CN105219392A - Nanocrystalline superstructure of organic phase Cadmium Sulfide/cadmium telluride and its preparation method and application - Google Patents
Nanocrystalline superstructure of organic phase Cadmium Sulfide/cadmium telluride and its preparation method and application Download PDFInfo
- Publication number
- CN105219392A CN105219392A CN201410232175.5A CN201410232175A CN105219392A CN 105219392 A CN105219392 A CN 105219392A CN 201410232175 A CN201410232175 A CN 201410232175A CN 105219392 A CN105219392 A CN 105219392A
- Authority
- CN
- China
- Prior art keywords
- superstructure
- nanocrystalline
- cadmium
- organic phase
- cadmium telluride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052980 cadmium sulfide Inorganic materials 0.000 title claims abstract description 52
- MARUHZGHZWCEQU-UHFFFAOYSA-N 5-phenyl-2h-tetrazole Chemical compound C1=CC=CC=C1C1=NNN=N1 MARUHZGHZWCEQU-UHFFFAOYSA-N 0.000 title claims abstract description 46
- 239000012074 organic phase Substances 0.000 title claims abstract description 46
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 title claims abstract description 43
- 238000002360 preparation method Methods 0.000 title claims abstract description 18
- 239000012071 phase Substances 0.000 claims abstract description 21
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 claims abstract description 21
- 229920000301 poly(3-hexylthiophene-2,5-diyl) polymer Polymers 0.000 claims abstract description 18
- 239000002131 composite material Substances 0.000 claims abstract description 5
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 claims description 74
- LZZYPRNAOMGNLH-UHFFFAOYSA-M Cetrimonium bromide Chemical compound [Br-].CCCCCCCCCCCCCCCC[N+](C)(C)C LZZYPRNAOMGNLH-UHFFFAOYSA-M 0.000 claims description 16
- 239000008346 aqueous phase Substances 0.000 claims description 13
- 238000004528 spin coating Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 2
- CJOBVZJTOIVNNF-UHFFFAOYSA-N cadmium sulfide Chemical compound [Cd]=S CJOBVZJTOIVNNF-UHFFFAOYSA-N 0.000 claims 2
- 239000006185 dispersion Substances 0.000 claims 1
- 239000012456 homogeneous solution Substances 0.000 claims 1
- 239000012528 membrane Substances 0.000 claims 1
- 230000007704 transition Effects 0.000 abstract description 2
- 230000002194 synthesizing effect Effects 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 30
- 239000000203 mixture Substances 0.000 description 11
- 239000002159 nanocrystal Substances 0.000 description 10
- 238000012546 transfer Methods 0.000 description 8
- 229910004613 CdTe Inorganic materials 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003446 ligand Substances 0.000 description 5
- 239000002086 nanomaterial Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000002096 quantum dot Substances 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 3
- 239000010931 gold Substances 0.000 description 3
- 229910052737 gold Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 206010034972 Photosensitivity reaction Diseases 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000002127 nanobelt Substances 0.000 description 1
- 239000002074 nanoribbon Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000005424 photoluminescence Methods 0.000 description 1
- 230000036211 photosensitivity Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000005476 size effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- -1 sodium telluride hydride Chemical class 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
技术领域technical field
本发明属于纳米材料制备领域,更加具体地说,涉及一种相转移制备硫化镉/碲化镉纳米晶超结构的方法及其在光探测器件上的应用。The invention belongs to the field of nanomaterial preparation, and more specifically relates to a method for preparing a cadmium sulfide/cadmium telluride nanocrystal superstructure by phase transfer and its application in a photodetection device.
背景技术Background technique
纳米晶(NCs)具有很强的尺寸效应、特殊的化学组成和优异的电学性质([1]Alivisatos,A.P.Science1996,271,933-937.[2]Zhou,Y.;Yang,M.;Sun,K.;Tang,Z.;Kotov,N.A.J.Am.Chem.Soc.2010,132,6006-6013.)。然而,单个纳米晶之间的电子迁移率极低,且不可能形成连续的电荷运输通路。因此,将单个的纳米晶组装成所需的纳米晶超结构(NCsS)已成为目前的一大挑战。在纳米晶超结构中,纳米晶之间的电子耦合抵消了其量子限域效应,同时会引起载流子迁移率的提高,这将有利于载流子连续运输通路的形成([3]Vanmaekelbergh,D.NanoToday2011,6,419-437.),对于其这对于光伏器件的研究具有重要意义([4]Xue,D.J.;Wang,J.J.;Wang,Y.Q.;Xin,S.;Guo,Y.G.;Wan,L.J.Adv.Mater.2011,23,3704–3707.[5]Yang,H.Y.;Son,D.I.;Kim,T.W.;Lee,J.M.;Park,W.I.Org.Electron.2010,11,1313.[6]Gaponik,N.;Rogach,A.L.Phys.Chem.Chem.Phys.2010,12,8685-8693)。由于纳米晶超结构在新型纳米结构和纳米器件制备上具有的巨大潜力,因此,纳米晶超结构已经吸引了越来越多的关注([7]Huynh,W.U.;Dittmer,J.J.;Alivisatos,A.P.Science2002,295,2425-2427.[8]Murray,C.B.;Norris,D.J.;Bawendi,M.G.J.Am.Chem.Soc.1993,115,8706-8715.)。Nanocrystals (NCs) have a strong size effect, special chemical composition and excellent electrical properties ([1] Alivisatos, A.P. Science 1996, 271, 933-937. [2] Zhou, Y.; Yang, M.; Sun, K .; Tang, Z.; Kotov, N.A.J. Am. Chem. Soc. 2010, 132, 6006-6013.). However, the electron mobility between individual nanocrystals is extremely low, and it is impossible to form a continuous charge transport pathway. Therefore, the assembly of individual nanocrystals into desired nanocrystalline superstructures (NCsS) has become a major challenge. In the nanocrystalline superstructure, the electronic coupling between nanocrystals cancels its quantum confinement effect, and at the same time, it will cause the increase of carrier mobility, which will be conducive to the formation of continuous carrier transport pathways ([3]Vanmaekelbergh , D.NanoToday2011,6,419-437.), for which it is of great significance to the research of photovoltaic devices ([4] Xue, D.J.; Wang, J.J.; Wang, Y.Q.; Xin, S.; Guo, Y.G.; Wan, L.J. Adv.Mater.2011,23,3704–3707.[5]Yang,H.Y.;Son,D.I.;Kim,T.W.;Lee,J.M.;Park,W.I.Org.Electron.2010,11,1313. .; Rogach, A.L. Phys. Chem. Chem. Phys. 2010, 12, 8685-8693). Due to the great potential of nanocrystalline superstructures in the preparation of new nanostructures and nanodevices, nanocrystalline superstructures have attracted more and more attention ([7]Huynh, W.U.; Dittmer, J.J.; Alivisatos, A.P.Science2002 , 295, 2425-2427. [8] Murray, C.B.; Norris, D.J.; Bawendi, M.G.J. Am. Chem. Soc. 1993, 115, 8706-8715.).
目前,已有科学家合成出了一些具有特殊形貌的纳米晶超结构,如纳米线、纳米片、胶束等([9]Nozik,A.J.;Beard,M.C.;Luther,J.M.;Law,M.;Ellingson,R.J.;Johnson,J.C.Chem.Rev.2010,110,6873-6890.[10]Guo,C.X.;Yang,H.B.;Sheng,Z.M.;Lu,Z.S.;Song,Q.L.;LiC.M.Angew.Chem.Int.Ed.2010,49,3014-3017.[11]Nikolic,M.S.;Olsson,C.;Salcher,A.;Kornowski,A.;Rank,A.;Schubert,R.;A.;Weller,H.;S.Angew.Chem.Int.Ed.2009,48,2752-2754.)。在众多已有的纳米结构结构中,Kotov等人报道了一种带状的纳米晶超结构([12]Srivastava,S.;Santos,A.;Critchley,K.;Kim,K.S.;Podsiadlo,P.;Sun,K.;Lee,J.;Xu,C.L.;Lilly,G.D.;Glotzer,S.C.;Kotov,N.A.Science2010,327,1355-1359.),该纳米带若作为沟通电子、光电、电化学和纳米器件等领域的功能单元将会发挥巨大的作用([13]Xia,Y.;Yang,P.;Sun,Y.;Wu,Y.;Mayers,B.;Gates,B.;Yin,Y.;Kim,F.;Yan,H.Adv.Mater.2003,5,353-389.)。然而,Kotov等人是在水相中制备出这种带状纳米晶超结构的,难以与非极性的有机聚合物形成互溶的混合物,从而无法有效地在NCsS/聚合物界面上实现激子分离,这就限制了其在光电领域的应用。At present, scientists have synthesized some nanocrystalline superstructures with special morphology, such as nanowires, nanosheets, micelles, etc. ([9] Nozik, AJ; Beard, MC; Luther, JM; Law, M.; Ellingson, RJ; Johnson, JCChem.Rev.2010, 110, 6873-6890. [10] Guo, CX; Yang, HB; Sheng, ZM; Lu, ZS; .Ed.2010,49,3014-3017.[11]Nikolic, MS; Olsson, C.; Salcher, A.; Kornowski, A.; Rank, A.; Schubert, R.; A.; Weller, H.; S. Angew. Chem. Int. Ed. 2009, 48, 2752-2754.). Among the many existing nanostructure structures, Kotov et al. reported a ribbon-like nanocrystalline superstructure ([12] Srivastava, S.; Santos, A.; Critchley, K.; Kim, KS; Podsiadlo, P .; Sun, K.; Lee, J.; Xu, CL; Lilly, GD; Glotzer, SC; Kotov, NAScience2010, 327, 1355-1359.), the nanobelt as a communication electron, photoelectric, electrochemical and nano Functional units in devices and other fields will play a huge role ([13] Xia, Y.; Yang, P.; Sun, Y.; Wu, Y.; Mayers, B.; Gates, B.; Yin, Y. ; Kim, F.; Yan, H. Adv. Mater. 2003, 5, 353-389.). However, Kotov et al. prepared this ribbon-like nanocrystalline superstructure in the aqueous phase, and it is difficult to form a miscible mixture with non-polar organic polymers, so that the excitons cannot be effectively realized at the NCsS/polymer interface. separation, which limits its application in the field of optoelectronics.
发明内容Contents of the invention
本发明的目的在于克服现有技术的不足,提供一种通过相转移制备硫化镉/碲化镉(CdS/CdTe)纳米晶超结构的方法,并研究了其在光探测器件的应用。在本发明技术方案中,CdTeNCsS通过相转移发生结构转变后,在有机相中与聚合物形成共混物,进而有效地在NCsS/聚合物界面上实现激子分离,从而可以用于光探测器件的制备。The purpose of the present invention is to overcome the deficiencies of the prior art, provide a method for preparing cadmium sulfide/cadmium telluride (CdS/CdTe) nanocrystalline superstructure through phase transfer, and study its application in photodetection devices. In the technical solution of the present invention, after the structural transformation of CdTeNCsS through phase transfer, it forms a blend with the polymer in the organic phase, and then effectively realizes exciton separation at the NCsS/polymer interface, so that it can be used in photodetection devices preparation.
本发明的技术目的通过下述技术方案予以实现:Technical purpose of the present invention is achieved through the following technical solutions:
有机相硫化镉/碲化镉纳米晶超结构及其制备方法,按照下述步骤进行:The organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure and its preparation method are carried out according to the following steps:
将以巯基乙酸为配体的水相硫化镉/碲化镉纳米晶超结构加入到十六烷基三甲基溴化铵(CTAB)的氯仿溶液中,静置后水相中的硫化镉/碲化镉纳米晶超结构转移到氯仿中,即得到有机相硫化镉/碲化镉纳米晶超结构。The aqueous phase cadmium sulfide/cadmium telluride superstructure with thioglycolic acid as a ligand was added to the chloroform solution of cetyltrimethylammonium bromide (CTAB), and the cadmium sulfide/cadmium telluride in the aqueous phase after standing still The cadmium telluride nanocrystalline superstructure is transferred into chloroform, and the organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is obtained.
在上述制备过程中,上层水相中的CdS/CdTeNCsS转移至下层氯仿溶液中,使用分液漏斗收集下层的氯仿溶液,获得了一种具有新型纳米结构有机相中的CdS/CdTeNCsS。In the above preparation process, the CdS/CdTeNCsS in the upper aqueous phase was transferred to the lower chloroform solution, and the lower chloroform solution was collected using a separatory funnel, and a CdS/CdTeNCsS in the organic phase with a new nanostructure was obtained.
在上述制备过程中,选择3.0-4.0g十六烷基三甲基溴化铵溶解在100mL氯仿中,形成十六烷基三甲基溴化铵的氯仿溶液。In the above preparation process, 3.0-4.0 g of cetyltrimethylammonium bromide was selected and dissolved in 100 mL of chloroform to form a chloroform solution of cetyltrimethylammonium bromide.
在上述制备过程中,选择静置时间至少4h,优选4—8h。During the above preparation process, the standing time is selected to be at least 4 hours, preferably 4-8 hours.
上述有机相硫化镉/碲化镉纳米晶超结构在光探测器件中的应用。Application of the above-mentioned organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure in photodetection devices.
在上述应用方案中,所述有机相硫化镉/碲化镉纳米晶超结构和聚3-己基噻吩混合以得到均一的溶液,再以溶液旋涂以得到复合膜,选择在激光刻蚀的微电极上进行复合膜旋涂。In the above application scheme, the organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is mixed with poly-3-hexylthiophene to obtain a uniform solution, and then the solution is spin-coated to obtain a composite film. Composite films were spin-coated on the electrodes.
在上述应用方案中,所述有机相硫化镉/碲化镉纳米晶超结构为依据本发明制备方法制备的,经过转移得到的分散在氯仿中的硫化镉/碲化镉纳米晶超结构。In the above application scheme, the organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is a cadmium sulfide/cadmium telluride nanocrystalline superstructure dispersed in chloroform obtained through transfer and prepared according to the preparation method of the present invention.
在上述应用方案中,所述聚3-己基噻吩(P3HT)、有机相硫化镉/碲化镉纳米晶超结构的质量比为(1—2):(3—4),优选(1.2-1.5):(3.5-3.8)。选择将两者溶解均匀分散中氯仿溶剂中,或者分别溶解均匀分散在氯仿中,再将氯仿混合均匀。In the above application scheme, the mass ratio of the poly-3-hexylthiophene (P3HT) to the organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is (1-2):(3-4), preferably (1.2-1.5 ): (3.5-3.8). Choose to dissolve the two evenly in chloroform solvent, or dissolve them separately in chloroform, and then mix the chloroform evenly.
如附图1所示,发光CdS/CdTe带状NCsS在相转移过程中其拓扑结构发生转变的示意图,使原本僵直的NCsS结构变得柔顺而疏松,最终得到可用于制备光探测器件的有机相NCsS。如附图2—5所示,NCsS分别在水相中束状超结构和氯仿相中束状超结构,从图中可以看到NCs在自组装过程中形成束状NCsS,转移至有机相后会变成柔顺而疏松的结构(即相转变获得的有机相的NCsS由许多纳米带结构形成)。经过荧光测试(即水相和有机相中的NCsS的光致发光),水相中荧光明显减弱,而氯仿相中有明显的荧光增强,表明NCsS已成功转移至氯仿相中。利用EDS检测有机相NCsS纳米束样品的成分,Cd、Te、S的原子含量百分比为48.7:1.7:49.6,表明巯基乙酸释放的硫离子替代了CdTe中的Te元素。从图6—8中可以看出,基于有机相NCsS的光探测器件表现出了较大的开关比(100)和光敏性,同时,该器件在不同的光强下均具有良好的响应性(光开关制备参见文献:BeatrizH,ChristianK,HorstW,Quantumdotattachmentandmorphologycontrolbycarbonnanotubes,nanoletters,2007,7(12):3564-3568)。As shown in Figure 1, the schematic diagram of the topological structure transformation of luminescent CdS/CdTe ribbon-shaped NCsS during the phase transfer process makes the original rigid NCsS structure soft and loose, and finally obtains an organic phase that can be used to prepare photodetector devices NCsS. As shown in Figures 2-5, NCsS have a bundled superstructure in the water phase and a bundled superstructure in the chloroform phase, respectively. It can be seen from the figure that the NCs form a bundled NCsS during the self-assembly process, and after being transferred to the organic phase It will become a soft and loose structure (that is, the organic phase NCsS obtained by phase transition is formed by many nanoribbon structures). After the fluorescence test (i.e., the photoluminescence of NCsS in the aqueous and organic phases), the fluorescence in the aqueous phase was significantly weakened, while the fluorescence in the chloroform phase was significantly enhanced, indicating that the NCsS had been successfully transferred to the chloroform phase. The composition of the NCsS nanobeam sample in the organic phase was detected by EDS, and the atomic content percentages of Cd, Te, and S were 48.7:1.7:49.6, indicating that the sulfide ion released by thioglycolic acid replaced the Te element in CdTe. It can be seen from Figures 6-8 that the photodetector device based on organic phase NCsS exhibits a large switching ratio (100) and photosensitivity, and at the same time, the device has good responsiveness under different light intensities ( For the preparation of optical switches, please refer to the literature: BeatrizH, ChristianK, HorstW, Quantum dot attachment and morphology control by carbon nanotubes, nanoletters, 2007, 7(12):3564-3568).
在本发明技术方案中,首先以巯基乙酸(TGA)为配体合成水溶性的发光CdS/CdTe带状NCsS,随后通过相转移使NCsS的相拓扑结构发生转变(原本僵直的NCsS结构变得柔软而疏松),最后有机相中的NCsS与聚3-己基噻吩(P3HT)共混制备有机-无机复合光探测器件。所得到的有机相的CdS/CdTeNCsS荧光效率较高,且光化学性质稳定,对于光探测器件、光开关的制备具有重要意义,此外,本发明易操作、用时短、产率高,适合于大规模生产。In the technical scheme of the present invention, water-soluble luminescent CdS/CdTe ribbon-shaped NCsS is first synthesized with thioglycolic acid (TGA) as a ligand, and then the phase topology of NCsS is transformed through phase transfer (the original stiff NCsS structure becomes soft and loose), finally blending NCsS in the organic phase with poly-3-hexylthiophene (P3HT) to prepare an organic-inorganic composite photodetector device. The obtained organic phase of CdS/CdTeNCsS has high fluorescence efficiency and stable photochemical properties, which is of great significance for the preparation of photodetection devices and optical switches. In addition, the invention is easy to operate, short in time and high in yield, and is suitable for large-scale Production.
附图说明Description of drawings
图1为NCsS在相转移过程中其拓扑结构发生转变的示意图。Figure 1 is a schematic diagram of the topological transformation of NCsS during the phase transfer process.
图2为水相中NCsS的透射电子显微镜(TEM)照片。Figure 2 is a transmission electron microscope (TEM) photograph of NCsS in aqueous phase.
图3为水相中NCsS的扫描电子显微镜(SEM)照片。Fig. 3 is a scanning electron microscope (SEM) photograph of NCsS in aqueous phase.
图4为氯仿相中NCsS的透射电子显微镜(TEM)照片。Fig. 4 is a transmission electron microscope (TEM) photograph of NCsS in chloroform phase.
图5为氯仿相中NCsS的扫描电子显微镜(SEM)照片。Fig. 5 is a scanning electron microscope (SEM) photograph of NCsS in chloroform phase.
图6为利用本发明的有机相硫化镉/碲化镉纳米晶超结构的光探测器件在光源开/关切换条件下的电流随时间变化的曲线图(入射光密度为5.51mW·cm-2、偏置电压为1V)。Fig. 6 is the graph that utilizes the photodetection device of organic phase cadmium sulfide/cadmium telluride nanocrystal superstructure of the present invention to change the current with time under the light source on/off switching condition (incident optical density is 5.51mW·cm -2 , bias voltage is 1V).
图7为利用本发明的有机相硫化镉/碲化镉纳米晶超结构的光探测器件在不同光强下的电流(I)-电压(V)曲线图。Fig. 7 is a current (I)-voltage (V) curve diagram of a photodetector device using the organic phase cadmium sulfide/cadmium telluride nanocrystal superstructure of the present invention under different light intensities.
图8为利用本发明的有机相硫化镉/碲化镉纳米晶超结构的光探测器件在偏置电压为1V时,光电流与入射光密度的函数曲线。Fig. 8 is a function curve of photocurrent and incident light density when the bias voltage is 1V for a photodetector device using the organic phase cadmium sulfide/cadmium telluride nanocrystal superstructure of the present invention.
具体实施方式detailed description
下面结合具体实施例进一步说明本发明的技术方案。The technical solutions of the present invention will be further described below in conjunction with specific embodiments.
首先,合成碲氢化钠(NaHTe)(其合成方法详见:[15]Tang,B.;Yang,F.;Lin,Y.;Zhuo,L.H.;Ge,J.C.;Cao,L.H.Chem.Mater.2007,19,1212–1214.)。将102.8mgNaBH4、5mL超纯水和109.5mg碲粉放入一个小烧瓶中,然后将反应体系放入氩气环境下冰浴冷却。反应期间,为保持压强平衡,用导管将氩气和产生的氢气排放出去。反应约8h后,黑色的碲粉消失,在烧瓶底部产生白色的四硼酸钠沉淀(Na2B4O7),所得溶液为NaHTe溶液。将生成的NaHTe清液静置30h,所合成的NaHTe溶液作为原料,在具体实施例中用于制备CdS/CdTe量子点。Firstly, sodium telluride hydride (NaHTe) was synthesized (for the synthesis method, see: [15] Tang, B.; Yang, F.; Lin, Y.; Zhuo, LH; Ge, JC; Cao, LHChem.Mater.2007, 19, 1212–1214.). Put 102.8 mg of NaBH 4 , 5 mL of ultrapure water and 109.5 mg of tellurium powder into a small flask, and then place the reaction system in an argon environment for cooling in an ice bath. During the reaction, to maintain pressure balance, argon and generated hydrogen were vented through a cannula. After reacting for about 8 hours, the black tellurium powder disappeared, and white sodium tetraborate precipitate (Na 2 B 4 O 7 ) was produced at the bottom of the flask, and the resulting solution was NaHTe solution. The generated NaHTe serum was left to stand for 30 hours, and the synthesized NaHTe solution was used as a raw material for preparing CdS/CdTe quantum dots in a specific embodiment.
其次,制备水相CdS/CdTe纳米晶超结构(NCsS),按照参考文献(Shen,Y.T.;Lei,D.;Feng,W.J.Mater.Chem.C2013,1,1926-1932)的指导进行合成:将0.4mmolCdCl2和0.6mmol巯基乙酸(TGA)混合制备100mL的溶液,在搅拌的条件下,逐滴加入1.0MNaOH溶液将溶液的pH值调至11.8,随后在室温下将溶液转移到250mL的三口瓶中,通氩气排净空气。在开启搅拌的状态下,用注射器把制备的NaHTe溶液(0.3mmol,1.7mL)加入到上述溶液中,在100℃下加热回流8h后冷却。反应结束后,在CdTe量子点水溶液中加入甲醇,静置48h后离心。将沉淀重新溶解在去离子水中,用NaOH调节至pH=9,在这个过程当中,量子点组装为纳米晶超结构(CdS/CdTeNCsS),即硫化镉/碲化镉纳米晶超结构。Secondly, the aqueous phase CdS/CdTe nanocrystalline superstructure (NCsS) was prepared and synthesized according to the guidance of references (Shen, YT; Lei, D.; Feng, WJMater.Chem.C2013, 1, 1926-1932): 0.4 Prepare a 100mL solution by mixing mmol CdCl 2 and 0.6mmol thioglycolic acid (TGA). With stirring, add 1.0M NaOH solution dropwise to adjust the pH value of the solution to 11.8, then transfer the solution to a 250mL three-neck flask at room temperature , through the argon to exhaust the air. With stirring turned on, the prepared NaHTe solution (0.3 mmol, 1.7 mL) was added to the above solution with a syringe, heated to reflux at 100° C. for 8 h and then cooled. After the reaction, methanol was added to the aqueous solution of CdTe quantum dots, and centrifuged after standing for 48 hours. The precipitate was redissolved in deionized water and adjusted to pH = 9 with NaOH. During this process, the quantum dots were assembled into a nanocrystalline superstructure (CdS/CdTeNCsS), that is, a cadmium sulfide/cadmium telluride nanocrystalline superstructure.
在制备光探测器件时,参见文献Holdcroft,S.Macromolecules1991,24,4834-4838、Juárez,B.H.;Klinke,C.;Kornowski,A.;Weller,H.NanoLett.2007,7,3564–3568。For the preparation of photodetection devices, see the literature Holdcroft, S. Macromolecules 1991, 24, 4834-4838, Juárez, B.H.; Klinke, C.; Kornowski, A.; Weller, H. NanoLett. 2007, 7, 3564-3568.
实施例1Example 1
将3.6gCTAB溶解在100mL氯仿中,将4mL以TGA为配体的NCsS溶液加入4mLCTAB的氯仿溶液中,静置混合物。8h后,收集氯仿相中的溶液,得到柔软而疏松的有机相NCsS结构;将30mgP3HT溶解在3mL氯仿中。将100μLNCsS的氯仿溶液和200μLP3HT溶液混合以得到最终的溶液。旋涂于预清洗的金电极上(2000rpm),制得光探测器件,其中聚3-己基噻吩(P3HT)、有机相硫化镉/碲化镉纳米晶超结构的质量比为1.2:3.8。Dissolve 3.6g of CTAB in 100mL of chloroform, add 4mL of NCsS solution with TGA as a ligand into 4mL of CTAB in chloroform, and let the mixture stand. After 8 h, the solution in the chloroform phase was collected to obtain a soft and loose organic phase NCsS structure; 30 mg of P3HT was dissolved in 3 mL of chloroform. Mix 100 μL of NCsS in chloroform and 200 μL of LP3HT solution to obtain the final solution. Spin coating on the pre-cleaned gold electrode (2000rpm) to prepare a photodetector device, in which the mass ratio of poly 3-hexylthiophene (P3HT) and organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is 1.2:3.8.
实施例2Example 2
将4.0gCTAB溶解在100mL氯仿中,将4mL以TGA为配体的NCsS溶液加入4mLCTAB的氯仿溶液中,静置混合物。8h后,收集氯仿相中的溶液,得到柔软而疏松的有机相NCsS结构;将40.0mgP3HT溶解在3mL氯仿中。将100μLNCsS的氯仿溶液和200μLP3HT溶液混合以得到最终的溶液。旋涂于预清洗的金电极上(2000rpm),制得光探测器件,其中聚3-己基噻吩(P3HT)、有机相硫化镉/碲化镉纳米晶超结构的质量比为2:4。Dissolve 4.0 g of CTAB in 100 mL of chloroform, add 4 mL of NCsS solution with TGA as a ligand into 4 mL of CTAB in chloroform, and let the mixture stand. After 8 h, the solution in the chloroform phase was collected to obtain a soft and loose organic phase NCsS structure; 40.0 mg of P3HT was dissolved in 3 mL of chloroform. Mix 100 μL of NCsS in chloroform and 200 μL of LP3HT solution to obtain the final solution. Spin coating on the pre-cleaned gold electrode (2000rpm) to prepare a photodetector device, in which the mass ratio of poly 3-hexylthiophene (P3HT) and organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is 2:4.
实施例3Example 3
将3gCTAB溶解在100mL氯仿中,将4mL以TGA为配体的NRsS溶液加入4mLCTAB的氯仿溶液中,静置混合物。8h后,收集氯仿相中的溶液,得到柔软而疏松的有机相NCsS结构;将30.0mgP3HT溶解在3mL氯仿中。将100μLNCsS的氯仿溶液和200μLP3HT溶液混合以得到最终的溶液。旋涂于预清洗的金电极上(2000rpm),制得光探测器件,其中聚3-己基噻吩(P3HT)、有机相硫化镉/碲化镉纳米晶超结构的质量比为1:3.5。Dissolve 3 g of CTAB in 100 mL of chloroform, add 4 mL of NRsS solution with TGA as a ligand into 4 mL of CTAB in chloroform, and let the mixture stand. After 8 h, the solution in the chloroform phase was collected to obtain a soft and loose organic phase NCsS structure; 30.0 mg of P3HT was dissolved in 3 mL of chloroform. Mix 100 μL of NCsS in chloroform and 200 μL of LP3HT solution to obtain the final solution. Spin coating on the pre-cleaned gold electrode (2000rpm) to prepare a photodetector device, in which the mass ratio of poly 3-hexylthiophene (P3HT) and organic phase cadmium sulfide/cadmium telluride nanocrystalline superstructure is 1:3.5.
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。The present invention has been described as an example above, and it should be noted that, without departing from the core of the present invention, any simple deformation, modification or other equivalent replacements that can be made by those skilled in the art without creative labor all fall within the scope of this invention. protection scope of the invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410232175.5A CN105219392A (en) | 2014-05-27 | 2014-05-27 | Nanocrystalline superstructure of organic phase Cadmium Sulfide/cadmium telluride and its preparation method and application |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410232175.5A CN105219392A (en) | 2014-05-27 | 2014-05-27 | Nanocrystalline superstructure of organic phase Cadmium Sulfide/cadmium telluride and its preparation method and application |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105219392A true CN105219392A (en) | 2016-01-06 |
Family
ID=54988677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410232175.5A Pending CN105219392A (en) | 2014-05-27 | 2014-05-27 | Nanocrystalline superstructure of organic phase Cadmium Sulfide/cadmium telluride and its preparation method and application |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105219392A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110091925A1 (en) * | 2009-10-05 | 2011-04-21 | Ryan Kevin M | Processing of nanoparticles |
CN102557113A (en) * | 2011-12-21 | 2012-07-11 | 天津大学 | Water-soluble CdS one-dimensional semiconductor nanobelt and preparation method of water-soluble CdS one-dimensional semiconductor nanobelt |
-
2014
- 2014-05-27 CN CN201410232175.5A patent/CN105219392A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110091925A1 (en) * | 2009-10-05 | 2011-04-21 | Ryan Kevin M | Processing of nanoparticles |
CN102557113A (en) * | 2011-12-21 | 2012-07-11 | 天津大学 | Water-soluble CdS one-dimensional semiconductor nanobelt and preparation method of water-soluble CdS one-dimensional semiconductor nanobelt |
Non-Patent Citations (2)
Title |
---|
LEI DA等: "Recent progress in the fields of tuning the band gap of", 《SCIENCE CHINA TECHNOLOGICAL SCIENCES》 * |
雷达: "水溶性CdS纳米带的合成及其可逆相转移研究", 《天津大学硕士学位论文》 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hu et al. | Design and fabrication of carbon dots for energy conversion and storage | |
Lin et al. | Interfacial modification layers based on carbon dots for efficient inverted polymer solar cells exceeding 10% power conversion efficiency | |
Li et al. | High‐yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals | |
Qiu et al. | Interfacial engineering of halide perovskites and two-dimensional materials | |
Lee et al. | Synthesis of hybrid solar cells using CdS nanowire array grown on conductive glass substrates | |
CN106164214B (en) | Luminescent hybrid nanomaterials with aggregation-induced emission | |
Meng et al. | Reduced graphene oxide-supported aggregates of CuInS2 quantum dots as an effective hybrid electron acceptor for polymer-based solar cells | |
Gao et al. | Performance enhancement of perovskite solar cells by employing TiO2 nanorod arrays decorated with CuInS2 quantum dots | |
Yan et al. | CsPbBr 3 quantum dots photodetectors boosting carrier transport via molecular engineering strategy | |
Liu et al. | From binary to multicomponent photoactive layer: a promising complementary strategy to efficient hybrid solar cells | |
Peng et al. | In situ synthesis of P3HT-capped CdSe superstructures and their application in solar cells | |
CN105405975B (en) | Cu@Cu Au nano particles with core shell structure and its preparation method and application | |
CN102011194A (en) | Photovoltaic semiconductor nanocrystalline and preparation method and application thereof | |
Zheng et al. | Structural engineering toward high monochromaticity of carbon dots-based light-emitting diodes | |
CN103413892B (en) | Alloy quantum dot PbSx Se 1-x, preparation method thereof and application thereof in solar cell | |
CN102338941A (en) | Cadmium telluride quantum dot grafted graphene-carbon nanotube composite thin film optical switch material and preparation thereof | |
CN105692581A (en) | Preparation method of high-crystallization graphene quantum dots capable of replacing fullerene | |
Tong et al. | Solution-processed NiO x nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells | |
CN105602567B (en) | Application of the tellurium mercury cadmium quantum dot with carbon nanotube composite materials in light conversion efficiency is improved | |
Lee et al. | Hybrid solar cells based on tetrapod nanocrystals: the effects of compositions and type II heterojunction on hybrid solar cell performance | |
Cheng et al. | Well-Dispersed Cu 2 ZnSnS 4 Nanocrystals Synthesized from Alcohols and Their Applications for Polymer Photovoltaics | |
Khan et al. | Synthesis, characterization and optoelectronic properties of iron pyrite nanohusks | |
Xia et al. | Mesoporous CdS spheres for high-performance hybrid solar cells | |
Su et al. | Self-assembled hole-transport material incorporating biphosphonic acid for dual-defect passivation in NiO x-based perovskite solar cells | |
CN105219392A (en) | Nanocrystalline superstructure of organic phase Cadmium Sulfide/cadmium telluride and its preparation method and application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20160106 |