CN105203844A - 电力信号的零初相位调制方法和系统 - Google Patents

电力信号的零初相位调制方法和系统 Download PDF

Info

Publication number
CN105203844A
CN105203844A CN201510600316.9A CN201510600316A CN105203844A CN 105203844 A CN105203844 A CN 105203844A CN 201510600316 A CN201510600316 A CN 201510600316A CN 105203844 A CN105203844 A CN 105203844A
Authority
CN
China
Prior art keywords
sequence
initial phase
zero initial
sequence length
average amplitude
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510600316.9A
Other languages
English (en)
Other versions
CN105203844B (zh
Inventor
李军
陈世和
万文军
罗嘉
庞志强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Original Assignee
Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electric Power Research Institute of Guangdong Power Grid Co Ltd filed Critical Electric Power Research Institute of Guangdong Power Grid Co Ltd
Priority to CN201510600316.9A priority Critical patent/CN105203844B/zh
Publication of CN105203844A publication Critical patent/CN105203844A/zh
Application granted granted Critical
Publication of CN105203844B publication Critical patent/CN105203844B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明涉及一种电力信号的零初相位调制方法和系统。本发明对于任意初相位的信号序列,通过一系列操作获得零初相位余弦函数调制序列和零初相位正弦函数调制序列,然后选择平均幅值较大的调制序列输出,输出的该调制序列即为零初相位或初相位在零附近的零初相位调制序列。本发明得到的所述零初相位调制序列避开了信号序列任意初相位问题的影响,同时零初相位调制序列携带了数值较大的信号序列全相位差信息,可显著的提高正弦参数计算的准确度、提高抗谐波和噪声干扰性。

Description

电力信号的零初相位调制方法和系统
技术领域
本发明涉及电力技术领域,特别是涉及一种电力信号的零初相位调制方法、电力信号的零初相位调制系统。
背景技术
电力系统的正弦参数的测量包括频率测量、相位测量、幅值测量等。傅里叶变换是实现正弦参数测量的基本方法,在电力系统中有广泛的应用。但随着正弦参数测量技术的发展,傅里叶变换存在的问题也越显突出,其难以进一步满足电力系统对正弦参数高准确度计算的要求。
在电力系统正弦参数测量方面,还有一些改进的参数测量方法,如零交法、基于滤波的测量法、基于小波变换法、基于神经网络的测量法、基于DFT(DiscreteFourierTransform,离散傅里叶变换)变换的测量法等。电网运行额定工频在50Hz(赫兹)附近,属于频率较低的正弦频率。由于实际信号处理技术的局限性和信号构成的复杂性,如信号离散采样产生的数据量化背景噪声影响,信号序列截断引起的频谱泄漏问题客观上难以避免,信号任意初相位问题的影响,信号中的直流和分次谐波及次谐波问题的影响等,这些算法的测量精度也较低,且抗谐波和噪声干扰性差。
发明内容
基于此,有必要针对上述问题,提供一种电力信号的零初相位调制方法和系统,能够提高正弦参数计算的准确度、提高抗谐波和噪声干扰性。
为解决上述技术问题,本发明采用如下技术方案:
一种电力信号的零初相位调制方法,包括步骤:
根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,得到初步采样序列长度;
根据所述初步采样序列长度对所述电力信号进行初步采样,获取所述电力信号的初步采样序列;
对所述初步采样序列进行频率初测,获取所述电力信号的初步频率,根据所述初步频率确定参考频率;
根据所述预设采样频率和所述参考频率,得到所述电力信号的单位周期序列长度;
根据所述预设整数信号周期数和所述单位周期序列长度,得到预设序列长度;
根据所述预设序列长度,从所述初步采样序列中获取正向序列;
将所述正向序列反向输出,获取所述正向序列的反褶序列;
将所述正向序列和所述反褶序列相加,得到零初相位余弦函数调制序列;
将所述正向序列和所述反褶序列相减,得到零初相位正弦函数调制序列;
对所述零初相位余弦函数调制序列的绝对值进行积分运算,得到所述零初相位余弦函数调制序列的第一平均幅值;
对所述零初相位正弦函数调制序列的绝对值进行积分运算,得到所述零初相位正弦函数调制序列的第二平均幅值;
判断所述第一平均幅值是否大于等于所述第二平均幅值,若是,输出所述零初相位余弦函数调制序列,否则输出所述零初相位正弦函数调制序列。
一种电力信号的零初相位调制系统,包括:
初步采样序列长度确定模块,用于根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,得到初步采样序列长度;
初步采样序列获取模块,用于根据所述初步采样序列长度对所述电力信号进行初步采样,获取所述电力信号的初步采样序列;
参考频率确定模块,用于对所述初步采样序列进行频率初测,获取所述电力信号的初步频率,根据所述初步频率确定参考频率;
单位周期序列长度确定模块,用于根据所述预设采样频率和所述参考频率,得到所述电力信号的单位周期序列长度;
预设序列长度确定模块,用于根据所述预设整数信号周期数和所述单位周期序列长度,得到预设序列长度;
正向序列获取模块,用于根据所述预设序列长度,从所述初步采样序列中获取正向序列;
反褶序列获取模块,用于将所述正向序列反向输出,获取所述正向序列的反褶序列;
余弦函数调制序列确定模块,用于将所述正向序列和所述反褶序列相加,得到零初相位余弦函数调制序列;
正弦函数调制序列确定模块,用于将所述正向序列和所述反褶序列相减,得到零初相位正弦函数调制序列;
第一平均幅值确定模块,用于对所述零初相位余弦函数调制序列的绝对值进行积分运算,得到所述零初相位余弦函数调制序列的第一平均幅值;
第二平均幅值确定模块,用于对所述零初相位正弦函数调制序列的绝对值进行积分运算,得到所述零初相位正弦函数调制序列的第二平均幅值;
平均幅值判断模块,用于判断所述第一平均幅值是否大于等于所述第二平均幅值,在所述第一平均幅值大于等于所述第二平均幅值时,输出所述零初相位余弦函数调制序列,在所述第一平均幅值小于所述第二平均幅值时,输出所述零初相位正弦函数调制序列。
本发明电力信号的零初相位调制方法和系统,对于任意初相位的信号序列,通过一系列操作获得零初相位余弦函数调制序列和零初相位正弦函数调制序列,然后选择平均幅值较大的调制序列输出,输出的该调制序列即为零初相位或初相位在零附近的零初相位调制序列。本发明得到的所述零初相位调制序列避开了信号序列任意初相位问题的影响,同时零初相位调制序列携带了数值较大的信号序列全相位差信息,可显著的提高正弦参数计算的准确度、提高抗谐波和噪声干扰性。
附图说明
图1为本发明电力信号的零初相位调制方法实施例的流程示意图;
图2为本发明正向序列和反褶序列长度的示意图;
图3为本发明电力信号的零初相位调制系统实施例的结构示意图。
具体实施方式
为了更好的理解本发明要解决的技术问题、采取的技术方案以及达到的技术效果,下面结合附图对本发明的具体实施方式做详细描述。
如图1所示,一种电力信号的零初相位调制方法,包括步骤:
S101、根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,得到初步采样序列长度;
S102、根据所述初步采样序列长度对所述电力信号进行初步采样,获取所述电力信号的初步采样序列;
S103、对所述初步采样序列进行频率初测,获取所述电力信号的初步频率,根据所述初步频率确定参考频率;
S104、根据所述预设采样频率和所述参考频率,得到所述电力信号的单位周期序列长度;
S105、根据所述预设整数信号周期数和所述单位周期序列长度,得到预设序列长度;
S106、根据所述预设序列长度,从所述初步采样序列中获取正向序列;
S107、将所述正向序列反向输出,获取所述正向序列的反褶序列;
S108、将所述正向序列和所述反褶序列相加,得到零初相位余弦函数调制序列;
S109、将所述正向序列和所述反褶序列相减,得到零初相位正弦函数调制序列;
S110、对所述零初相位余弦函数调制序列的绝对值进行积分运算,得到所述零初相位余弦函数调制序列的第一平均幅值;
S111、对所述零初相位正弦函数调制序列的绝对值进行积分运算,得到所述零初相位正弦函数调制序列的第二平均幅值;
S112、判断所述第一平均幅值是否大于等于所述第二平均幅值,若是,输出所述零初相位余弦函数调制序列,否则输出所述零初相位正弦函数调制序列。此时输出的零初相位余弦函数调制序列或零初相位正弦函数调制序列即为零初相位调制序列。
电力信号是一种基波成分为主的正弦信号。正弦信号广指正弦函数信号和余弦函数信号。电力信号频率范围一般为45Hz(赫兹)~55Hz。所以电力信号频率范围的下限fmin可以取为45Hz。预设整数信号周期数C可以根据实际需要进行设置,例如,可以将预设整数信号周期数C设置为偶数,假设为12等。在一个实施例中,可以根据式(1)确定初步采样序列长度Nstart
其中,(int)表示取整;fn为预设采样频率,单位可以为Hz;Nstart的单位无量纲,C的单位无量纲,fmin的单位可以为Hz。
得到初步采样序列长度后,根据初步采样序列长度对电力信号进行初步采样。例如,所述电力信号为单基波频率的余弦函数信号,根据初步采样序列长度对单基波频率的余弦函数信号进行初步采样,获得的电力信号的初步采样序列Xstart(n)为式(2):
其中,A为信号幅值,单位可以为v;ω为信号频率,单位可以为rad/s;Tn为采样间隔,单位可以为s;fn为预设采样频率,单位可以为Hz;n为序列离散数,单位无量纲;为信号初相位,单位为rad;Nstart为初步采样序列长度,单位无量纲。
得到初步采样序列后,可以通过零交法、基于滤波的算法、基于小波变换算法、基于神经网络的算法、基于DFT变换的频率算法或基于相位差的频率算法等对初步采样序列进行频率初测,获取初步频率ωo,初步频率ωo的单位可以为rad/s。在一个实施例中,可以将该初步频率作为参考频率,即参考频率ωs=ωo。参考频率ωs单位可以为rad/s。
得到参考频率后,在一个实施例中,可以根据式(3)确定单位周期序列长度N
其中,(int)为取整数;fn为预设采样频率,单位可以为Hz;fs为Hz单位的参考频率,ωs为rad/s单位的参考频率;N的单位无量纲。单位周期序列长度整数化存在1个采样间隔内的误差。
得到单位周期序列长度后,在一个实施例中,根据式(4)确定预设序列长度N:
N=(int)(CN)(4)
其中,(int)为取整数;N的单位无量纲。从式(4)可以看出,预设序列长度N与整数信号周期数C对应。预设序列长度N可以为单位周期序列长度N的12倍。由于存在误差,所述预设序列长度所包含的信号周期整数是大约的。
得到预设系列长度N后,根据预设序列长度,从所述初步采样序列中获取正向序列。在一个实施例中,基于式(2)得到的初步采样序列,本发明获取的正向序列Xi(n)为式(5):
其中,Xstart(n)为初步采样序列;A为信号幅值,单位可以v;ω为信号频率,单位可以为rad/s;Tn为采样间隔,单位可以为s;n为序列离散数,单位无量纲;为信号初相位,单位可以为rad;N为正向序列长度,也即是预设序列长度,单位无量纲。
基于式(5)得到的正向序列,本发明的反褶序列X-i(-n)为式(6):
X-i(-n)=Xi(N-n)=Acos(-ωTnn+β)
(6)
n=0,1,2,3,.....,N-1
其中,β为反褶序列初相位,反褶序列初相位是正向序列的截止相位,即所述电力信号的截止相位,单位可以为rad;N为反褶序列长度,如图2所示,反褶序列长度与正向序列长度相同,单位无量纲。
基于式(5)的正向序列和式(6)得到的反褶序列,本发明得到的零初相位余弦函数调制序列Xcos(n)为式(7):
其中,为余弦函数调制序列幅值,单位为v;为余弦函数调制序列初相位,单位可以为rad。所述零初相位余弦函数调制序列携带信息。
由于预设序列长度对应预设整数信号周期数存在误差,原因之一是参考频率误差引起的误差,原因之二是预设序列长度的整数化误差。如果所述的误差为零,则余弦函数调制序列初相位为零,反之余弦函数调制序列初相位在零附近。所述初相位与零值比较的误差与所述预设整数信号周期数的误差之间为正比关系。
基于式(5)的正向序列和式(6)得到的反褶序列,本发明得到的零初相位正弦函数调制序列Xsin(n)为式(8):
其中,为零初相位正弦函数调制序列的幅值,单位v;为零初相位正弦函数调制序列的初相位,单位为rad。
由于预设序列长度对应整数信号周期数存在误差,原因之一是参考频率误差引起的误差,原因之二是所述预设序列长度的整数化误差。如果所述的误差为零,则零初相位正弦函数调制序列的初相位为零,反之初相位在零附近。所述初相位与零值比较的误差与所述整数信号周期数的误差之间为正比关系。
在信号初相位任意变化时,序列Xcos(n)和Xsin(n)和可能出现零幅值的情况,由于幅值之间是一种互补的关系,因此可以从序列Xcos(n)和序列Xsin(n)中选择幅值较大者输出,如果2个序列的幅值相同,则指定序列Xcos(n)输出。
在一个实施例中,根据式(9)得到第一平均幅值Vcos-avg
其中,第一平均幅值Vcos-avg的单位为v;N为预设序列长度,Xcos(n)为零初相位余弦函数调制序列。
在一个实施例中,根据式(10)得到第二平均幅值Vsin-vag
其中,第二平均幅值Vsin-vag的单位为v;N为预设序列长度,Xsin(n)为零初相位正弦函数调制序列。
得到第一平均幅值Vcos-avg和第二平均幅值Vsin-vag后,比较两者的大小。如式(11)所示,当第一平均幅值Vcos-avg大于等于第二平均幅值Vsin-vag时,输出零初相位余弦函数调制序列,此时零初相位余弦函数调制序列即为得到的零初相位调制序列;当第一平均幅值Vcos-avg小于第二平均幅值Vsin-vag时,输出零初相位正弦函数调制序列,此时零初相位正弦函数调制序列即为得到的零初相位调制序列。
其中,式中,Xout(n)为零初相位调制序列。
本发明对于任意初相位的信号序列,通过一系列操作获得零初相位余弦函数调制序列和零初相位正弦函数调制序列,然后选择平均幅值较大的调制序列输出,输出的该调制序列即为零初相位或初相位在零附近的零初相位调制序列。本发明得到的所述零初相位调制序列避开了信号序列任意初相位问题的影响,同时零初相位调制序列携带了数值较大的信号序列全相位差信息,可显著的提高正弦参数计算的准确度、提高抗谐波和噪声干扰性。
基于同一发明构思,本发明还提供一种电力信号的零初相位调制系统,下面结合附图对本发明系统的具体实施方式做详细描述。
如图3所示,一种电力信号的零初相位调制系统,包括:
初步采样序列长度确定模块101,用于根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,得到初步采样序列长度;
初步采样序列获取模块102,用于根据所述初步采样序列长度对所述电力信号进行初步采样,获取所述电力信号的初步采样序列;
参考频率确定模块103,用于对所述初步采样序列进行频率初测,获取所述电力信号的初步频率,根据所述初步频率确定参考频率;
单位周期序列长度确定模块104,用于根据所述预设采样频率和所述参考频率,得到所述电力信号的单位周期序列长度;
预设序列长度确定模块105,用于根据所述预设整数信号周期数和所述单位周期序列长度,得到预设序列长度;
正向序列获取模块106,用于根据所述预设序列长度,从所述初步采样序列中获取正向序列;
反褶序列获取模块107,用于将所述正向序列反向输出,获取所述正向序列的反褶序列;
余弦函数调制序列确定模块108,用于将所述正向序列和所述反褶序列相加,得到零初相位余弦函数调制序列;
正弦函数调制序列确定模块109,用于将所述正向序列和所述反褶序列相减,得到零初相位正弦函数调制序列;
第一平均幅值确定模块110,用于对所述零初相位余弦函数调制序列的绝对值进行积分运算,得到所述零初相位余弦函数调制序列的第一平均幅值;
第二平均幅值确定模块111,用于对所述零初相位正弦函数调制序列的绝对值进行积分运算,得到所述零初相位正弦函数调制序列的第二平均幅值;
平均幅值判断模块112,用于判断所述第一平均幅值是否大于等于所述第二平均幅值,在所述第一平均幅值大于等于所述第二平均幅值时,输出所述零初相位余弦函数调制序列,在所述第一平均幅值小于所述第二平均幅值时,输出所述零初相位正弦函数调制序列。
电力信号是一种基波成分为主的正弦信号。正弦信号广指正弦函数信号和余弦函数信号。电力信号频率范围一般为45Hz~55Hz。所以电力信号频率范围的下限fmin可以取为45Hz。预设整数信号周期数C可以根据实际需要进行设置,例如,可以将预设整数信号周期数C设置为偶数。在一个实施例中,所述初步采样序列长度确定模块101可以根据确定初步采样序列长度Nstart,其中(int)表示取整,fn为预设采样频率。
所述初步采样序列长度确定模块101得到初步采样序列长度后,初步采样序列获取模块102根据初步采样序列长度对电力信号进行初步采样。例如,所述电力信号为单基波频率的余弦函数信号,初步采样序列获取模块102根据初步采样序列长度对单基波频率的余弦函数信号进行初步采样,获得的电力信号的初步采样序列Xstart(n)为:其中,A为信号幅值;ω为信号频率;为采样间隔;fn为预设采样频率;n=0,1,2,3,.....,Nstart-1,为序列离散数;为信号初相位;Nstart为初步采样序列长度。
初步采样序列获取模块102得到初步采样序列后,参考频率确定模块103可以通过零交法、基于滤波的算法、基于小波变换算法、基于神经网络的算法、基于DFT变换的频率算法或基于相位差的频率算法等对初步采样序列进行频率初测,获取初步频率ωo。在一个实施例中,参考频率确定模块103可以将该初步频率作为参考频率,即参考频率ωs=ωo
参考频率确定模块103得到参考频率后,在一个实施例中,单位周期序列长度确定模块104可以根据确定单位周期序列长度N。其中(int)为取整数,fn为预设采样频率,fs为Hz单位的参考频率,ωs为rad/s单位的参考频率。单位周期序列长度整数化存在1个采样间隔内的误差。
单位周期序列长度确定模块104得到单位周期序列长度后,在一个实施例中,预设序列长度确定模块105根据N=(int)(CN)确定预设序列长度N。其中(int)为取整数,C为预设整数信号周期数,N为单位周期序列长度。从该式可以看出,预设序列长度N与整数信号周期数C对应。预设序列长度N可以为单位周期序列长度N的12倍。由于存在误差,所述预设序列长度所包含的信号周期整数是大约的。
预设序列长度确定模块105得到预设系列长度N后,正向序列获取模块106根据预设序列长度,从所述初步采样序列中获取正向序列。在一个实施例中,基于上述初步采样序列获取模块102得到的初步采样序列,正向序列获取模块106获取的正向序列Xi(n)为:其中,Xstart(n)为初步采样序列;A为信号幅值;ω为信号频率;Tn为采样间隔;n=0,1,2,3,.....,N-1,为序列离散数;N≤Nstart为信号初相位;N为正向序列长度,也即是预设序列长度。
基于上述正向序列获取模块106获取的正向序列,反褶序列获取模块107得到的反褶序列X-i(-n)为:X-i(-n)=Xi(N-n)=Acos(-ωTnn+β)。其中n=0,1,2,3,.....,N-1;β为反褶序列初相位,反褶序列初相位是正向序列的截止相位,即所述电力信号的截止相位;N为反褶序列长度,如图2所示,反褶序列长度与正向序列长度相同。
基于上述正向序列获取模块106获取的正向序列和反褶序列获取模块107得到的反褶序列,余弦函数调制序列确定模块108得到的零初相位余弦函数调制序列Xcos(n)为:
n=0,1,2,3,.....,N-1
其中,为余弦函数调制序列幅值;为余弦函数调制序列初相位。所述零初相位余弦函数调制序列携带信息。
由于预设序列长度对应预设整数信号周期数存在误差,原因之一是参考频率误差引起的误差,原因之二是预设序列长度的整数化误差。如果所述的误差为零,则余弦函数调制序列初相位为零,反之余弦函数调制序列初相位在零附近。所述初相位与零值比较的误差与所述预设整数信号周期数的误差之间为正比关系。
基于上述正向序列获取模块106获取的正向序列和反褶序列获取模块107得到的反褶序列,正弦函数调制序列确定模块109得到的零初相位正弦函数调制序列Xsin(n)为:
n=0,1,2,3,.....,N-1
其中,为零初相位正弦函数调制序列的幅值,单位v;为零初相位正弦函数调制序列的初相位,单位为rad。
由于预设序列长度对应整数信号周期数存在误差,原因之一是参考频率误差引起的误差,原因之二是所述预设序列长度的整数化误差。如果所述的误差为零,则零初相位正弦函数调制序列的初相位为零,反之初相位在零附近。所述初相位与零值比较的误差与所述整数信号周期数的误差之间为正比关系。
在信号初相位任意变化时,序列Xcos(n)和Xsin(n)和可能出现零幅值的情况,由于幅值之间是一种互补的关系,因此可以从序列Xcos(n)和序列Xsin(n)中选择幅值较大者输出,如果2个序列的幅值相同,则指定序列Xcos(n)输出。
在一个实施例中,第一平均幅值确定模块110可以根据得到所述第一平均幅值Vcos-avg,其中n=0,1,2,3,.....,N-1,N为预设序列长度,Xcos(n)为零初相位余弦函数调制序列。
在一个实施例中,第二平均幅值确定模块111可以根据得到所述第二平均幅值Vsin-vag,其中n=0,1,2,3,.....,N-1,N为预设序列长度,Xsin(n)为零初相位正弦函数调制序列。
第一平均幅值确定模块110得到第一平均幅值Vcos-avg和第二平均幅值确定模块111第二平均幅值Vsin-vag后,所述平均幅值判断模块112比较两者的大小。如下式所示,当第一平均幅值Vcos-avg大于等于第二平均幅值Vsin-vag时,平均幅值判断模块112输出零初相位余弦函数调制序列,此时零初相位余弦函数调制序列即为得到的零初相位调制序列;当第一平均幅值Vcos-avg小于第二平均幅值Vsin-vag时,平均幅值判断模块112输出零初相位正弦函数调制序列,此时零初相位正弦函数调制序列即为得到的零初相位调制序列。
n=0,1,2,3,.....,N-1
其中,式中,Xout(n)为零初相位调制序列。
本发明对于任意初相位的信号序列,通过一系列操作获得零初相位余弦函数调制序列和零初相位正弦函数调制序列,然后选择平均幅值较大的调制序列输出,输出的该调制序列即为零初相位或初相位在零附近的零初相位调制序列。本发明得到的所述零初相位调制序列避开了信号序列任意初相位问题的影响,同时零初相位调制序列携带了数值较大的信号序列全相位差信息,可显著的提高正弦参数计算的准确度、提高抗谐波和噪声干扰性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种电力信号的零初相位调制方法,其特征在于,包括步骤:
根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,得到初步采样序列长度;
根据所述初步采样序列长度对所述电力信号进行初步采样,获取所述电力信号的初步采样序列;
对所述初步采样序列进行频率初测,获取所述电力信号的初步频率,根据所述初步频率确定参考频率;
根据所述预设采样频率和所述参考频率,得到所述电力信号的单位周期序列长度;
根据所述预设整数信号周期数和所述单位周期序列长度,得到预设序列长度;
根据所述预设序列长度,从所述初步采样序列中获取正向序列;
将所述正向序列反向输出,获取所述正向序列的反褶序列;
将所述正向序列和所述反褶序列相加,得到零初相位余弦函数调制序列;
将所述正向序列和所述反褶序列相减,得到零初相位正弦函数调制序列;
对所述零初相位余弦函数调制序列的绝对值进行积分运算,得到所述零初相位余弦函数调制序列的第一平均幅值;
对所述零初相位正弦函数调制序列的绝对值进行积分运算,得到所述零初相位正弦函数调制序列的第二平均幅值;
判断所述第一平均幅值是否大于等于所述第二平均幅值,若是,输出所述零初相位余弦函数调制序列,否则输出所述零初相位正弦函数调制序列。
2.根据权利要求1所述的电力信号的零初相位调制方法,其特征在于,根据确定初步采样序列长度Nstart,其中(int)表示取整,C为预设整数信号周期数,fn为预设采样频率,fmin为电力信号频率范围的下限。
3.根据权利要求1所述的电力信号的零初相位调制方法,其特征在于,根据确定单位周期序列长度N,其中(int)为取整数,fn为预设采样频率,ωs为参考频率。
4.根据权利要求1所述的电力信号的零初相位调制方法,其特征在于,根据表达式N=(int)(CN)获得所述预设序列长度N,其中(int)表示取整数,C为所述预设整数信号周期数,N为所述单位周期序列长度。
5.根据权利要求1所述的电力信号的零初相位调制方法,其特征在于,根据得到所述第一平均幅值Vcos-avg,其中n=0,1,2,3,......,N-1,N为预设序列长度,Xcos(n)为零初相位余弦函数调制序列;
根据得到所述第二平均幅值Vsin-vag,其中n=0,1,2,3,.....,N-1,N为预设序列长度,Xsin(n)为零初相位正弦函数调制序列。
6.一种电力信号的零初相位调制系统,其特征在于,包括:
初步采样序列长度确定模块,用于根据电力信号频率范围的下限、预设采样频率和预设整数信号周期数,得到初步采样序列长度;
初步采样序列获取模块,用于根据所述初步采样序列长度对所述电力信号进行初步采样,获取所述电力信号的初步采样序列;
参考频率确定模块,用于对所述初步采样序列进行频率初测,获取所述电力信号的初步频率,根据所述初步频率确定参考频率;
单位周期序列长度确定模块,用于根据所述预设采样频率和所述参考频率,得到所述电力信号的单位周期序列长度;
预设序列长度确定模块,用于根据所述预设整数信号周期数和所述单位周期序列长度,得到预设序列长度;
正向序列获取模块,用于根据所述预设序列长度,从所述初步采样序列中获取正向序列;
反褶序列获取模块,用于将所述正向序列反向输出,获取所述正向序列的反褶序列;
余弦函数调制序列确定模块,用于将所述正向序列和所述反褶序列相加,得到零初相位余弦函数调制序列;
正弦函数调制序列确定模块,用于将所述正向序列和所述反褶序列相减,得到零初相位正弦函数调制序列;
第一平均幅值确定模块,用于对所述零初相位余弦函数调制序列的绝对值进行积分运算,得到所述零初相位余弦函数调制序列的第一平均幅值;
第二平均幅值确定模块,用于对所述零初相位正弦函数调制序列的绝对值进行积分运算,得到所述零初相位正弦函数调制序列的第二平均幅值;
平均幅值判断模块,用于判断所述第一平均幅值是否大于等于所述第二平均幅值,在所述第一平均幅值大于等于所述第二平均幅值时,输出所述零初相位余弦函数调制序列,在所述第一平均幅值小于所述第二平均幅值时,输出所述零初相位正弦函数调制序列。
