CN105242546B - A kind of High Speed Milling Force modeling method based on material property - Google Patents

A kind of High Speed Milling Force modeling method based on material property Download PDF

Info

Publication number
CN105242546B
CN105242546B CN201510740641.5A CN201510740641A CN105242546B CN 105242546 B CN105242546 B CN 105242546B CN 201510740641 A CN201510740641 A CN 201510740641A CN 105242546 B CN105242546 B CN 105242546B
Authority
CN
China
Prior art keywords
mrow
mtd
mtr
centerdot
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510740641.5A
Other languages
Chinese (zh)
Other versions
CN105242546A (en
Inventor
马建伟
高媛媛
贾振元
王福吉
宋得宁
刘振
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510740641.5A priority Critical patent/CN105242546B/en
Publication of CN105242546A publication Critical patent/CN105242546A/en
Application granted granted Critical
Publication of CN105242546B publication Critical patent/CN105242546B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Numerical Control (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

A kind of High Speed Milling Force modeling method based on material property of the present invention belongs to difficult-to-machine material curved surface part precise high-efficiency manufacture field, is related to a kind of difficult-to-machine material High Speed Milling Force modeling method based on material property.This method is primarily based on infinitesimal thought and inclined cutting principle, by working angles infinitesimal Milling Force be expressed as normal pressure and chip caused by rake face extruding workpiece material along rake face slide caused by frictional force;During material property is introduced into milling force modeling based on this, the computation model of normal pressure and frictional force based on material property is established;Then the Milling Force Model established under workpiece coordinate system;The Converse solved method of individual layer mean force is finally based on to recognize the coefficient in model.The present invention realizes a kind of accurate prediction of model to different difficult-to-machine material High Speed Milling Forces, improves the robustness of model, has a wide range of application, and improves difficult-to-machine material curved surface part crudy and efficiency.

Description

A kind of High Speed Milling Force modeling method based on material property
Technical field
It is more particularly to a kind of to be based on material property the invention belongs to difficult-to-machine material curved surface part precise high-efficiency manufacture field Difficult-to-machine material High Speed Milling Force modeling method.
Background technology
Difficult-to-machine material curved surface part high-speed milling technology is studied, there is important meaning to improving its machining accuracy and efficiency Justice.During difficult-to-machine material curved surface part high-speed milling, Milling Force is joined as a significant process physics in milling process Number, research milling force modeling method is to optimization difficult-to-machine material curved surface part high-rate wireless LAN technique, raising crudy tool There is important guiding effect.
At present, milling force modeling method mainly has mechanical modelling, unified mechanical model method and artificial intelligence modeling etc.. Mechanical model method is combined as modeling basis with fixed cutting tool workpiece, and after changing workpiece, model will be no longer applicable, and need to test school again Quasi- coefficient.Though unified mechanical model method considers the influence of cutter parameters, workpiece material yield strength and machining condition etc., power Simplified formula has been used to assume make it that Milling Force precision of prediction is low and modeling process is complicated with some during credit analysis.Artificial intelligence Energy modeling needs enough milling experiment samples, and can not consider actual milling situation, causes Milling Force prediction error larger. Although milling force modeling method is more, lack more blanket for difficult-to-machine material curved surface part high-speed milling force modeling Method, it is difficult to utilize a kind of accurate prediction of a variety of difficult-to-machine material High Speed Milling Forces of model realization.
King protects the " Instantaneous Milling Force during variable curvature curved surface side milling that liter et al. patent announcement number is CN104794305A Forecasting Methodology ", for variable curvature part Flank machining, calculated according to tool position point and instantaneously cut out angle, so as to calculate Actual instantaneous cutting-in, and then instantaneous not deformed thickness of cutting is obtained, the size of Milling Force is obtained based on not deformed thickness of cutting.So And the influence that material property is brought to Milling Force is not considered in this method, do not have versatility to different workpiece materials.Text Offer " Modeling and experimental validation of cutting forces in five-axis ball- End milling based on true tooth trajectory ", Gaiyun He etc., International Journal Of Advanced Manufacturing Technology, 2015,78 (1-4), 189-197, it is proposed that one kind is based on cutter tooth The rose cutter five-axis milling power forecast model of actual motion track, it will predict that obtained Milling Force surveys Milling Force pair with experiment Than, the results showed that prediction result and the experimental result goodness of fit are higher.However, the milling force modeling process involved by this method does not relate to And the influence that material property is brought to Milling Force, thus it is accurately pre- to different difficult-to-machine material curved surface part process Milling Forces Larger limitation be present in survey.
The content of the invention
It is contemplated that the defects of overcoming prior art, invents a kind of difficult-to-machine material high-speed milling based on material property Force modeling method, material property is introduced into High Speed Milling Force modeling process, realizes that a kind of model is high to different difficult-to-machine materials The accurate prediction of fast Milling Force, the robustness of model is improved, cutting process control for difficult-to-machine material Surfaces for High Speed Milling Operation provides theory With technical support, difficult-to-machine material curved surface part crudy and processing efficiency are improved.
A kind of High Speed Milling Force modeling method based on material property of the technical solution adopted in the present invention, its feature exist In being primarily based on infinitesimal thought and inclined cutting principle, working angles be equivalent to a series of line of small inclined cuttings processing Property superposition, and by infinitesimal Milling Force be expressed as rake face extruding workpiece material caused by normal pressure and chip slide and produce along rake face Raw frictional force;During material property is introduced into milling force modeling based on this, the normal pressure based on material property is established With the computation model of frictional force, applicability of the model to workpiece material and milling condition is improved;Then, establish under workpiece coordinate system Milling Force Model;It is finally based on the Converse solved method of individual layer mean force to recognize the coefficient in model, foundation is applied to The High Speed Milling Force forecast model of difficult-to-machine material not of the same race.Modeling method comprises the following steps that:
1) instantaneous infinitesimal Milling Force calculates
To establish Milling Force Model, tool coordinate system Xc-Yc-Zc, local coordinate system t-r-a and workpiece coordinate are initially set up It is Xw-Yw-Zw, and determines local coordinate system to the transition matrix A and tool coordinate system of tool coordinate system to workpiece coordinate system Transition matrix B.
Based on infinitesimal thought and inclined cutting principle, infinitesimal Milling Force (dFt, dFa, dFr) can represent under local coordinate system For:
In formula, η is chip flow angle, λsFor current inclined cutting inclination angle, Fn is that rake face extrudes workpiece material generation Normal pressure, Fs be chip along rake face slide caused by frictional force.
SeparatelyThen have
2) rake face normal pressure calculates with frictional force
With reference to theory of metal cutting and difficult-to-machine material high-speed milling feature, rake face normal pressure Fn is expressed as:
In formula, c is coefficient, and σ is material yield strength, and ε is the thermal conductivity factor of difficult-to-machine material, and v is cutting speed, ADFor Working angles material is squeezed area.Wherein, v=2 π Rsin κ S/60, R is tool radius, and κ is cutting infinitesimal axial direction Position angle, S are the speed of mainshaft.
Working angles material is squeezed area ADIt is represented by:
AD=tn·dL (4)
In formula, tnFor instantaneous not deformed thickness of cutting corresponding to cutting edge infinitesimal, dL is tool in cutting sword infinitesimal length.
For difficult-to-machine material curved surface, judge whether blade infinitesimal participates in cutting using Z-map methods, obtain:
In formula, fzr,fzaRespectively feed engagement fzHorizontal component and vertical component, ψ be cutting infinitesimal radial direction leaching Entering angle, κ is cutting infinitesimal axial location angle,For axial coordinate of the cutting infinitesimal under workpiece coordinate system, Z is work pieces process Axial coordinate of the face under workpiece coordinate system.
In view of the plasticity ability T of material influences the coefficient of friction of rake face, coefficient of friction and material plasticity positive correlation, then before Knife face frictional force is represented by:
Fs=nTFn (6)
In formula, n is coefficient.
3) high-speed milling force modeling
Infinitesimal Milling Force (dFt, dFa, dFr) under local coordinate system is transformed to by coordinate transform micro- under workpiece coordinate system First Milling ForceFor:
In formula,For infinitesimal Milling Force under local coordinate system.
Total Milling Force under workpiece coordinate systemThe superposition of infinitesimal Milling Force is expressed as, is:
In formula, NjFor blade number, m is that blade instantaneously participates in cutting infinitesimal number.
4) High Speed Milling Force identification of Model Parameters
By formula (8), can obtain:
In formula, i is cutting infinitesimal layer index, and j indexes for blade.
Formula (3) and (6) are substituted into (9) and can obtained:
For the coefficient c and n introduced in identification model, dynamometry at any one cutter corner k need to be only chosen in working angles What instrument measuredIt can be solved by any two of three equations in formula (10).Adopted to reduce error With average milling force method, the milling that cutter rotates a circle makes a concerted effort to be:
It will rotate a circle and be divided into NkPart, then averagely Milling Force is expressed as:
OrderTo avoid computing repeatedly matrix, meter is improved Calculate efficiency, the method combined using hierarchical solving with mean force.If there was only the difference in height of a cutting infinitesimal between cutting-in twice, Then the difference of empirical average Milling Force is twice:
In formula (13),For constant matrices.Order:
Average Milling Force is:
It can be obtained by formula (15):
Coefficient c and n can be obtained by formula (16), complete milling force modeling.
The remarkable result and benefit of the present invention is based on differential thought and inclined cutting principle, and material property is introduced at a high speed During milling force modeling, a kind of High Speed Milling Force modeling method suitable for different difficult-to-machine materials has been invented, and based on single The layer Converse solved method of mean force recognizes to the coefficient in model, and the High Speed Milling Force of difficult-to-machine material not of the same race can be achieved Prediction, has a wide range of application.The method of invention improves modeling efficiency without many experiments.
Brief description of the drawings
Fig. 1 --- the High Speed Milling Force modeling method overall flow figure based on material property
The Milling Force prediction of Fig. 2 --- nickel base superalloy 718 and Experimental Comparison;MEA- Milling Force measured values, CAL- millings Cut power calculated value
The Milling Force prediction of Fig. 3 --- titanium alloy TC 4 and Experimental Comparison;MEA- Milling Force measured values, CAL- Milling Force meters Calculation value
Specific embodiment
Describe the embodiment of the present invention in detail with reference to accompanying drawing 1 and technical scheme.
In view of during difficult-to-machine material curved surface part high-speed milling, Milling Force is a significant process in milling process Physical parameter, therefore milling force modeling method is studied to optimization difficult-to-machine material curved surface part high-rate wireless LAN technique, raising Crudy has important guiding effect.In addition, the difference of workpiece material characteristic also results in the change of Milling Force.Accordingly, pin To a variety of difficult-to-machine material curved surface part milling force modeling problems, a kind of high-speed milling force modeling based on material property has been invented Method, overall flow is referring to accompanying drawing 1.
By taking rose cutter vertical milling sphere as an example, calculate and emulate by MATLAB softwares, describe the present invention in detail and implemented Journey.
First, initial parameter is determined.Given working process parameter is cutting-in aP=0.2mm, feed engagement fz= 0.05mm/z, speed of mainshaft S=8000rpm, using two-edged tool sharpening, tool radius R=3mm, cutter nominal pitch angle alpha= 30 °, cutting edge inclination λs=0.1 °.Based on infinitesimal thought and inclined cutting principle, it is 1000 to give the cutter bulb some discrete number of plies, Cutter rotates a circle dispersion number as 200, and cutter axial direction layer scattering is at intervals of 1 °.Thus, one group (i, j, k) is given, according to formula (2) relation between infinitesimal Milling Force and rake face normal pressure and frictional force, is obtained.
Secondly, with reference to theory of metal cutting and difficult-to-machine material high-speed milling feature, material parameter is given.Embodiment 1 is selected It is σ=550Mpa, ε=11W (mK) with nickel base superalloy 718-1, T=22A5%;Embodiment 2 from titanium alloy TC 4 be σ= 825Mpa, ε=6.8W (mK)-1, T=10A5%.Rake face normal pressure Fn and frictional force Fs mathematics are obtained according to formula (3)-(6) Expression formula is:
Then, the High Speed Milling Force model obtained according to formula (7) and (8) under workpiece coordinate system is:
Finally, to avoid computing repeatedly matrix, computational efficiency is improved, the method combined using hierarchical solving with mean force is distinguished Know coefficient c and n.Trying to achieve the average milling relation between difference and coefficient c and n of making a concerted effort by formula (13) is:
The milling force data obtained based on experiment, coefficient c and n are tried to achieve according to formula (16), and the coefficient tried to achieve is substituted into formula (18)-(19), milling force modeling is completed.
To verify the validity of Milling Force Model, all infinitesimal Milling Forces are carried out after calculating solution superposition using MATLAB It can obtain Milling Force calculated value.By taking nickel-base alloy 718 as an example, i=100, k=50, j=1, d κ=0.1 °, N are takenk=200, root DL=5.24 × 10 are obtained according to cutting geometrical relationship-6Mm, κ=45 °, ψ=89.5 °, not deformed thickness of cutting t is tried to achieve according to formula (5)n =3.9 × 10-6mm.Coordinate conversion matrixMatrixC=0.42, n=4.3 are obtained based on cutting test and formula (16), according to formula (17) Try to achieve rake face normal pressure Fn=0.3547N, frictional force Fs=0.3408N, can be in the hope of micro- under local coordinate system according to formula (1) First Milling Force isCan be in the hope of infinitesimal Milling Force under workpiece coordinate system according to formula (7)Infinitesimal Milling Force is under workpiece coordinate systemWorkpiece can be obtained by formula (18) High Speed Milling Force is under coordinate system
For different difficult-to-machine materials, the milling force value measured and model calculation value are contrasted, referring to accompanying drawing 2 and accompanying drawing 3. Milling Force prediction and Experimental Comparison result of the accompanying drawing 2 for nickel base superalloy 718, accompanying drawing 3 are predicted for the Milling Force of titanium alloy TC 4 With Experimental Comparison result.As a result show, Milling Force predicted value and the measured value goodness of fit are higher, and effectively hardly possible not of the same race can be added Work material high-speed milling power is precisely predicted.
The present invention realizes that a variety of difficult-to-machine material High Speed Milling Forces are accurately predicted for being difficult by a kind of Milling Force Model, A kind of difficult-to-machine material High Speed Milling Force modeling method based on material property has been invented, material property is introduced into milling force modeling During, a kind of accurate prediction of model to different difficult-to-machine material High Speed Milling Forces is realized, improves the robustness of model, is applied Scope is wide, and cutting process control for difficult-to-machine material Surfaces for High Speed Milling Operation provides theoretical and technical support, improves difficult-to-machine material curved surface Part crudy and efficiency.

Claims (1)

1. a kind of High Speed Milling Force modeling method based on material property, it is characterised in that be primarily based on infinitesimal thought and oblique angle Cutting principle, working angles is equivalent to a series of linear superposition of small inclined cutting processing, and infinitesimal Milling Force is represented For rake face extrude normal pressure and chip caused by workpiece material along rake face slide caused by frictional force;Based on this by material Expect that characteristic is introduced during milling force modeling, establish the computation model of normal pressure and frictional force based on material property, improve mould Applicability of the type to workpiece material and milling condition;Then, the Milling Force Model established under workpiece coordinate system;It is finally based on individual layer The Converse solved method of mean force recognizes to the coefficient in model, establishes the high-speed milling suitable for difficult-to-machine material not of the same race Power forecast model;Modeling method comprises the following steps that:
1) instantaneous infinitesimal Milling Force calculates
To establish Milling Force Model, tool coordinate system Xc-Yc-Zc, local coordinate system t-r-a and workpiece coordinate system are initially set up Xw-Yw-Zw, and determine that the transition matrix A and tool coordinate system of local coordinate system to tool coordinate system turn to workpiece coordinate system Change matrix B;
Based on infinitesimal thought and inclined cutting principle, infinitesimal Milling Force (dFt, dFa, dFr) is represented by under local coordinate system:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>d</mi> <mi>F</mi> <mi>t</mi> <mo>=</mo> <mi>F</mi> <mi>s</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>sin&amp;lambda;</mi> <mi>s</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;eta;</mi> <mo>+</mo> <mi>F</mi> <mi>n</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>cos&amp;lambda;</mi> <mi>s</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>F</mi> <mi>a</mi> <mo>=</mo> <mi>F</mi> <mi>s</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>sin&amp;lambda;</mi> <mi>s</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;eta;</mi> <mo>-</mo> <mi>F</mi> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;eta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>d</mi> <mi>F</mi> <mi>r</mi> <mo>=</mo> <mi>F</mi> <mi>s</mi> <mo>&amp;CenterDot;</mo> <mi>cos</mi> <mi>&amp;eta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
In formula, η is chip flow angle, λsFor current inclined cutting inclination angle, Fn is that rake face extrudes malleation caused by workpiece material Power, Fs be chip along rake face slide caused by frictional force;
SeparatelyThen have
<mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>d</mi> <mi>F</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mi>F</mi> <mi>r</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mi>F</mi> <mi>a</mi> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>F</mi> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>F</mi> <mi>s</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
2) rake face normal pressure calculates with frictional force
Rake face normal pressure Fn is expressed as:
<mrow> <mi>F</mi> <mi>n</mi> <mo>=</mo> <mfrac> <mrow> <mi>c</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>A</mi> <mi>D</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>&amp;epsiv;</mi> </mrow> <mi>v</mi> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
In formula, c is coefficient, and σ is material yield strength, and ε is the thermal conductivity factor of difficult-to-machine material, and v is cutting speed, ADFor cutting Process material is squeezed area;Wherein, v=2 π Rsin κ S/60, R is tool radius, and κ is cutting infinitesimal axial location Angle, S are the speed of mainshaft;
Working angles material is squeezed area ADIt is represented by:
AD=tn·dL (4)
In formula, tnFor instantaneous not deformed thickness of cutting corresponding to cutting edge infinitesimal, dL is tool in cutting sword infinitesimal length;
For difficult-to-machine material curved surface, judge whether blade infinitesimal participates in cutting using Z-map methods, obtain:
<mrow> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>=</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mrow> <mi>z</mi> <mi>r</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;psi;</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;kappa;</mi> <mo>-</mo> <msub> <mi>f</mi> <mrow> <mi>z</mi> <mi>a</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <mi>cos</mi> <mi>&amp;kappa;</mi> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Z</mi> <mo>&amp;GreaterEqual;</mo> <msubsup> <mi>Z</mi> <mi>q</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <mi>Z</mi> <mo>&lt;</mo> <msubsup> <mi>Z</mi> <mi>q</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
In formula, fzr,fzaRespectively feed engagement fzHorizontal component and vertical component, ψ be cutting infinitesimal radial direction immerse angle, κ is cutting infinitesimal axial location angle,For axial coordinate of the cutting infinitesimal under workpiece coordinate system, Z is work pieces process face in work Axial coordinate under part coordinate system;
In view of the plasticity ability T of material influences the coefficient of friction of rake face, coefficient of friction and material plasticity positive correlation, then rake face Frictional force is represented by:
Fs=nTFn (6)
In formula, n is coefficient;
3) high-speed milling force modeling
Infinitesimal Milling Force (dFt, dFa, dFr) under local coordinate system is transformed to by infinitesimal milling under workpiece coordinate system by coordinate transform Cut powerFor:
<mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>d</mi> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dF</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dF</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>d</mi> <msubsup> <mi>F</mi> <mi>x</mi> <mi>c</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dF</mi> <mi>y</mi> <mi>c</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dF</mi> <mi>z</mi> <mi>c</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mo>(</mo> <mrow> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>d</mi> <mi>F</mi> <mi>t</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mi>F</mi> <mi>r</mi> </mtd> </mtr> <mtr> <mtd> <mi>d</mi> <mi>F</mi> <mi>a</mi> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>)</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
In formula,For infinitesimal Milling Force under local coordinate system;
Total Milling Force under workpiece coordinate systemThe superposition of infinitesimal Milling Force is expressed as, is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mrow> <mi>N</mi> <mi>j</mi> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mi>m</mi> </munderover> <msubsup> <mi>dF</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>F</mi> <mi>y</mi> <mi>W</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mrow> <mi>N</mi> <mi>j</mi> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mi>m</mi> </munderover> <msubsup> <mi>dF</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>F</mi> <mi>z</mi> <mi>W</mi> </msubsup> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mrow> <mi>N</mi> <mi>j</mi> </mrow> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mn>1</mn> <mi>m</mi> </munderover> <msubsup> <mi>dF</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
In formula, NjFor blade number, m is that blade instantaneously participates in cutting infinitesimal number;
4) High Speed Milling Force identification of Model Parameters
By formula (8), can obtain:
<mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>F</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>F</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>d</mi> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dF</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>dF</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mi>F</mi> <mi>n</mi> </mtd> </mtr> <mtr> <mtd> <mi>F</mi> <mi>s</mi> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
In formula, i is cutting infinitesimal layer index, and j indexes for blade;
Formula (3) and (6) are substituted into (9) and can obtained:
<mrow> <mtable> <mtr> <mtd> <mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>F</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>F</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>F</mi> <mi>n</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mn>30</mn> <mo>&amp;CenterDot;</mo> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>L</mi> </mrow> <mrow> <mi>&amp;pi;</mi> <mo>&amp;CenterDot;</mo> <mi>R</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;kappa;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>S</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
For the coefficient c and n introduced in identification model, dynamometer survey at any one cutter corner k in working angles need to be only chosen It can be solved by any two of three equations in formula (10);To reduce error using flat Equal milling force method, the milling that cutter rotates a circle make a concerted effort to be:
<mrow> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mo>&amp;Sigma;</mo> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;Sigma;</mo> <msubsup> <mi>F</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;Sigma;</mo> <msubsup> <mi>F</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <msub> <mi>F</mi> <mi>n</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Sigma;</mo> <mi>i</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>j</mi> </munder> <munder> <mo>&amp;Sigma;</mo> <mi>k</mi> </munder> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mn>30</mn> <mo>&amp;CenterDot;</mo> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>L</mi> </mrow> <mrow> <mi>&amp;pi;</mi> <mo>&amp;CenterDot;</mo> <mi>R</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;kappa;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>S</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow>
It will rotate a circle and be divided into NkPart, then averagely Milling Force is expressed as:
<mrow> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>k</mi> </msub> </mfrac> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <mo>&amp;Sigma;</mo> <msubsup> <mi>F</mi> <mi>x</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;Sigma;</mo> <msubsup> <mi>F</mi> <mi>y</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>&amp;Sigma;</mo> <msubsup> <mi>F</mi> <mi>z</mi> <mi>W</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>k</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mi>i</mi> <mi>m</mi> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mi>j</mi> <msub> <mi>N</mi> <mi>j</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mi>k</mi> <msub> <mi>N</mi> <mi>k</mi> </msub> </munderover> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mn>30</mn> <mo>&amp;CenterDot;</mo> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>L</mi> </mrow> <mrow> <mi>&amp;pi;</mi> <mo>&amp;CenterDot;</mo> <mi>R</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;kappa;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>S</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
OrderTo avoid computing repeatedly matrix, improve and calculate effect Rate, the method combined using hierarchical solving with mean force;If there was only the difference in height of a cutting infinitesimal between cutting-in twice, then two The difference of secondary empirical average Milling Force is:
<mrow> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mi>x</mi> <mi>W</mi> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mi>y</mi> <mi>W</mi> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mi>z</mi> <mi>W</mi> </msubsup> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mi>i</mi> </msub> <mo>-</mo> <msub> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>K</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mi>j</mi> <msub> <mi>N</mi> <mi>j</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mi>K</mi> <msub> <mi>N</mi> <mi>k</mi> </msub> </munderover> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mn>30</mn> <mo>&amp;CenterDot;</mo> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>L</mi> </mrow> <mrow> <mi>&amp;pi;</mi> <mo>&amp;CenterDot;</mo> <mi>R</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;kappa;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>S</mi> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
In formula (13),For constant matrices;Order:
<mrow> <mi>M</mi> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>N</mi> <mi>k</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mi>j</mi> <msub> <mi>N</mi> <mi>j</mi> </msub> </munderover> <munderover> <mo>&amp;Sigma;</mo> <mi>k</mi> <msub> <mi>N</mi> <mi>k</mi> </msub> </munderover> <mi>B</mi> <mo>&amp;CenterDot;</mo> <mi>A</mi> <mo>&amp;CenterDot;</mo> <mfrac> <mrow> <mn>30</mn> <mo>&amp;CenterDot;</mo> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> <mi>&amp;epsiv;</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>t</mi> <mi>n</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>d</mi> <mi>L</mi> </mrow> <mrow> <mi>&amp;pi;</mi> <mo>&amp;CenterDot;</mo> <mi>R</mi> <mo>&amp;CenterDot;</mo> <mi>sin</mi> <mi>&amp;kappa;</mi> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <mi>S</mi> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Average Milling Force is:
<mrow> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>i</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mrow> <mo>(</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
It can be obtained by formula (15):
<mrow> <mo>(</mo> <mi>D</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "{" close = "}"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mi>c</mi> <mo>)</mo> <mo>=</mo> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mo>&amp;CenterDot;</mo> <mover> <mi>F</mi> <mo>&amp;OverBar;</mo> </mover> <mo>(</mo> <mi>i</mi> <mo>)</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
Coefficient c and n can be obtained by formula (16), complete milling force modeling.
CN201510740641.5A 2015-11-04 2015-11-04 A kind of High Speed Milling Force modeling method based on material property Active CN105242546B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510740641.5A CN105242546B (en) 2015-11-04 2015-11-04 A kind of High Speed Milling Force modeling method based on material property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510740641.5A CN105242546B (en) 2015-11-04 2015-11-04 A kind of High Speed Milling Force modeling method based on material property

Publications (2)

Publication Number Publication Date
CN105242546A CN105242546A (en) 2016-01-13
CN105242546B true CN105242546B (en) 2017-12-01

Family

ID=55040227

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510740641.5A Active CN105242546B (en) 2015-11-04 2015-11-04 A kind of High Speed Milling Force modeling method based on material property

Country Status (1)

Country Link
CN (1) CN105242546B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106156430B (en) * 2016-07-06 2019-04-05 大连理工大学 A kind of micro- milling force modeling method based on tool wear effect
CN106650001B (en) * 2016-11-15 2019-08-20 大连理工大学 A kind of prediction technique of micro- milling cutter early damage
CN111061218B (en) * 2019-12-31 2021-07-27 华中科技大学 Complex curved surface machining cutting force prediction method and device based on ACIS
CN111759488B (en) * 2020-07-09 2021-08-24 山东大学 Design method and system and preparation of variable cross-section nickel-titanium root canal file applied to root canal preparation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202006002793U1 (en) * 2006-02-20 2006-04-13 Klein, Harry Drive unit for e.g. high-speed or model milling machine, has drive motor with gear having toothing, where gear is brought in toothed engagement with toothed rack for guide rails and is pressable against toothed rack by spring force
US7976250B2 (en) * 2009-02-12 2011-07-12 Tdy Industries, Inc. Double-sided cutting inserts for high feed milling
CN101493686B (en) * 2009-02-26 2010-07-28 上海交通大学 Cutting tool mode parameter uncertain curve five-shaft numerical control process parameter optimizing method
CN201881203U (en) * 2010-09-03 2011-06-29 浙江工业大学 Multi-rigidity jointing material high-speed milling vibration testing device
CN104076733B (en) * 2014-08-01 2017-01-25 同济大学 Milling process parameter optimization method
CN104778333B (en) * 2015-04-27 2017-09-12 华中科技大学 A kind of helical end millses orthogonal turn-milling processes three-dimensional stability modeling method

Also Published As

Publication number Publication date
CN105242546A (en) 2016-01-13

Similar Documents

Publication Publication Date Title
CN105242546B (en) A kind of High Speed Milling Force modeling method based on material property
CN105069257A (en) Free-form surface micro-milling cutting force modeling method
CN106156430B (en) A kind of micro- milling force modeling method based on tool wear effect
CN104392090B (en) The construction method of aluminum alloy materials end mill cutting force and machining distorted pattern
CN112372372B (en) Efficient milling cutter accumulated friction wear boundary identification and verification method
CN103559550B (en) Milling stable region Forecasting Methodology under multi-mode coupling
CN102566492B (en) Method for forecasting maximum milling force for plunge milling of metal difficult-to-cut materials
CN102607484B (en) Variable-interval self-adaptive measuring point-searching aircraft panel normal vector determination method
CN103646141B (en) Cutting force modeling method for flat bottom spiral end mill orthogonal turning milling shaft parts
CN103345200B (en) A kind of cut Identification of Chatter method based on generalized interval
CN103439917A (en) Cutting force prediction method based on features
CN105414616A (en) Method for cutting force forecasting and stability judging in spiral hole milling process
CN105243195A (en) Prediction method for micro-milling and work-hardening nickel-based superalloy
CN104794337B (en) A kind of orthogonal turn-milling judged based on boundary condition processes end face sword On Cutting Force Modeling
CN105373664B (en) A kind of extraordinary transmission curved surface five-axis milling force modeling method
CN106141808B (en) One kind becomes cutting-depth adjusting device and radial cutting parameter optimization process
CN105269402A (en) Method for predicating surface roughness of titanium alloy material based on milling
CN106934172A (en) A kind of multiple-cutting-edge milling clearance computational methods of carbon fibre composite
Song et al. Approach for modeling accurate undeformed chip thickness in milling operation
CN106424969A (en) Method for precisely predicting dynamic cutting force of plunge milling by taking cutter eccentricity into consideration
CN106682281A (en) Method for predicting instantaneous cutting force of milling based on maximum cutting force
CN109571142A (en) A kind of transient temperature of monoblock type square end mill rake face determines method and system
CN107168245A (en) A kind of accurate Forecasting Methodology of chamfered edge circular bit cutting force for considering cutting edge effect
CN114429064A (en) Identification method for fractal characteristics of friction boundary of rear cutter face of cutter tooth of high-energy-efficiency milling cutter
CN108255134A (en) A kind of difficult-to-machine material high-speed turning prediction of Turning Force with Artificial method for considering chamfered edge geometry

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant