CN105181767A - 一种高灵敏测定1-氨基萘的电分析方法 - Google Patents

一种高灵敏测定1-氨基萘的电分析方法 Download PDF

Info

Publication number
CN105181767A
CN105181767A CN201510450756.0A CN201510450756A CN105181767A CN 105181767 A CN105181767 A CN 105181767A CN 201510450756 A CN201510450756 A CN 201510450756A CN 105181767 A CN105181767 A CN 105181767A
Authority
CN
China
Prior art keywords
tube
solution
carbon nano
graphene nanobelt
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510450756.0A
Other languages
English (en)
Inventor
朱刚兵
易银辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201510450756.0A priority Critical patent/CN105181767A/zh
Publication of CN105181767A publication Critical patent/CN105181767A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种快速测定1-氨基萘的电分析方法,通过制备氧化石墨烯纳米带包覆的碳纳米管核壳结构复合物,并将该复合物修饰玻碳电极应用于1-氨基萘的电化学传感研究。通过优化实验条件,结合石墨烯纳米带和碳纳米管的协同作用,实现对1-氨基萘的快速高灵敏检测。本发明具有简单、经济、灵敏度高的特点。

Description

一种高灵敏测定1-氨基萘的电分析方法
技术领域
本发明涉及环境及化学分析领域,特别是一种快速测定1-氨基萘的电分析方法。
背景技术
1-氨基萘是一种重要的工业原料,目前已被大量的应用于工农业等领域,同时,它也是一种严重的环境污染物。因此,发展1-氨基萘含量的有效分析方法具有非常重大的意义。目前,许多技术如高压液相色谱法、气相色谱-质谱联用法、表面拉曼光谱法和荧光光谱法等已被用于1-氨基萘的检测.但是,这些方法大多数存在一些不足:对设备要求高、样品预处理繁琐、耗时。而电化学技术具有成本低廉、设备简单、响应速度快等特点,已广泛的应用于各种化学/生物传感研究当中。但是,发展简单、高灵敏的1-氨基萘电化学传感方法仍然是一个巨大的挑战。
另一方面,石墨烯纳米带,一种新型的准一维碳基纳米材料,是石墨烯宽度限制在100nm以下得到的产物。石墨烯纳米带具有许多优异性质,如大的比表面积、高的导电性和电催化性、良好的机械和化学稳定性以及比常规石墨烯更多的边缘缺陷和活性位点等。这些性质使得石墨烯纳米带成为继碳纳米管和石墨烯之后被广泛关注的一类碳基纳米新材料。
发明内容
本发明的目的是在于提供一种快速高灵敏检测1-氨基萘的一种方法。该方法依次通过石墨烯纳米带@碳纳米管制备、电极修饰和电化学测定,最终实现对1-氨基萘的高灵敏检测。
本发明是这样来实现的,其步骤为:
(1)将碳纳米管分散于H2SO4中并持续搅拌,得溶液A;再加入H3PO4溶液,继续搅拌,得溶液B;
(2)向溶液B中加入KMnO4,60-70℃搅拌条件下加热1.5-2.5h,得溶液C;向溶液C中,加入含有双氧水的冰水混合物以终止反应,过滤、洗涤、干燥,获得最终产物石墨烯纳米带@碳纳米管;
(3)将步骤(2)所得的石墨烯纳米带@碳纳米管分散于水中,超声均匀得悬浮液;
(4)移取步骤(3)所得的悬浮液滴加至打磨干净的玻碳电极表面,烘干,得到修饰电极石墨烯纳米带@碳纳米管/玻碳电极;
(5)将含有待测物1-氨基萘的溶液调pH值为6.5-7.5;将步骤(4)所得的修饰电极石墨烯纳米带@碳纳米管/玻碳电极插入待测液中,富集2-4min后,采用差分脉冲伏安法进行浓度测定。
步骤(1)中,所述H2SO4为98wt%的浓硫酸,所述H3PO4溶液溶质含量为85wt%;所述碳纳米管与H2SO4的质量比为1:150—1:300;所述碳纳米管与H3PO4溶液的质量比为1:10—1:30。
步骤(2)中,所述KMnO4与步骤(1)中碳纳米管的质量比为2:1-4:1。
步骤(2)中,所述含有双氧水的冰水混合物为:每100ml混合物中含有3-4ml双氧水,所述双氧水为浓度为30vol%的双氧水;所述冰水混合物体积与溶液C液的体积比为4:1-6:1。
步骤(3)中,所述石墨烯纳米带@碳纳米管与超纯水的质量比为1:1000—1:3000。
步骤(4)中,所述玻碳电极表面石墨烯纳米带@碳纳米管修饰量为40-60μg/cm2
本发明的有益效果为:
本发明中石墨烯纳米带和碳纳米管协同作用,实现了对1-氨基萘的快速高灵敏检测,检测限可达到2.5nM。
附图说明
图1为本发明所得石墨烯纳米带@碳纳米管的扫描电镜图。
图2为本发明所得石墨烯纳米带@碳纳米管的透射电镜图。
图3为本发明实施例1检测1-氨基萘的浓度校正曲线图。
具体实施方式
下面结合实施例以及说明书附图对本发明做进一步详细说明,但本发明的保护范围并不限于此。
实施例1:
(1)将75mg碳纳米管分散于18mL浓H2SO4(98wt%)中并持续搅拌1h。
(2)加入2mLH3PO4(85wt%)至第一步所得的混合液中并持续搅拌15min。
(3)将225mgKMnO4加入第二步所得的混合液中,以对碳纳米管进行氧化剥离,65℃搅拌条件下加热2h。
(4)往反应后的第三步所得的混合液中倾入100mL含有双氧水(3mL,30vol%)的冰水中以终止反应。
(5)将第四步的混合液通过过滤、洗涤、干燥,获得最终产物石墨烯纳米带@碳纳米管。
(6)将3mg制备好的石墨烯纳米带@碳纳米管复合物加入6mL超纯水中,超声使其分散均匀。
(7)用移液枪移取第六步悬浮液,滴加至打磨干净的直径为3mm的玻碳电极表面,红外灯烘干,得到修饰电极石墨烯纳米带@碳纳米管/玻碳电极,电极表面复合物修饰量为50μg/cm2.。
(8)将含有待测物1-氨基萘的溶液调pH值为7.0。
(9)将第七步所得的修饰电极插入待测液中,富集3min后,采用差分脉冲伏安法进行浓度测定。
图1和图2分别为通过该实施例制备得到的石墨烯纳米带@碳纳米管扫描电镜和透射电镜图,从图中看出通过该实施例,碳纳米管被成功的进行了部分氧化剥离,石墨烯纳米带均匀的覆盖在碳纳米管表面。
图3为通过该实施例制备的石墨烯纳米带@碳纳米管对1-氨基萘的电化学检测的浓度校正曲线图,线性范围是8.0-400.0nM检测限为2.5nM。
实施例2:
(1)将75mg碳纳米管分散于12mL浓H2SO4(98wt%)中并持续搅拌40min。
(2)加入1mLH3PO4(85wt%)至第一步所得的混合液中并持续搅拌10min。
(3)将150mgKMnO4加入第二步所得的混合液中,以对碳纳米管进行氧化剥离,60℃搅拌条件下加热1.5h。
(4)往反应后的第三步所得的混合液中倾入75mL含有双氧水(4mL,30vol%)的冰水中以终止反应。
(5)将第四步的混合液通过过滤、洗涤、干燥,获得最终产物石墨烯纳米带@碳纳米管。
(6)将3mg制备好的石墨烯纳米带@碳纳米管复合物加入3mL超纯水中,超声使其分散均匀。
(7)用移液枪移取第六步悬浮液,滴加至打磨干净的直径为3mm的玻碳电极表面,红外灯烘干,得到修饰电极石墨烯纳米带@碳纳米管/玻碳电极,电极表面复合物修饰量为40μg/cm2。
(8)将含有待测物1-氨基萘的溶液调pH值为6.5。
(9)将第七步所得的修饰电极插入待测液中,富集2min后,采用差分脉冲伏安法进行浓度测定。
实施例3:
(1)将75mg碳纳米管分散于22mL浓H2SO4(98wt%)中并持续搅拌80min。
(2)加入2mLH3PO4(85wt%)至第一步所得的混合液中并持续搅拌10min。
(3)将300mgKMnO4加入第二步所得的混合液中,以对碳纳米管进行氧化剥离,70℃搅拌条件下加热1.5h。
(4)往反应后的第三步所得的混合液中倾入100mL含有双氧水(4mL,30vol%)的冰水中以终止反应。
(5)将第四步的混合液通过过滤、洗涤、干燥,获得最终产物石墨烯纳米带@碳纳米管。
(6)将3mg制备好的石墨烯纳米带@碳纳米管复合物加入9mL超纯水中,超声使其分散均匀。
(7)用移液枪移取第六步悬浮液,滴加至打磨干净的直径为3mm的玻碳电极表面,红外灯烘干,得到修饰电极石墨烯纳米带@碳纳米管/玻碳电极,电极表面复合物修饰量为60μg/cm2。
(8)将含有待测物1-氨基萘的溶液调pH值为7.5。
(9)将第七步所得的修饰电极插入待测液中,富集4min后,采用差分脉冲伏安法进行浓度测定。
所述实施例为本发明的优选的实施方式,但本发明并不限于上述实施方式,在不背离本发明的实质内容的情况下,本领域技术人员能够做出的任何显而易见的改进、替换或变型均属于本发明的保护范围。

Claims (6)

1.一种高灵敏测定1-氨基萘的电分析方法,其特征在于,包括以下步骤:
(1)将碳纳米管分散于H2SO4中并持续搅拌,得溶液A;再加入H3PO4溶液,继续搅拌,得溶液B;
(2)向溶液B中加入KMnO4,60-70℃搅拌条件下加热1.5-2.5h,得溶液C;向溶液C中,加入含有双氧水的冰水混合物以终止反应,过滤、洗涤、干燥,获得最终产物石墨烯纳米带@碳纳米管;
(3)将步骤(2)所得的石墨烯纳米带@碳纳米管分散于水中,超声均匀得悬浮液;
(4)移取步骤(3)所得的悬浮液滴加至打磨干净的玻碳电极表面,烘干,得到修饰电极石墨烯纳米带@碳纳米管/玻碳电极;
(5)将含有待测物1-氨基萘的溶液调pH值为6.5-7.5;将步骤(4)所得的修饰电极石墨烯纳米带@碳纳米管/玻碳电极插入待测液中,富集2-4min后,采用差分脉冲伏安法进行浓度测定。
2.如权利要求1所述的一种高灵敏测定1-氨基萘的电分析方法,其特征在于:步骤(1)中,所述H2SO4为98wt%的浓硫酸,所述H3PO4溶液溶质含量为85wt%;所述碳纳米管与H2SO4的质量比为1:150-1:300;所述碳纳米管与H3PO4溶液的质量比为1:10-1:30。
3.如权利要求1所述的一种高灵敏测定1-氨基萘的电分析方法,其特征在于:步骤(2)中,所述KMnO4与步骤(1)中碳纳米管的质量比为2:1-4:1。
4.如权利要求1所述的一种高灵敏测定1-氨基萘的电分析方法,其特征在于:步骤(2)中,所述含有双氧水的冰水混合物为:每100ml混合物中含有3-4ml双氧水,所述双氧水为浓度为30vol%的双氧水;所述冰水混合物体积与溶液C液的体积比为4:1-6:1。
5.如权利要求1所述的一种高灵敏测定1-氨基萘的电分析方法,其特征在于:步骤(3)中,所述石墨烯纳米带@碳纳米管与超纯水的质量比为1:1000—1:3000。
6.如权利要求1所述的一种高灵敏测定1-氨基萘的电分析方法,其特征在于:步骤(4)中,所述玻碳电极表面石墨烯纳米带@碳纳米管修饰量为40-60μg/cm2
CN201510450756.0A 2015-07-29 2015-07-29 一种高灵敏测定1-氨基萘的电分析方法 Pending CN105181767A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510450756.0A CN105181767A (zh) 2015-07-29 2015-07-29 一种高灵敏测定1-氨基萘的电分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510450756.0A CN105181767A (zh) 2015-07-29 2015-07-29 一种高灵敏测定1-氨基萘的电分析方法

Publications (1)

Publication Number Publication Date
CN105181767A true CN105181767A (zh) 2015-12-23

Family

ID=54903993

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510450756.0A Pending CN105181767A (zh) 2015-07-29 2015-07-29 一种高灵敏测定1-氨基萘的电分析方法

Country Status (1)

Country Link
CN (1) CN105181767A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105131A (zh) * 2021-12-09 2022-03-01 广州白云机场海关综合技术服务中心 多壁碳纳米管-氧化石墨烯纳米带的复合材料、制备方法及在检测甲基对硫磷中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010141610A1 (en) * 2009-06-05 2010-12-09 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Integrated optoelectrochemical sensor for nitrogen oxides in gaseous samples
CN102692435A (zh) * 2012-04-17 2012-09-26 北京师范大学 一种基于电化学dna生物传感器的1,8-二氨基萘的测定方法
CN104090005A (zh) * 2014-06-26 2014-10-08 青岛大学 羟丙基纤维素/碳纳米管/石墨烯修饰电极的制备及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010141610A1 (en) * 2009-06-05 2010-12-09 Arizona Board Of Regents Acting For And On Behalf Of Arizona State University Integrated optoelectrochemical sensor for nitrogen oxides in gaseous samples
CN102692435A (zh) * 2012-04-17 2012-09-26 北京师范大学 一种基于电化学dna生物传感器的1,8-二氨基萘的测定方法
CN104090005A (zh) * 2014-06-26 2014-10-08 青岛大学 羟丙基纤维素/碳纳米管/石墨烯修饰电极的制备及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GANGBING ZHU 等: "Sensitive electrochemical sensing for polycyclic aromatic amines based on a novel core–shell multiwalled carbon nanotubes@ graphene oxide nanoribbons heterostructure", 《ANALYTICA CHIMICA ACTA》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114105131A (zh) * 2021-12-09 2022-03-01 广州白云机场海关综合技术服务中心 多壁碳纳米管-氧化石墨烯纳米带的复合材料、制备方法及在检测甲基对硫磷中的应用

Similar Documents

Publication Publication Date Title
Du et al. A voltammetric sensor based on graphene-modified electrode for simultaneous determination of catechol and hydroquinone
Dong et al. Highly sensitive electrochemical stripping analysis of methyl parathion at MWCNTs–CeO2–Au nanocomposite modified electrode
Cinti et al. Screen‐printed electrodes modified with carbon nanomaterials: a comparison among carbon black, carbon nanotubes and graphene
Jiang et al. Functionalization of graphene with electrodeposited Prussian blue towards amperometric sensing application
Liu et al. Simultaneous determination of nitrophenol isomers based on β‐cyclodextrin functionalized reduced graphene oxide
Zhu et al. Reduction of graphene oxide via ascorbic acid and its application for simultaneous detection of dopamine and ascorbic acid
Li et al. A graphene oxide-based electrochemical sensor for sensitive determination of 4-nitrophenol
Jiao et al. Fabrication of graphene–gold nanocomposites by electrochemical co-reduction and their electrocatalytic activity toward 4-nitrophenol oxidation
Xu et al. Simultaneous electrochemical determination of dopamine and tryptophan using a TiO2-graphene/poly (4-aminobenzenesulfonic acid) composite film based platform
Behzadi et al. A novel coating based on carbon nanotubes/poly-ortho-phenylenediamine composite for headspace solid-phase microextraction of polycyclic aromatic hydrocarbons
Lin et al. Simultaneous determination for toxic ractopamine and salbutamol in pork sample using hybrid carbon nanotubes
Wang et al. Simultaneous determination of dopamine, uric acid and ascorbic acid using a glassy carbon electrode modified with reduced graphene oxide
Huang et al. Adsorptive stripping voltammetric determination of 4-aminophenol at a single-wall carbon nanotubes film coated electrode
Yu et al. Selective and sensitive determination of uric acid in the presence of ascorbic acid and dopamine by PDDA functionalized graphene/graphite composite electrode
Chen et al. Enhanced electrocatalytic activity of nitrogen-doped graphene for the reduction of nitro explosives
Yao et al. Differential pulse striping voltammetric determination of molluscicide niclosamide using three different carbon nanomaterials modified electrodes
Li et al. Electrocatalytic oxidation and the simultaneous determination of guanine and adenine on (2, 6-pyridinedicarboxylic acid)/graphene composite film modified electrode
Jing et al. Electrochemical sensor based on poly (sodium 4-styrenesulfonate) functionalized graphene and Co 3 O 4 nanoparticle clusters for detection of amaranth in soft drinks
Cao et al. An enhanced electrochemical platform based on graphene-polyoxometalate nanomaterials for sensitive determination of diphenolic compounds
Canevari et al. SiO2/SnO2/Sb2O5 microporous ceramic material for immobilization of Meldola's blue: Application as an electrochemical sensor for NADH
Zhang et al. Self-assembly synthesis of a hierarchical structure using hollow nitrogen-doped carbon spheres as spacers to separate the reduced graphene oxide for simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid
Tu et al. Novel carboxylation treatment and characterization of multiwalled carbon nanotubes for simultaneous sensitive determination of adenine and guanine in DNA
Xu et al. Imprinted propyl gallate electrochemical sensor based on graphene/single walled carbon nanotubes/sol–gel film
Zheng et al. Selective and simultaneous determination of hydroquinone and catechol by using a nitrogen-doped bagasse activated carbon modified electrode
Zhong et al. A novel substitution-sensing for hydroquinone and catechol based on a poly (3-aminophenylboronic acid)/MWCNTs modified electrode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151223

RJ01 Rejection of invention patent application after publication