7.根据权利要求6所述的电力信号的零初相位调制系统,其特征在于,所述初步采样序列长度确定模块根据确定初步采样序列长度Nstart,其中(int)表示取整,C为预设整数信号周期数,fn为预设采样频率,fmin为电力信号频率范围的下限。
8.根据权利要求6所述的电力信号的零初相位调制系统,其特征在于,所述单位周期序列长度确定模块根据确定单位周期序列长度N,其中(int)为取整数,fn为预设采样频率,ωs为参考频率。
9.根据权利要求6所述的电力信号的零初相位调制系统,其特征在于,所述预设序列长度确定模块根据表达式N=(int)(CN)获得所述预设序列长度N,其中(int)表示取整数,C为所述预设整数信号周期数,N为所述单位周期序列长度。
10.根据权利要求6所述的电力信号的零初相位调制系统,其特征在于,所述第一平均幅值确定模块根据得到所述第一平均幅值Vcos-avg,其中n=0,1,2,3,.....,N-1,N为预设序列长度,Xcos(n)为零初相位余弦函数调制序列;
所述第二平均幅值确定模块根据得到所述第二平均幅值Vsin-vag,其中n=0,1,2,3,.....,N-1N为预设序列长度,Xsin(n)为零初相位正弦函数调制序列。
CN201510600316.9A 2015-09-18 2015-09-18 电力信号的零初相位调制方法和系统 Active CN105203844B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510600316.9A CN105203844B (zh) 2015-09-18 2015-09-18 电力信号的零初相位调制方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510600316.9A CN105203844B (zh) 2015-09-18 2015-09-18 电力信号的零初相位调制方法和系统

Publications (2)

Publication Number Publication Date
CN105203844A true CN105203844A (zh) 2015-12-30
CN105203844B CN105203844B (zh) 2018-04-03

Family

ID=54951627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510600316.9A Active CN105203844B (zh) 2015-09-18 2015-09-18 电力信号的零初相位调制方法和系统

Country Status (1)

Country Link
CN (1) CN105203844B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014637A (zh) * 2020-08-20 2020-12-01 青岛鼎信通讯股份有限公司 一种基于软件无线电的电力相位识别方法
CN113341219A (zh) * 2021-05-19 2021-09-03 北京航空航天大学 恒频交流供电系统频率调制幅度测量方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675124A (en) * 1970-10-28 1972-07-04 Sperry Rand Corp Apparatus for measuring frequency modulation noise signals and for calibrating same
CN102768303A (zh) * 2012-08-03 2012-11-07 长飞光纤光缆有限公司 一种全光纤型电流互感器的初始相位差的测量方法
CN104459319A (zh) * 2014-11-27 2015-03-25 中国船舶重工集团公司第七二四研究所 一种短基线干涉仪矢量叠加鉴相方法
CN104502698A (zh) * 2014-12-10 2015-04-08 广东电网有限责任公司电力科学研究院 电力信号的频率测量方法和系统
CN104635045A (zh) * 2015-02-05 2015-05-20 广东电网有限责任公司电力科学研究院 基于相位调制的电力信号频率检测方法和系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3675124A (en) * 1970-10-28 1972-07-04 Sperry Rand Corp Apparatus for measuring frequency modulation noise signals and for calibrating same
CN102768303A (zh) * 2012-08-03 2012-11-07 长飞光纤光缆有限公司 一种全光纤型电流互感器的初始相位差的测量方法
CN104459319A (zh) * 2014-11-27 2015-03-25 中国船舶重工集团公司第七二四研究所 一种短基线干涉仪矢量叠加鉴相方法
CN104502698A (zh) * 2014-12-10 2015-04-08 广东电网有限责任公司电力科学研究院 电力信号的频率测量方法和系统
CN104635045A (zh) * 2015-02-05 2015-05-20 广东电网有限责任公司电力科学研究院 基于相位调制的电力信号频率检测方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
R.PUNCHALARD: "Mean square error analysis of unbiased modified plain gradient algorithm for second-order adaptive IIR notch filter", 《SIGNALPROCESSING》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014637A (zh) * 2020-08-20 2020-12-01 青岛鼎信通讯股份有限公司 一种基于软件无线电的电力相位识别方法
CN112014637B (zh) * 2020-08-20 2022-04-26 青岛鼎信通讯股份有限公司 一种基于软件无线电的电力相位识别方法
CN113341219A (zh) * 2021-05-19 2021-09-03 北京航空航天大学 恒频交流供电系统频率调制幅度测量方法及装置

Also Published As

Publication number Publication date
CN105203844B (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
CN105203844A (zh) 电力信号的零初相位调制方法和系统
CN105044460A (zh) 对电力信号序列进行零初相位余弦函数调制方法和系统
CN105158564A (zh) 根据正弦函数调制的电力信号全相位差检测方法和系统
CN108120873A (zh) 一种新型正弦信号频率测量方法
CN105203840A (zh) 对电力信号序列进行零初相位正弦函数调制的方法和系统
CN105182077B (zh) 根据余弦函数调制的电力信号全相位差检测方法和系统
CN105092970A (zh) 获取电力信号序列正弦函数零初相位基准点的方法和系统
CN105319442A (zh) 根据余弦函数调制的电力信号频率检测方法和系统
CN105223419A (zh) 电力信号的全相位差检测方法和系统
CN105301355A (zh) 根据正弦函数调制的电力信号频率检测方法和系统
CN105158558A (zh) 电力信号的频率检测方法和系统
CN105182075A (zh) 获取电力信号序列余弦函数零初相位基准点的方法和系统
CN105388359B (zh) 从电力信号中获取正交倍频序列的方法和系统
CN105548687B (zh) 从电力信号中获取任意初相位正交序列的方法和系统
CN105372489B (zh) 从电力信号中获取任意初相位余弦函数序列的方法和系统
CN104991104A (zh) 电力信号的幅值检测方法和系统
CN105203843A (zh) 电力信号的平均初相位检测方法和系统
CN105067885A (zh) 将电力信号转换为零初相位信号序列的方法和系统
CN105548703A (zh) 从电力信号中获取任意初相位正弦函数序列的方法和系统
CN105548699A (zh) 获取电力信号的提高频率基准正弦函数序列的方法和系统
CN105403768B (zh) 从电力信号中获取余弦函数倍频序列的方法和系统
CN105044462A (zh) 电力信号的截止相位检测方法和系统
CN104977467A (zh) 电力信号的初相位检测方法和系统
CN105137172A (zh) 将电力信号转换为零初相位余弦信号序列的方法和系统
CN105548706A (zh) 获取电力信号的降低频率正弦函数序列的方法和系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant