CN105182510A - 对有限远物面成像的球面卡塞格林系统及其调整方法 - Google Patents

对有限远物面成像的球面卡塞格林系统及其调整方法 Download PDF

Info

Publication number
CN105182510A
CN105182510A CN201510428563.5A CN201510428563A CN105182510A CN 105182510 A CN105182510 A CN 105182510A CN 201510428563 A CN201510428563 A CN 201510428563A CN 105182510 A CN105182510 A CN 105182510A
Authority
CN
China
Prior art keywords
spherical mirror
concave spherical
knife
optical axis
sphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510428563.5A
Other languages
English (en)
Other versions
CN105182510B (zh
Inventor
刘崇
季来林
林尊琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Optics and Fine Mechanics of CAS
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201510428563.5A priority Critical patent/CN105182510B/zh
Publication of CN105182510A publication Critical patent/CN105182510A/zh
Application granted granted Critical
Publication of CN105182510B publication Critical patent/CN105182510B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Telescopes (AREA)
  • Lenses (AREA)

Abstract

一种对有限远物面成像的球面卡塞格林系统及其调整方法,该系统由第一凹球面镜、第二凹球面镜和一块凸球面镜构成一个成像系统,本发明可克服传统卡塞格林系统和椭球面系统在高功率激光脉冲远场测量方面的缺陷。

Description

对有限远物面成像的球面卡塞格林系统及其调整方法
技术领域
本发明涉及高功率激光远场测试,一种对有限远物面成像的球面卡塞格林系统及其调整方法。
背景技术
高功率激光远场测试技术,对成像系统有四个基本要求:有较高的远场品质因子;有较大的近衍射极限成像视场以方便与靶镜光轴相耦合;无明显色差;高峰值功率情况下,为避免非线性损伤,尽量不引入透射元件。
传统的卡塞格林系统为反射成像系统。反射式成像结构使其具有波长无选择的优点,因此不存在成像色差,无透射元件引起的非线性自聚焦。另一方面,为了满足对无限远处物面成像的需要,其结构一般由同轴的凹面主镜和凸面次镜构成。为保证成像质量,至少有一块反射镜使用非球面面型,这样使得可满足近衍射极限成像的视场较小(视场角约20′)。如图8所示(参见中国,授权公告号:204229042U);,传统的卡塞格林系统只能对无限远物面成像,因此无法满足高功率激光器对激光远场测量系统的要求。再者,此类卡塞格林系统的装校需要依赖于干涉仪,较为繁琐。图9为离轴卡塞格林系统(参见中国,申请号:201410847694.2),此类卡塞格林系统仍然只能对有限远处成像,且调整难度极大。作为高功率激光器远场测量系统的另一种发明方案,反射椭球面的两个焦点虽然具有成像完善的功能,但同样存在近衍射极限成像视场极其有限的缺点,随着物点远离其中一个焦点,在另一个焦点处像点急剧恶化。虽然利用椭球反射面作为高功率激光远场焦斑测量方案已有报道,但至今未发现较高品质的测试结果。
以上两种方案,都不能满足高功率激光远场测量系统的技术要求。
发明内容
本发明的目的在于提供一种对有限远处物面成像的改进型卡塞格林系统及其调整方法,以克服传统卡塞格林系统和椭球面系统在高功率激光脉冲远场测量方面的缺陷。
本发明的技术解决方案如下:
一种对有限远物面成像的球面卡塞格林系统,其特点在于:该系统由第一凹球面镜、第二凹球面镜和一块凸球面镜构成一个成像系统并固定在一个稳定的光学平台上,在xy坐标系中以0,0点作为坐标原点,所述的第一凹球面镜、第二凹球面镜和一块凸球面镜的中心的坐标分别为5781,0;2893,-332.9;和4672,-633.4;所述的x轴为系统的工作光轴,该系统的几何对称光轴与所述的工作光轴成26°;所述的第一凹球面镜、第二凹球面镜和一块凸球面镜的球心均位于几何对称光轴上,所述的第一凹球面镜、第二凹球面镜的球心位于609.09,-297.07;所述的凸球面镜的球心位于556.06,-271.21。
上述对有限远物面成像的球面卡塞格林系统的调节方法,其特点在于该方法包括下列步骤:
1)借助激光跟踪仪,在实验室坐标系下标出假离轴卡塞格林系统的工作光轴和确定出物点的坐标,即xy坐标系的坐标原点0,0;所述的工作光轴是系统在调试和使用过程中的实际光路走向;
2)借助激光跟踪仪,将装夹好的第一凹球面镜、第二凹球面镜和一块凸球面镜的三维调整架安装摆放,使所述的第一凹球面镜、第二凹球面镜和凸球面镜的中心的坐标分别为5781,0;2893,-332.9;和4672,-633.4;保障定位误差不大于1cm;
3)利用激光跟踪仪,过物点,标识出与工作光轴成26°的假离轴卡塞格林成像系统的几何光轴,并在该几何光轴上标出所述的第一凹球面镜和第二凹球面镜的球心609.09,-297.07和所述的凸球面镜的球心556.06,-271.21,作为刀口仪的第一工作点和第二工作点;
4)沿所述的几何光轴方向安装所述的刀口仪组件的滑动导轨,该滑动导轨的角度校准精度为1mrad,在该滑动导轨上安装所述的刀口仪,将所述的刀口仪的光纤点光源定位在物点位置;
5)沿刀口仪方向滑动导轨,使点光源对准所述的刀口仪第一工作点,通过调节所述的第一凹球面镜和第二凹球面镜,使其球心精确定位在所述的刀口仪的刀刃位置,随后沿导轨方向,将刀口仪移动至所述的刀口仪第二工作点;
6)将所述的凸球面镜的球心精确定位在刀刃位置,即刀口仪第二工作点:
将所述的凸球面镜对应的凹球面样板安装在夹持臂上,将该夹持臂安装在三维平移台上,夹持所述的凹球面样板的镜框突出所述的三维平移台20cm,调节所述的三维平移台,将所述的凹球面样板的球心定位于所述的刀口仪第二工作点位置,以所述的凹球面样板为基准,将所述的凸球面镜靠近所述的凹球面样板,通过调节所述的凸球面镜的两维角度和轴向平移,使所述的凸球面镜靠近所述的凹球面样板,所述的刀口仪出现凹球面样板与凸球面镜的干涉条纹,继续调节凸球面镜,待所述的刀口仪上的干涉条纹出现最稀疏的直条纹时,锁定凸球面镜,拆除所述的凹球面样板,调解完毕。
本发明的技术效果如下:
1、对传统的卡塞格林系统进行改进,利用凹凸球面像差补偿的特性,使之能对有限远处物点及其附近较大范围(子午弧矢±10mrad,轴向±10cm)具有近衍射受限的成像能力。因此,该系统非常适合高功率脉冲激光远场测量,较之于椭球面远场成像系统,极大的方便了远场测量系统与靶镜光轴、被测焦斑的耦合问题,使成像系统的品质因子更加可信。
2、本发明利用刀口仪轴向高灵敏度的特点,对三个球面镜中心的坐标和姿态精确定位,使调节过程有明确的基准,不需在调节过程中对像点焦斑实时监测。调节完毕后,只需将刀口仪点光源返回物点,像点位置的焦斑即为成像系统品质因子。
3、在1053nm单模光纤照明状态下,考察像点5位置的成像情况。实验结果表明,得到1.6倍衍射极限的品质因子。实验值与模拟值的差别在于大口径反射元件在装夹过程中产生了比较明显的象散。
为验证卡塞格林系统的视场范围,对坐标原点成像后,将刀口仪点光源沿导轨方向滑动5cm。对其进行成像,可找到对应的像点,通过比较,其像点与坐标原点的像点焦斑近似一致。也即说明本发明和调试方案无明显残余像差。
附图说明
图1是本发明对有限远物面成像的球面卡塞格林系统结构关系示意图
图2是本发明对有限远物面成像的球面卡塞格林系统用于高功率激光远场焦斑测试图;
图3是凸球面M2定位调整示意图;
图4本发明对有限远物面成像的球面卡塞格林系统品质因子示意图
图4本发明(a)zemax光学设计软件获得的假离轴三反卡塞格林系统子午、弧矢面内±50mm视场范围点光源成像情况,其衍射极限的尺度为19.33μm,分别考察物方(-50,50),(0,50),(50,50),(-50,0),原点(0,0),(0,50),(-50,-50),(0,-50),(50,-50)九个视场位置的品质因子;(b)现有技术zemax光学设计软件获得的反射椭球面系统子午、弧矢面内±1mm视场范围点光源成像情况,其衍射极限尺度为14.11μm,分别考察物方(-1,1),(0,1),(1,1),(-1,0),原点(0,0),(0,1),(-1,-1),(0,-1),(1,-1)九个视场位置的品质因子,图中圆圈为两种方案各自衍射极限对应的尺度,软件模拟图中。Zemax软件在图中左下方给出了不同视场位置成像点列图的均方根直径和几何直径。
图5是本发明对有限远物面成像的球面卡塞格林系统在1053光纤点光源照明条件下品质因子示意图
图5(a)系统对物点1处点光源成像的品质因子;
图5(b)将点光源沿导轨方向移动5cm(图1中红色点划线所示),本发明系统成像品质因子;
图6是图5(a)数据处理结果,在1053nm点光源照明下,品质因子的80%能量集中于1.6倍衍射极限;
图7是图2测量结果:能量897J,80%能量集中于5.1倍衍射极限;
图8是现有天文卡塞格林望远系统,非球面曼金镜反射系统,对无穷远处成像(中国,授权公告号:204229042U);
图9是现有离轴卡塞格林望远系统,用于超光谱成像光谱仪,由四次非球面、球面和二次非球面构成
具体实施方式
下面结合说明书附图和实施例,对本发明系统做进一步说明,但不应以此限制本发明的保护范围。
先请参阅图1,图1是本发明对有限远物面成像的球面卡塞格林系统结构关系示意图,由图可见,本发明对有限远物面成像的球面卡塞格林系统,该系统由第一凹球面镜M1、第二凹球面镜M3和一块凸球面镜M2构成一个成像系统并固定在一个稳定的光学平台上,在xy坐标系中以0,0点作为坐标原点,所述的第一凹球面镜M1、第二凹球面镜M3和一块凸球面镜M2的中心的坐标分别为5781,0;2893,-332.9;和4672,-633.4;所述的x轴为系统的工作光轴a,该系统的几何对称光轴c与所述的工作光轴a成26°;所述的第一凹球面镜M1、第二凹球面镜M3和一块凸球面镜M2的球心均位于几何对称光轴c上,所述的第一凹球面镜M1、第二凹球面镜M3的球心位于609.09,-297.07;所述的凸球面镜M2的球心位于556.06,-271.21。
在系统发明过程中,关键步骤是首先将所述的卡塞格林系统优化为近似无焦系统。因此根据像差理论,如图1所示,无焦系统在有限远处一个特定位置,即物点1处,至少可以对包括物点位置1在内的附近约±10cm的三维区域内近衍射受限成像。
具体的调整过程如下:
1)如图1所示,借助激光跟踪仪,在实验室坐标系下标出假离轴卡塞格林系统的工作光轴a和确定出物点1的坐标,即xy坐标系的坐标原点(0,0);所述的工作光轴a是系统在调试和使用过程中的实际光路走向;
2)如图1所示,借助激光跟踪仪,将装夹好的第一凹球面镜M1、第二凹球面镜M3和一块凸球面镜M2的三维调整架安装摆放,使所述的第一凹球面镜M1、第二凹球面镜M3和凸球面镜M2的中心的坐标分别为(5781,0)、(2893,-332.9)和(4672,-633.4)保障定位误差不大于1cm;
3)如图1所示,利用激光跟踪仪,过物点1,标识出与工作光轴a轴成26°的假离轴卡塞格林成像系统的几何光轴c,并在该几何光轴c上标出所述的第一凹球面镜M1和第二凹球面镜M3的球心7和所述的凸球面镜M2的球心6,作为刀口仪的第一工作点7和第二工作点6;
4)沿所述的几何光轴c方向安装所述的刀口仪组件的滑动导轨,该滑动导轨的角度校准精度为1mrad,在该滑动导轨上安装所述的刀口仪,将所述的刀口仪的光纤点光源定位在物点1位置;
5)沿刀口仪方向滑动导轨,使点光源对准所述的刀口仪第一工作点7,通过调节所述的第一凹球面镜M1和第二凹球面镜M3,使其球心精确定位在所述的刀口仪的刀刃位置,随后沿导轨方向,将刀口仪移动至所述的刀口仪第二工作点6;
6)将所述的凸球面镜M2的球心精确定位在刀刃位置,即刀口仪第二工作点6:
如图3所示,将所述的凸球面镜M2对应的凹球面样板M02安装在夹持臂上,将该夹持臂安装在三维平移台上,夹持所述的凹球面样板M02的镜框突出所述的三维平移台20cm,调节所述的三维平移台,将所述的凹球面样板M02的球心定位于所述的刀口仪第二工作点位置6,以所述的凹球面样板M02为基准,将所述的凸球面镜M2靠近所述的凹球面样板M02,通过调节所述的凸球面镜M2的两维角度和轴向平移,使所述的凸球面镜M2靠近所述的凹球面样板M02,所述的刀口仪出现凹球面样板M02与凸球面镜M2的干涉条纹,继续调节凸球面镜M2,待所述的刀口仪上的干涉条纹出现最稀疏的直条纹时,锁定凸球面镜M2,拆除所述的凹球面样板M02,调解完毕。
调解完毕后,将点光源置于图1中物点1位置,在像点5位置测得的系统的品质因子,如图6所示,80%能量集中于1.6倍衍射极限。为验证该系统的视场范围,将点光源沿所述的导轨方向移动5cm,在像点5附近得到对应的像点,该像点与物点1处所成的像点的品质因子的对比结果,如图5所示,两视场的品质因子基本一致。
使用过程:如图2所示,楔形透镜L为激光器聚焦系统。上述卡塞格林系统调解完毕后,将激光器聚焦系统L的光轴z与该系统的工作光轴a相耦合,并沿耦合光轴a方向调节楔形透镜L的位置,使该楔形透镜L焦点位于卡塞格林系统的物点1附近,作为卡塞格林成像系统的物点,在像点5附近找到该楔形透镜L的焦点的实像,利用10倍显微物镜将该像点5物成像在CCD上,即可进行激光器远场(靶镜焦点)的测量工作。
由于该卡塞格林系统具有足够大的近衍射极限成像视场(±10mrad)和景深(±10cm),因此,楔形透镜L的光轴z与卡塞格林光轴a的耦合精度优于5mrad、轴向调焦精度优于10cm即可满足近衍射极限的成像要求,为调试使用过程提供了极大的方便。
使用所述的卡塞格林成像系统获得的激光器焦斑的实验结果如图7所示:激光脉冲能量897J,光束口径310×310mm2,焦斑80%能量集中于5.1倍衍射极限。
以上显示和描述了本发明的基本原理、调试方案、主要特征以及优点。本发明不受上述案例的限制,上述案例和说明书中描述的具体参数只为说明本发明和调试方案的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,均要求落入此发明的保护范围。本发明要求保护的范围由所附的权利要求书及其等效物界定。

Claims (2)

1.一种对有限远物面成像的球面卡塞格林系统,其特征在于:该系统由第一凹球面镜、第二凹球面镜和一块凸球面镜构成一个成像系统并固定在一个稳定的光学平台上,在xy坐标系中以(0,0)点作为坐标原点,所述的第一凹球面镜、第二凹球面镜和一块凸球面镜的中心的坐标分别为(5781,0)、(2893,-332.9)和(4672,-633.4),曲率半径分别为5200mm、2337.9mm和4089.6mm;所述的x轴为系统的工作光轴,该系统的几何对称光轴与所述的工作光轴成26°;所述的第一凹球面镜、第二凹球面镜和一块凸球面镜的球心均位于几何对称光轴上,所述的第一凹球面镜、第二凹球面镜的球心位于(609.09,-297.07);所述的凸球面镜的球心位于(556.06,-271.21)。
2.根据权利要求1所述的假离轴卡塞格林成像系统的调节方法,其特征在于该方法包括下列步骤:
1)借助激光跟踪仪,在实验室坐标系下标出假离轴卡塞格林系统的工作光轴和确定出物点的坐标,即xy坐标系的坐标原点(0,0);所述的工作光轴是系统在调试和使用过程中的实际光路走向;
2)借助激光跟踪仪,将装夹好的第一凹球面镜、第二凹球面镜和一块凸球面镜的三维调整架安装摆放,使所述的第一凹球面镜、第二凹球面镜和凸球面镜的中心的坐标分别为(5781,0)、(2893,-332.9)和(4672,-633.4),保障定位误差不大于1cm;
3)利用激光跟踪仪,过物点标识出与工作光轴轴成26°的假离轴卡塞格林成像系统的几何光轴,并在该几何光轴上标出所述的第一凹球面镜和第二凹球面镜的球心(609.09,-297.07)和所述的凸球面镜的球心(556.06,-271.21),分别作为刀口仪的第一工作点和第二工作点;
4)沿所述的几何光轴方向安装所述的刀口仪组件的滑动导轨,该滑动导轨的角度校准精度为1mrad,在该滑动导轨上安装所述的刀口仪,将所述的刀口仪的光纤点光源定位在物点位置;
5)沿刀口仪方向滑动导轨,使点光源对准所述的刀口仪第一工作点,通过调节所述的第一凹球面镜和第二凹球面镜,使其球心精确定位在所述的刀口仪的刀刃位置,随后沿导轨方向,将刀口仪移动至所述的刀口仪第二工作点;
6)将所述的凸球面镜的球心精确定位在刀刃位置,即刀口仪第二工作点:
将所述的凸球面镜对应的凹球面样板安装在夹持臂上,将该夹持臂安装在三维平移台上,夹持所述的凹球面样板的镜框突出所述的三维平移台20cm,调节所述的三维平移台,将所述的凹球面样板的球心定位于所述的刀口仪第二工作点位置,以所述的凹球面样板为基准,将所述的凸球面镜靠近所述的凹球面样板,通过调节所述的凸球面镜的两维角度和轴向平移,使所述的凸球面镜靠近所述的凹球面样板,所述的刀口仪出现凹球面样板与凸球面镜的干涉条纹,继续调节凸球面镜,待所述的刀口仪上的干涉条纹出现最稀疏的直条纹时,锁定凸球面镜,拆除所述的凹球面样板,调解完毕。
CN201510428563.5A 2015-07-20 2015-07-20 对有限远物面成像的球面卡塞格林系统及其调整方法 Active CN105182510B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510428563.5A CN105182510B (zh) 2015-07-20 2015-07-20 对有限远物面成像的球面卡塞格林系统及其调整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510428563.5A CN105182510B (zh) 2015-07-20 2015-07-20 对有限远物面成像的球面卡塞格林系统及其调整方法

Publications (2)

Publication Number Publication Date
CN105182510A true CN105182510A (zh) 2015-12-23
CN105182510B CN105182510B (zh) 2017-07-14

Family

ID=54904695

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510428563.5A Active CN105182510B (zh) 2015-07-20 2015-07-20 对有限远物面成像的球面卡塞格林系统及其调整方法

Country Status (1)

Country Link
CN (1) CN105182510B (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023330A (en) * 1998-12-21 2000-02-08 Leco Corporation Centered sphere spectrometer
CN1577102A (zh) * 2003-06-30 2005-02-09 Asml控股股份有限公司 用于平板显示器的像差可校正大视场投影光学系统
CN101251436A (zh) * 2008-03-28 2008-08-27 中国科学院上海技术物理研究所 卡塞格林二反射镜光学系统加工在线检验方法
CN101546030A (zh) * 2009-05-08 2009-09-30 中国科学院上海技术物理研究所 一种放大倍率可变的凸面光栅成像光学系统
CN102175318A (zh) * 2011-01-27 2011-09-07 浙江大学 一种具有卡塞格林型前端的共视场共孔径多光谱成像系统
CN102748617A (zh) * 2012-06-21 2012-10-24 长春长光奥立红外技术有限公司 逆卡塞格林式led均光照明系统
CN103411673A (zh) * 2013-08-22 2013-11-27 北京理工大学 基于同心离轴双反射系统的成像光谱仪
CN103412391A (zh) * 2013-08-14 2013-11-27 中国科学院光电技术研究所 一种基于激光跟踪仪实现光学系统穿轴对心方法
CN103557791A (zh) * 2013-11-08 2014-02-05 中国科学院光电技术研究所 一种大口径非球面主镜二次常数测量装置与方法
CN103604498A (zh) * 2013-12-04 2014-02-26 上海理工大学 一种宽光谱Offner成像光谱仪分光系统
WO2014070598A1 (en) * 2012-10-31 2014-05-08 Corning Incorporated Optical device, imaging system which incorporates the optical device and method implemented by the imaging system for imaging a specimen
CN104019893A (zh) * 2014-05-20 2014-09-03 上海理工大学 Offner结构成像光谱仪
CN204188858U (zh) * 2014-10-29 2015-03-04 北京航天计量测试技术研究所 一种卡塞格林光学系统次镜调焦装置
CN104501722A (zh) * 2015-01-07 2015-04-08 中国科学院光电技术研究所 一种非球面光纤细丝测量方法
CN104635343A (zh) * 2015-02-14 2015-05-20 哈尔滨工业大学 折反式可变倍激光扩束准直系统

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6023330A (en) * 1998-12-21 2000-02-08 Leco Corporation Centered sphere spectrometer
CN1577102A (zh) * 2003-06-30 2005-02-09 Asml控股股份有限公司 用于平板显示器的像差可校正大视场投影光学系统
CN101251436A (zh) * 2008-03-28 2008-08-27 中国科学院上海技术物理研究所 卡塞格林二反射镜光学系统加工在线检验方法
CN101546030A (zh) * 2009-05-08 2009-09-30 中国科学院上海技术物理研究所 一种放大倍率可变的凸面光栅成像光学系统
CN102175318A (zh) * 2011-01-27 2011-09-07 浙江大学 一种具有卡塞格林型前端的共视场共孔径多光谱成像系统
CN102748617A (zh) * 2012-06-21 2012-10-24 长春长光奥立红外技术有限公司 逆卡塞格林式led均光照明系统
WO2014070598A1 (en) * 2012-10-31 2014-05-08 Corning Incorporated Optical device, imaging system which incorporates the optical device and method implemented by the imaging system for imaging a specimen
CN103412391A (zh) * 2013-08-14 2013-11-27 中国科学院光电技术研究所 一种基于激光跟踪仪实现光学系统穿轴对心方法
CN103411673A (zh) * 2013-08-22 2013-11-27 北京理工大学 基于同心离轴双反射系统的成像光谱仪
CN103557791A (zh) * 2013-11-08 2014-02-05 中国科学院光电技术研究所 一种大口径非球面主镜二次常数测量装置与方法
CN103604498A (zh) * 2013-12-04 2014-02-26 上海理工大学 一种宽光谱Offner成像光谱仪分光系统
CN104019893A (zh) * 2014-05-20 2014-09-03 上海理工大学 Offner结构成像光谱仪
CN204188858U (zh) * 2014-10-29 2015-03-04 北京航天计量测试技术研究所 一种卡塞格林光学系统次镜调焦装置
CN104501722A (zh) * 2015-01-07 2015-04-08 中国科学院光电技术研究所 一种非球面光纤细丝测量方法
CN104635343A (zh) * 2015-02-14 2015-05-20 哈尔滨工业大学 折反式可变倍激光扩束准直系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
付联效,吴永刚: "大相对口径轻量化卡塞格林系统主镜的加工检验", 《光学学报》 *
潘君骅: "《一个新的泛卡塞格林望远镜系统》", 《光学精密工程》 *

Also Published As

Publication number Publication date
CN105182510B (zh) 2017-07-14

Similar Documents

Publication Publication Date Title
CN107796329B (zh) 一种凸非球面反射镜面形检测装置及检测方法
US10627222B2 (en) Method and apparatus for detecting cylinder and cylindrical converging lens
CN109556531B (zh) 一种基于图像信息的点衍射干涉仪光路精确校准系统及方法
CN107782254B (zh) 一种混合补偿式子孔径拼接面形检测方法
US10663289B2 (en) Method and apparatus for detecting concave cylinder and cylindrical diverging lens
CN106595529B (zh) 基于虚拟牛顿环的大曲率半径非零位干涉测量方法及装置
CN101251436A (zh) 卡塞格林二反射镜光学系统加工在线检验方法
CN104374334B (zh) 自由曲面形貌三维测量方法及装置
CN109855560B (zh) 一种凸非球面反射镜面形的检测装置及检测方法
CN106225712A (zh) 一种离轴三反非球面光学系统共基准检测与加工方法
CN112902875B (zh) 一种非球面反射镜曲率半径检测装置及方法
CN106767471B (zh) 一种非球面检测光路中光学间隔测量系统及方法
Wei et al. Measurement of base angle of an axicon lens based on auto-collimation optical path
CN106225713A (zh) 一种离轴三反非球面光学系统共基准检测与加工方法
CN112923871B (zh) 一种自由曲面反射镜曲率半径检测装置及方法
CN113295386B (zh) 一种光学镜片检测系统及检测方法
CN105182510A (zh) 对有限远物面成像的球面卡塞格林系统及其调整方法
CN105203036A (zh) 非接触法测量透镜中心厚的装置和方法
Siebert et al. Modeling of fiber-coupled confocal and interferometric confocal distance sensors
CN109163682B (zh) 一种长焦大离轴量离轴抛物面的检测装置及方法
KR102081085B1 (ko) 3차원 자유곡면 형상 측정 장치 및 방법
Parks Alignment using axicon plane gratings
Wang et al. Laser confocal auto-collimation decentration measurement for spherical lens
CN113703124B (zh) 一种校正双凹离轴系统同轴的方法
CN109163663B (zh) 一种长焦大离轴量离轴抛物面的制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant