) * | 2006-06-23 | 2009-07-08 | Skf公司 | Vibration and condition monitoring system and the parts thereof |
CN101718516A (en) * | 2009-12-17 | 2010-06-02 | 西南交通大学 | Device for detecting speed and position of moving object |
CN202734951U (en) * | 2012-08-07 | 2013-02-13 | 成都威尔森科技发展有限责任公司 | Integrated current vortex distance measuring device |
-
2015
- 2015-09-02 CN CN201510557424.2A patent/CN105277109B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN85102388A (en) * | 1985-04-10 | 1986-04-10 | 陕西机械学院 | The eddy current mode displacement transducer of high precision and high sensitivity |
CN2043341U (en) * | 1988-12-15 | 1989-08-23 | 中国科学技术大学 | Microdisplacement transducer |
JPH04184983A (en) * | 1990-11-20 | 1992-07-01 | Agency Of Ind Science & Technol | Magnetic coupling type superconducting quantum interference device |
CN101479561A (en) * | 2006-06-23 | 2009-07-08 | Skf公司 | Vibration and condition monitoring system and the parts thereof |
US20090140728A1 (en) * | 2007-11-29 | 2009-06-04 | Rollins George E | Apparatus and methods for proximity sensing circuitry |
CN101718516A (en) * | 2009-12-17 | 2010-06-02 | 西南交通大学 | Device for detecting speed and position of moving object |
CN202734951U (en) * | 2012-08-07 | 2013-02-13 | 成都威尔森科技发展有限责任公司 | Integrated current vortex distance measuring device |
Non-Patent Citations (2)
Title |
---|
SORIN FERICEAN ET AL.: "New Noncontacting Inductive Analog Proximity and Inductive Linear Displacement Sensors for Industrial Automation", 《IEEE SENSORS JOURNAL》 * |
周铭: "谐振式传感器的理论与设计", 《中国优秀硕士学位论文全文数据库信息科技辑》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108896623A (en) * | 2018-07-11 | 2018-11-27 | 西南交通大学 | It is a kind of for measuring the numerical frequency formula humidity sensor of gas relative humidity |
CN108896623B (en) * | 2018-07-11 | 2020-01-31 | 西南交通大学 | A digital frequency humidity sensor for measuring gas relative humidity |
CN111307886A (en) * | 2020-03-06 | 2020-06-19 | 西南交通大学 | A digital frequency humidity sensor |
CN111342804A (en) * | 2020-03-06 | 2020-06-26 | 西南交通大学 | Frequency modulation circuit of quartz crystal oscillator |
CN111342804B (en) * | 2020-03-06 | 2022-02-25 | 西南交通大学 | A quartz crystal oscillator frequency modulation circuit |
Also Published As
Publication number | Publication date |
---|---|
CN105277109B (en) | 2017-01-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107515311B (en) | A kind of mems accelerometer based on synchronous resonant frequency detecting | |
CN108761134B (en) | Linear output detection method of weak coupling resonant sensor | |
CN105277109B (en) | A Displacement Sensor with Digital Frequency Output | |
CN105866713B (en) | Feedback of status formula autoexcitation fluxgate sensor | |
CN104697677B (en) | A kind of piezomagnetic strain gauge | |
CN103245819A (en) | Method for measuring direct current or direct voltage by adopting magnetic excitation resonant piezoresistive cantilever beam | |
CN205861876U (en) | A kind of cantilever beam interdigital capacitor magnetic field sensing based on giant magnetostrictive thin film is popped one's head in | |
CN107543483B (en) | A kind of all-metal current vortex position sensor and temperature drift solution | |
CN106199687A (en) | Simple component geophone | |
CN102735152A (en) | Calibrating and measuring method of microwave absorbing coating thickness measuring instrument | |
CN102095478A (en) | Magnetostrictive liquid level sensor | |
CN104154851A (en) | Method for measuring time difference proportional displacement of magnetostrictive sensor | |
CN102928132A (en) | Tunnel reluctance pressure transducer | |
CN104776791B (en) | A kind of method of displacement sensor and measurement displacement | |
CN103743925A (en) | Cantilever beam type electromagnetic acceleration sensor | |
CN102478646A (en) | Magnetic sensor based on amorphous magnetic core coil and working method thereof | |
CN202793425U (en) | Signal sampling circuit of inductive sensor | |
CN105403138A (en) | Intelligent magnetostrictive displacement sensor | |
CN101782418A (en) | Non-contact capacitance liquid level meter | |
CN207882297U (en) | A kind of electrostatic resonance type accelerometer | |
CN104502998A (en) | Characteristic parameter tester and testing method for seismic detector | |
CN104020359B (en) | MEMS electric-field sensor based on electret | |
CN209085724U (en) | High-accuracy liquid level sensor | |
CN102854479B (en) | A kind of New Resonance giant magnetoresistance effect magnetic-sensitive elements | |
CN116735039A (en) | Anti-interference magnetic induction type flexible touch sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |