CN105256033A - 基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法 - Google Patents

基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法 Download PDF

Info

Publication number
CN105256033A
CN105256033A CN201510696810.XA CN201510696810A CN105256033A CN 105256033 A CN105256033 A CN 105256033A CN 201510696810 A CN201510696810 A CN 201510696810A CN 105256033 A CN105256033 A CN 105256033A
Authority
CN
China
Prior art keywords
nucleic acid
amplification
molecular beacon
mercury ion
sda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510696810.XA
Other languages
English (en)
Other versions
CN105256033B (zh
Inventor
赵永席
赵越
袁慧
刘华青
白凯
魏帅
杨卫军
王芳霞
王亚玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHINA NATIONAL TOBACCO Corp SHANXI Co
Xian Jiaotong University
Original Assignee
CHINA NATIONAL TOBACCO Corp SHANXI Co
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHINA NATIONAL TOBACCO Corp SHANXI Co, Xian Jiaotong University filed Critical CHINA NATIONAL TOBACCO Corp SHANXI Co
Priority to CN201510696810.XA priority Critical patent/CN105256033B/zh
Publication of CN105256033A publication Critical patent/CN105256033A/zh
Application granted granted Critical
Publication of CN105256033B publication Critical patent/CN105256033B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法,含有胸腺嘧啶的DNA识别元件特异性的结合汞离子后折叠并形成分子内茎环结构;DNA的3’端可以被聚合酶识别,以自身为模板起始链置换扩增反应,产生大量的单链DNA产物;该单链DNA可以打开含有酶切位点的分子信标茎环结构,产生荧光信号;同时,单链DNA产物还可以作为引物,以所杂交结合的分子信标为模板触发二次链置换扩增反应,而被释放后的SDA产物可与新的分子信标形成杂交双链,以产生级联放大的荧光信号,该测量方法灵敏度高,在无需增加体系复杂度的条件下,巧妙的实现了链置换扩增反应的级联放大,扩增效率高,反应速度快,可在30min内实现汞离子的定量,检测限低至2nM。

Description

基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法
技术领域
本发明属于生物技术领域,涉及汞离子的定量检测,特别涉及基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法。
技术背景
重金属离子在环境中具有相当高的稳定性,且难以被微生物降解。它们一旦进入环境,很难被自然修复,而且能够在生态系统中不断富集和传递,即使微量摄入也会产生很大毒性,是生态平衡和人类健康的重大威胁。作为重金属离子污染的典型代表,汞离子在生物组织内积累导致DNA损伤,影响配体-受体的相互作用,破坏免疫系统,引发一系列的疾病,如脑损伤,肾衰竭,各种认知和运动紊乱等。因此,环境中汞离子的定量检测具有重要的研究价值和现实意义。
传统的检测汞离子检测的方法有原子吸收/发射光谱、色谱层析法、电感耦合等离子体质谱、冷蒸汽原子荧光光谱、高效液相色谱法、阳极溶出伏安法等,但这些方法大多依赖于大型设备,实验成本高,需要专业人员操作,且样品的预处理过程繁琐,这些都制约了这些方法在实际检测中的广泛应用。
近年来,基于功能化核酸进行检测的方法得到广泛的发展。核酸以其高稳定性,生物相容性,易标记和修饰,成本低,应用广等优点在生物检测和生化分析中发挥越来越重要的作用。AkiraOno等于2004年首次发现并提出汞离子可与胸腺嘧啶碱基上第三个氮原子发生质子取代反应形成稳定的T-Hg2+-T结构。该结构甚至可以取代核酸序列中原有的A-T碱基配对结构,使核酸的二级结构发生重组。这种特殊的配位结构的发现在很大程度上提高汞离子检测的灵敏度和特异性,对重金属检测作出突破性贡献。目前已发展了多种基于该结构的核酸检测汞离子的方法,包括比色、电化学、电化学发光、荧光光谱等检测方法。然而比色法虽然结果肉眼可见但是灵敏度不够高,并且纳米金的合成与准备过程也较为繁琐。而电化学法的灵敏度高但是操作复杂,时间较长,需要配备价格较为昂贵的电化学相关仪器,同时,相关的荧光法由于没有进行放大虽然更加快速和简便,但是比较难以获得令人满意的灵敏度和检测范围。
基于链置换扩增(Stranddisplacementamplification,SDA)技术利用具有链置换活性的DNA聚合酶(KlenowFragment)与核酸切口酶(Nt.BbvCI)识别并切割特定双链中单链的性质,能够在恒温条件下迅速扩增出多条寡核苷酸单链。相比于传统扩增技术如PCR,SDA不仅具有较高的扩增效率,而且不需要精确地热循环设备,已被越来越多地用于DNA,microRNA,以及其它生物活性分子和金属离子检测信号的放大,但是单纯的链置换扩增技术扩增效率及灵敏度有限。
发明内容
为了克服上述现有技术存在的缺陷,本发明的目的在于提供一种基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法,以克服现有技术灵敏度不足、设计复杂、耗时长等缺点。
本发明是通过以下技术方案来实现:
一种基于恒温级联核酸扩增的汞离子检测试剂盒,包括含有胸腺嘧啶可特异性结合汞离子的DNA识别元件、扩增底物、工具酶、带有茎环结构的分子信标探针和扩增反应缓冲液;
所述的含有胸腺嘧啶可特异性结合汞离子的DNA识别元件:DNA的3’端最后一个碱基为胸腺嘧啶,其核苷酸序列(5’到3’):
TGAGGCTAGAGCGAGCTGAGGCTGTAATGGAAAAAACCATTT;
所述的扩增底物:包括dNTPs混合物;
所述的工具酶:具有链置换扩增活性的DNA聚合酶和核酸切口酶,DNA聚合酶为KlenowFragment,核酸切口酶为Nt.BbvCI;
所述的带有茎环结构的分子信标探针:其两端分别标记有荧光基团和猝灭基团,分子信标探针具有能够与SDA产物相互补的序列,其核苷酸序列(5’到3’):FAM-CCACGAGTGTGCTGAGGCTAGAGCGTGG-DABCYL;
所述的扩增反应缓冲液:200mMNaNO3,20mMTris-HAc和30mMMg(Ac)2的混合物,pH7.9。
基于恒温级联核酸扩增的汞离子检测试剂盒的检测方法,包括以下步骤:
(1)将含有胸腺嘧啶的可特异性结合汞离子的DNA识别元件与待测溶液按体积比2:1混合,DNA识别元件结合待测溶液中的汞离子之后可通过分子内折叠形成3’端互补,形成可被聚合酶识别的茎环结构;
(2)将结合了汞离子之后的DNA识别元件与扩增底物、DNA聚合酶、核酸切口酶、分子信标探针以及扩增反应缓冲液混合反应,反应温度为37℃,时间为30-45min,混合物中各个组分浓度分别为:DNA识别元件10-100nM、扩增底物40-500μM、DNA聚合酶0.08-0.24U、核酸切口酶1-4U、分子信标探针100nM,扩增反应缓冲液为200mMNaNO3,20mMTris-HAc和30mMMg(Ac)2混合物,DNA识别元件的3’端以自身为模板起始扩增,扩增产物中的第一个核酸切口酶识别位点被识别并在扩增链的相应位点发生切割,即可产生大量SDA产物,扩增所获得的SDA产物触发打开分子信标的茎环结构,其荧光恢复;同时SDA产物可作为引物沿着分子信标继续触发聚合反应,聚合产物与分子信标形成的双链互补结构中还含有核酸切口酶识别位点,在形成双链结构后该位点被识别,触发二次SDA扩增,而二次SDA产物可与新的分子信标形成杂交双链,以产生更多的荧光信号;
(3)利用荧光分光光度计检测荧光信号,对荧光信号分析得到待测溶液中汞离子的含量。
所述可特异性结合汞离子的DNA识别元件和分子信标区域中分别含有Nt.BbvCI识别双链中不被切割的单链序列5’-GCTGAGG-3’,可以在SDA生成双链的过程中被Nt.BbvCI识别,在聚合产物位点处切割实现SDA,使得产生大量SDA产物。
与现有技术相比,本发明具有以下有益的技术效果:
1.本发明提供的恒温级联核酸扩增的汞离子检测方法及试剂盒,设计简单,无需增加体系复杂性即可实现高效、快速的酶协同级联恒温扩增反应,反应快速,只需要30min,可以提高灵敏度到2nM;
2.本发明提供的基于恒温级联核酸扩增的汞离子检测方法及试剂盒与传统的原子吸收/发射光谱、色谱层析法、电感耦合等离子体质谱、冷蒸汽原子荧光光谱、高效液相色谱法、阳极溶出伏安法等方法相比,无需依赖大型设备,实验成本低,且样品的预处理简单、需求量很少,可以实现微量操作,采用的恒温反应,无需使用昂贵的热循环仪,体系设计更为简单,应用范围更广泛。
附图说明
图1是本发明的反应流程原理示意图。
图2是本发明与现有技术的检测效果对比示意图。
图3是不同浓度的汞离子溶液的定量检测结果示意图,其中图3A是荧光光谱图,图3B是线性图。
图4是各种金属离子对本发明汞离子检测方法的干扰示意图。
具提体实施方式
实施例一
本实施例的检测试剂盒,包括以下组分:
(1)含有胸腺嘧啶可特异性结合汞离子的DNA识别元件:DNA的3’端最后一个碱基为胸腺嘧啶,其核苷酸序列(5’到3’):
TGAGGCTAGAGCGAGCTGAGGCTGTAATGGAAAAAACCATTT
其结合汞离子之后通过分子内折叠形成3’端互补,形成可被聚合酶识别的茎环结构;
(2)扩增底物:包括dNTPs混合物;
(3)工具酶:具有链置换扩增活性的DNA聚合酶和核酸切口酶,DNA聚合酶为KlenowFragment,核酸切口酶为Nt.BbvCI;用于触发SDA产生SDA产物;
(4)带有茎环结构的分子信标探针:其两端分别标记有荧光基团和猝灭基团,分子信标探针具有能够与SDA产物相互补的序列,其核苷酸序列(5’到3’):
FAM-CCACGAGTGTGCTGAGGCTAGAGCGTGG-DABCYL;
(5)扩增反应缓冲液:200mMNaNO3,20mMTris-HAc和30mMMg(Ac)2的混合物,pH7.9。
本实施例的检测方法,参照图1,包括以下步骤:
1)将含有胸腺嘧啶可特异性结合汞离子的DNA识别元件与待测溶液混合按体积比2:1混合,DNA识别元件结合待测溶液中的汞离子之后可通过分子内折叠形成3’端互补,形成可被聚合酶识别的茎环结构;
2)将结合了汞离子之后的DNA识别元件与扩增底物、DNA聚合酶、核酸切口酶、分子信标探针以及扩增反应缓冲液混合反应,反应温度为37℃,时间为30-45min,混合物中各个组分浓度分别为:DNA识别元件10nM、扩增底物100μM、DNA聚合酶0.16U、核酸切口酶3U、分子信标探针100nM,扩增反应缓冲液为200mMNaNO3,20mMTris-HAc和30mMMg(Ac)2混合物。
DNA识别元件的3’端以自身为模板起始扩增,扩增产物中的第一个核酸切口酶识别位点被识别并在扩增链的相应位点发生切割,即可产生大量SDA产物,扩增所获得的SDA产物触发打开分子信标的茎环结构,其荧光恢复;同时SDA产物可作为引物沿着分子信标继续触发聚合反应,聚合产物与分子信标形成的双链互补结构中还含有核酸切口酶识别位点,在形成双链结构后该位点被识别,触发二次SDA扩增,而二次SDA产物可与新的分子信标形成杂交双链,以产生更多的荧光信号;
3)利用荧光分光光度计检测荧光信号,对荧光信号分析得到待测溶液中汞离子的含量。
从图1可以看出:含有胸腺嘧啶可特异性结合汞离子的DNA识别元件结合汞离子之后可通过分子内折叠形成3’端互补,可被聚合酶识别的茎环结构;在聚合酶的作用下,DNA识别元件的3’端以自身为模板起始扩增,待扩增至一定长度后,扩增产物中的第一个核酸切口酶识别位点被识别并在扩增链的相应位点发生切割,即可产生大量SDA产物;扩增所获得的SDA产物触发打开分子信标的茎环结构,其荧光恢复;同时SDA产物可作为引物沿着分子信标继续触发聚合反应,聚合产物与分子信标形成的双链互补结构中还含有核酸切口酶识别位点,在形成双链结构后该位点被识别,触发二次SDA扩增,而二次SDA产物可与新的分子信标形成杂交双链,以产生更多的荧光信号,实现级联的SDA放大;待达到规定的反应时间后,检测荧光信号,对荧光信号分析得到待测溶液中汞离子的含量,在一定范围内,汞离子浓度越高,则荧光信号越强。
参照图2,在汞离子识别元件SEQ.ID.NO.1的基础上,设计不参与第二步级联SDA的一步SDA汞离子识别元件SEQ.ID.NO.3,5’-AAATGAGGCTAGAGCGAGCTGAGGCTGTAATGGAAAAAACCATTT-3’,SDA的产物可以与分子信标杂交,但是SDA产物3’端无法与分子信标形成稳定的双链结构,不能被聚合酶识别,从而阻断了第二步级联SDA的信号放大过程,结果如图2所示,通过级联SDA方法的信号与背景比为7.2倍,一步SDA的信号仅为背景的2.2倍,说明本方法确实发生了级联的信号放大。
其他实施例
其余实施例反应条件与实施例一相同,不同在于选用不同浓度的汞离子待测溶液,浓度分别为:2nM,5nM,10nM,15nM,20nM,30nM,40nM,60nM。
参照图3,图3为基于恒温级联核酸扩增的汞离子检测方法的对于不同浓度的汞离子溶液的荧光响应,随着汞离子浓度增加,打开的分子信标增多,荧光信号强度逐渐增加,该方法最低可检测到汞离子的浓度为2nM,线性检测范围为2nM-30nM。
参照图4,为基于恒温级联核酸扩增的汞离子检测方法的对于不同金属离子溶液的荧光响应,考察了40nM汞离子与2uM其他不同金属离子溶液的荧光响应,说明本方法具有很好的选择性,对汞离子灵敏度高,至于其他金属离子对其不会产生干扰。

Claims (2)

1.一种基于恒温级联核酸扩增的汞离子检测试剂盒,其特征在于,包括含有胸腺嘧啶可特异性结合汞离子的DNA识别元件、扩增底物、工具酶、带有茎环结构的分子信标探针和扩增反应缓冲液;
所述的含有胸腺嘧啶可特异性结合汞离子的DNA识别元件:DNA的3’端最后一个碱基为胸腺嘧啶,其核苷酸序列(5’到3’):
TGAGGCTAGAGCGAGCTGAGGCTGTAATGGAAAAAACCATTT;
所述的扩增底物:包括dNTPs混合物;
所述的工具酶:具有链置换扩增活性的DNA聚合酶和核酸切口酶,DNA聚合酶为KlenowFragment,核酸切口酶为Nt.BbvCI;
所述的带有茎环结构的分子信标探针:其两端分别标记有荧光基团和猝灭基团,分子信标探针具有能够与SDA产物相互补的序列,其核苷酸序列(5’到3’):FAM-CCACGAGTGTGCTGAGGCTAGAGCGTGG-DABCYL;
所述的扩增反应缓冲液:200mMNaNO3,20mMTris-HAc和30mMMg(Ac)2的混合物,pH7.9。
2.基于恒温级联核酸扩增的汞离子检测试剂盒的检测方法,其特征在于,包括以下步骤:
(1)将含有胸腺嘧啶的可特异性结合汞离子的DNA识别元件与待测溶液按体积比2:1混合,DNA识别元件结合待测溶液中的汞离子之后可通过分子内折叠形成3’端互补,形成可被聚合酶识别的茎环结构;
(2)将结合了汞离子之后的DNA识别元件与扩增底物、DNA聚合酶、核酸切口酶、分子信标探针以及扩增反应缓冲液混合反应,反应温度为37℃,时间为30-45min,混合物中各个组分浓度分别为:DNA识别元件10-100nM、扩增底物40-500μM、DNA聚合酶0.08-0.24U、核酸切口酶1-4U、分子信标探针100nM,扩增反应缓冲液为200mMNaNO3,20mMTris-HAc和30mMMg(Ac)2混合物,DNA识别元件的3’端以自身为模板起始扩增,扩增产物中的第一个核酸切口酶识别位点被识别并在扩增链的相应位点发生切割,即可产生大量SDA产物,扩增所获得的SDA产物触发打开分子信标的茎环结构,其荧光恢复;同时SDA产物可作为引物沿着分子信标继续触发聚合反应,聚合产物与分子信标形成的双链互补结构中还含有核酸切口酶识别位点,在形成双链结构后该位点被识别,触发二次SDA扩增,而二次SDA产物可与新的分子信标形成杂交双链,以产生更多的荧光信号;
(3)利用荧光分光光度计检测荧光信号,对荧光信号分析得到待测溶液中汞离子的含量。
CN201510696810.XA 2015-10-22 2015-10-22 基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法 Expired - Fee Related CN105256033B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510696810.XA CN105256033B (zh) 2015-10-22 2015-10-22 基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510696810.XA CN105256033B (zh) 2015-10-22 2015-10-22 基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法

Publications (2)

Publication Number Publication Date
CN105256033A true CN105256033A (zh) 2016-01-20
CN105256033B CN105256033B (zh) 2019-01-29

Family

ID=55095958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510696810.XA Expired - Fee Related CN105256033B (zh) 2015-10-22 2015-10-22 基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法

Country Status (1)

Country Link
CN (1) CN105256033B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086188A (zh) * 2016-06-22 2016-11-09 西安交通大学 基于核酸恒温扩增技术检测汞离子的dna结构探针
CN106086187A (zh) * 2016-06-22 2016-11-09 西安交通大学 过氧化氢消除核酸恒温扩增检测汞离子时dtt干扰的方法
CN108107033A (zh) * 2017-11-06 2018-06-01 中山大学 一种单个胸腺嘧啶探针及其制备方法和应用
CN108315400A (zh) * 2018-02-11 2018-07-24 中国农业大学 一种重金属离子的可视化定量检测新方法
CN109321669A (zh) * 2018-10-29 2019-02-12 江南大学 一种基于嵌合体序列设计和分子信标的荧光检测金黄色葡萄球菌的方法
CN109975542A (zh) * 2019-02-22 2019-07-05 中山大学 一种生物分子检测试剂盒以及生物分子检测方法
CN111979303A (zh) * 2020-08-11 2020-11-24 上海奕谱生物科技有限公司 一种核酸检测试剂盒、方法及其应用
CN113624980A (zh) * 2021-08-09 2021-11-09 四川大学华西医院 基于识别诱导的恒温扩增技术对蛋白质进行检测的方法及试剂盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305612A (zh) * 2013-06-04 2013-09-18 西安交通大学 一种基于恒温级联核酸扩增的铅离子检测试剂盒及其检测方法
CN103667448A (zh) * 2013-11-05 2014-03-26 中国科学院深圳先进技术研究院 双功能适配体检测试剂盒以及检测方法
CN104212803A (zh) * 2014-08-29 2014-12-17 河南省农业科学院 用于汞离子定量快速检测的核酸适配体序列及其检测方法
CN104789667A (zh) * 2015-04-08 2015-07-22 西安交通大学 一种基于无偏识别与恒温扩增的小rna检测试剂盒及定量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103305612A (zh) * 2013-06-04 2013-09-18 西安交通大学 一种基于恒温级联核酸扩增的铅离子检测试剂盒及其检测方法
CN103667448A (zh) * 2013-11-05 2014-03-26 中国科学院深圳先进技术研究院 双功能适配体检测试剂盒以及检测方法
CN104212803A (zh) * 2014-08-29 2014-12-17 河南省农业科学院 用于汞离子定量快速检测的核酸适配体序列及其检测方法
CN104789667A (zh) * 2015-04-08 2015-07-22 西安交通大学 一种基于无偏识别与恒温扩增的小rna检测试剂盒及定量方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘斯佳等: "基于胸腺嘧啶-汞离子(Ⅱ)配位作用的汞离子(Ⅱ)检测技术的研究进展", 《中国农业科技导报》 *
莫志宏等: "基于胸腺嘧啶-汞离子-胸腺嘧啶结构和纳米金放大传感器检测汞离子", 《分析化学》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106086188A (zh) * 2016-06-22 2016-11-09 西安交通大学 基于核酸恒温扩增技术检测汞离子的dna结构探针
CN106086187A (zh) * 2016-06-22 2016-11-09 西安交通大学 过氧化氢消除核酸恒温扩增检测汞离子时dtt干扰的方法
CN106086187B (zh) * 2016-06-22 2020-01-14 西安交通大学 过氧化氢消除核酸恒温扩增检测汞离子时dtt干扰的方法
CN106086188B (zh) * 2016-06-22 2020-01-21 西安交通大学 基于核酸恒温扩增技术检测汞离子的dna结构探针
CN108107033A (zh) * 2017-11-06 2018-06-01 中山大学 一种单个胸腺嘧啶探针及其制备方法和应用
CN108315400A (zh) * 2018-02-11 2018-07-24 中国农业大学 一种重金属离子的可视化定量检测新方法
CN109321669A (zh) * 2018-10-29 2019-02-12 江南大学 一种基于嵌合体序列设计和分子信标的荧光检测金黄色葡萄球菌的方法
CN109975542A (zh) * 2019-02-22 2019-07-05 中山大学 一种生物分子检测试剂盒以及生物分子检测方法
CN111979303A (zh) * 2020-08-11 2020-11-24 上海奕谱生物科技有限公司 一种核酸检测试剂盒、方法及其应用
WO2022033331A1 (zh) * 2020-08-11 2022-02-17 上海奕谱生物科技有限公司 一种核酸检测试剂盒、方法及其应用
CN113624980A (zh) * 2021-08-09 2021-11-09 四川大学华西医院 基于识别诱导的恒温扩增技术对蛋白质进行检测的方法及试剂盒

Also Published As

Publication number Publication date
CN105256033B (zh) 2019-01-29

Similar Documents

Publication Publication Date Title
CN105256033A (zh) 基于恒温级联核酸扩增的汞离子检测试剂盒及其检测方法
CN103305612B (zh) 一种基于恒温级联核酸扩增的铅离子检测试剂盒及其检测方法
Barreda-García et al. Helicase-dependent isothermal amplification: a novel tool in the development of molecular-based analytical systems for rapid pathogen detection
Fraga et al. Real‐time PCR
Song et al. A nuclease-assisted label-free aptasensor for fluorescence turn-on detection of ATP based on the in situ formation of copper nanoparticles
Fraga et al. Real‐time PCR
Campan et al. MethyLight
CN102719526B (zh) 一种利用恒温扩增反应合成荧光纳米银簇探针定量检测microRNA的分析方法
Lie et al. A lateral flow biosensor for detection of nucleic acids with high sensitivity and selectivity
WO2002042496A3 (en) Methods and devices for characterizing duplex nucleic acid molecules
AU2010257244A1 (en) Closed-system multi-stage nucleic acid amplification reactions
Jiang et al. Ultrasensitive, label-free detection of T4 ligase and T4 polynucleotide kinase based on target-triggered hyper-branched rolling circle amplification
Moelans et al. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA)
Zhao et al. Polymerase/nicking enzyme synergetic isothermal quadratic DNA machine and its application for one-step amplified biosensing of lead (II) ions at femtomole level and DNA methyltransferase
WO2007149903A2 (en) Multi-stage amplification reactions by control of sequence replication times
Josefsen et al. Diagnostic PCR: comparative sensitivity of four probe chemistries
Campan et al. MethyLight and digital MethyLight
Zhou et al. Developmental validation of a forensic rapid DNA-STR kit: Expressmarker 16
Zhou et al. Ψ-type hybridization and CRISPR/Cas12a-based two-stage signal amplification for microRNA detection
CN103261437A (zh) 用于hpa基因分型的方法及所用引物
Huang et al. A novel multiplex assay system based on 10 methylation markers for forensic identification of body fluids
CN104946770A (zh) 一种基于核酸外切酶ⅲ的汞离子检测新方法
CN112011597B (zh) 一种诱导型变构探针结合滚环扩增的镉离子传感方法
CN107083437B (zh) 一种利用固有荧光核苷酸超灵敏同时检测多种dna糖基化酶的方法
Nurmi et al. Time‐resolved fluorometry in end‐point and real‐time PCR quantification of nucleic acids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190129

Termination date: 20211022

CF01 Termination of patent right due to non-payment of annual fee