CN105177618B - 适用于自然水体中高效水裂解氧电极及制备方法 - Google Patents

适用于自然水体中高效水裂解氧电极及制备方法 Download PDF

Info

Publication number
CN105177618B
CN105177618B CN201510247017.1A CN201510247017A CN105177618B CN 105177618 B CN105177618 B CN 105177618B CN 201510247017 A CN201510247017 A CN 201510247017A CN 105177618 B CN105177618 B CN 105177618B
Authority
CN
China
Prior art keywords
water
electrode
ferro
oxygen
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510247017.1A
Other languages
English (en)
Other versions
CN105177618A (zh
Inventor
陈旭
童哲源
杨文胜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201510247017.1A priority Critical patent/CN105177618B/zh
Publication of CN105177618A publication Critical patent/CN105177618A/zh
Application granted granted Critical
Publication of CN105177618B publication Critical patent/CN105177618B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种适用于自然水体中高效水裂解氧电极及制备方法,属于水裂解新能源技术领域。该电极中钴铁水滑石的质量百分含量为3~5%,粒子直径为50~100nm,比表面积在30~50m2/g之间;使用的导电炭黑为Vulcan XC‐72型,其质量百分含量为7~16%;使用的钛网为经纬向丝径密度相同的平纹钛网,厚度0.2~0.5mm,其质量百分比为79~90%。其制备方法是由钴铁水滑石、炭黑、负载用金属钛网基底一体化整合而成的复合电极;该电极可搭载简易三电极体系用于自然水体及中性非缓冲溶液中的析氧反应,包括天然海水以及中性氯化钠溶液等。优点在于,制备方法简便,易于工业化生产,无副反应影响。

Description

适用于自然水体中高效水裂解氧电极及制备方法
技术领域
本发明属于水裂解新能源技术领域,特别是涉及一种适用于自然水体中高效水裂解氧电极及制备方法。
背景技术
当前能源短缺及环境污染使得能源问题成为制约我国乃至世界经济发展的瓶颈,作为化石能源的替代品,可再生能源-氢能越来越受到世界各国的重视。电解水制氢是最经济环保的途径,但是很多科研者发现,氧气析出会伴随阳极过电位的升高,能源消耗过大,大大提高了电解水制氢的经济成本。为了降低析氧过电位,降低电解反应的能源消耗,寻找廉价高效,在高氧化环境中长时间暴露能够维持优良稳定性的阳极反应电极材料是科研工作者长期以来关注的热点。目前研究者们已经证实利用贵金属和许多过度金属氧化物或氢氧化物等,在碱性溶液中可以获得良好的析氧性能。但是碱性溶液对电极和反应装置有腐蚀性,在实际应用中受到一定限制。发展在中性或近中性水体中高效水裂解氧电极,对于电解水制氢的实际应用具有重要意义。
目前在中性溶液环境下,钴基磷酸盐类修饰电极因其低起始电位,而被受关注。但是,该类催化剂材料都需要在缓冲溶液体系(如磷酸根,硼酸根等)内才能真正发挥作用,在非缓冲溶液体系内的电流密度和稳定性较差。从实际应用的角度考虑,开发在中性非缓冲溶液体系,尤其是直接应用自然水体中能高效和高稳定的析氧电极,是未来水裂解新能源应用的重要方向之一。但是,至今该类析氧电极还鲜有报道。
发明内容
本发明的目的在于提供一种适用于自然水体中高效水裂解氧电极及制备方法,解决了目前适用于天然水体中高效和高稳定水裂解氧电极的缺乏的问题,可直接应用于自然水体中高效、高稳定性的析氧电极。制备方法简便,易于工业化生产,本发明制作的电极在中性溶液中的析氧能力优于一般催化剂,且在天然海水内拥有较低的析氧电位,易发生反应。该新型电极兼具高法拉第效率与长时恒定电流输出的特点,且几乎不会产出氯气,无副反应影响。
本发明的用于自然水体中高效水裂解氧电极中钴铁水滑石的质量百分含量为3~5%,粒子直径为50~100nm,比表面积在30~50m2/g之间;使用的导电炭黑为Vulcan XC-72型,其质量百分含量为7~16%;使用的钛网为经纬向丝径密度相同的平纹钛网,厚度0.2~0.5mm,其质量百分比为79~90%。
本发明的用于自然水体中高效水裂解氧电极可作为工作电极,以饱和的氯化钾Ag/AgCl为参比电极,铂网为辅助电极,无需缓冲溶液体系,可直接在中性及近中性的自然水体中,施加电压1.0~1.4V vs Ag/AgCl即可产生氧气,产氧量可达到150~200μmol,TOF值可达0.1~0.6s-1,连续电解5~8h后其电流密度可保持初始值80~90%,其转化效率在95~98%,无副反应发生。
本发明用于自然水体中高效水裂解氧电极的制备步骤如下:
(1)钴铁水滑石的制备:用去离子水中配制含有二价金属Co2+和三价金属Fe3+的混合盐溶液,其中n[Co2+]/n[Fe3+]=2~3,控制其总浓度为0.15~0.3mol/L;然后将NaOH和Na2CO3的混合碱溶液加入以上混合盐溶液中,使其中n(NaOH)/[n(Co2+)+n(Fe3+)]=1.5~2;将上述混合溶液同时倒入全返混旋转液膜反应器中反应1~2min,所得的浆液在30~60℃下水浴晶化5~12h,得到钴铁水滑石浆液,离心洗涤至pH=7~8,在50~80℃下干燥12~24h后得到钴铁水滑石。
(2)将预先剪裁好的钛网用砂纸打磨至出现金属光泽且表面光滑无划痕,然后将打磨完的钛网分别依次用丙酮、无水乙醇、去离子水超声清洗,在50~80℃下干燥6~12h后备用;
(3)将钴铁水滑石与导电炭黑以质量比1:2~1:3的比例混合均匀后,称取混合物分散于总体积0.8~1.5mL异丙醇/水(体积比3:1~2:1)混合溶剂中,再注入50~100μL萘酚溶液,控制总浓度在15~20mg/mL。超声振荡1~2h,得到分散均匀的混合液。用微量注射器移取混合液滴涂到清洗干燥完的钛网基底电极上,控制最终活性物质(除炭)的负载量在0.5~1.5mg/cm2,静置室温干燥,得到钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极。
本发明的优点和效果:本发明涉及的复合氧电极使用钛网为基底构成三维结构,在避免了副反应的同时也保证了活性物质的高负载量。引入的导电炭黑物质相比于碳纳米管等导电物也更有利于复合电极的长期稳定性。而利用成核晶化隔离法合成的钴铁水滑石相比于其他合成方法具有更高的比表面积,有利于中性环境的电催化反应。此复合电极易于大规模合成,制备过程简便易操作,成本较低。
以实施例1为例,该析氧电极在天然海水中电催化OER反应,根据LSV曲线,可看出在电位超过1.0V vs Ag/AgCl时即开始发生析氧反应,且催化电流随着电位增大而急剧增加。原子转换频率在过电位接近0.8V时转化效率最高值可达0.88s-1,该氧电极在电位为1.05V vs Ag/AgCl时的电流密度为29mA/cm2,反应10h以上电流强度仍能保持在89%以上,以1.0mg/cm2负载量堆积在1.0cm2面积的LDH催化剂,8h析氧量累积达到200μmol以上,综合电流密度以及长时累积产氧量上都已经达到目前已报道近中性氧电极较高活性。
由于天然海水来源简便,可直接在自然环境中获得,本专利涉及的钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极不再依赖缓冲溶液,可直接在自然水体内以较低的电位上析氧,且具有高效、大电流密度、高氧气转换效率和稳定性等优点,是一种理想的水裂解催化电极,同时也对水滑石材料使用环境的再拓展具有很高的研究意义。
附图说明
图1为实施例1中所制备的CoFe LDH的XRD谱图。
图2为实施例1中所制备的CoFe LDH的SEM图像。
图3为实施例1中修饰完成氧电极表面的SEM图像。
图4为实施例1中所制备的氧电极在天然海水中的LSV曲线。
图5为实施例1中所制备的氧电极在天然海水中的TOF结果图。
图6为实施例1中所制备的氧电极在天然海水中的OER催化I-t曲线。
图7为实施例1中所制备的氧电极在天然海水中的析氧量法拉第效率图。
具体实施方式
实施例1:
钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极在天然渤海海水内催化析氧
(1)制备钴铁水滑石活性物质:称取11.636g Co(NO3)2·6H2O、移取8.076g Fe(NO3)3·9H2O溶解在100mL去离子水中配成混合盐溶液;然后再称取3.84g NaOH和4.24gNa2CO3溶解在100mL去离子水中配成混合碱溶液;将上述两种溶液同时倒入全返混旋转液膜反应器中反应2min,所得浆液在60℃下水浴晶化12h,得到钴铁水滑石浆液,离心洗涤至pH=7.5,在80℃下干燥12h,研磨后得到水滑石纳米粒子粉末,其XRD谱图如图1所示,(003)、(006)、(012)等特征衍射峰的出现表明水滑石的生成。钴铁水滑石的SEM图像如图2所示,水滑石为明显的颗粒状结构,粒径为50~100nm。
(2)以步骤(1)得到的钴铁水滑石作为活性物质,CoFe LDH与导电剂炭黑(VulcanXC-72)按照质量比3:7的比例混合均匀后,称取17.87mg混合物(包含5.36g CoFe LDH)分散在总体积1mL异丙醇/水(体积比为3:1)的混合溶剂中,再注入100μL萘酚溶液(wt=5%),超声分散2小时以保证扩散完全。
(3)金属钛网基底在使用前先分别投入丙酮,乙醇,去离子水3种液体中超声振荡以除去表面油污杂质,清洗完成后以高纯氮气吹干表面,并放置烘箱内于70℃烘干,最后裁剪成1×4cm的长条状以备用。将活性物质混合液涂覆在泡沫镍表面约1×1cm范围内,静置干燥,控制活性物质(除炭)的负载量在1.0mg/cm2左右。其SEM谱图如图3所示,催化剂被均匀涂敷在网状金属钛的表面,覆盖度高且紧密堆积,高度均匀分散形成类薄膜状结构。得到钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极。
以天然渤海海水为电解液,将制备得到的氧电极作为工作电极,Ag/AgCl为参比电极,铂网为辅助电极构成三电极体系,进行OER催化电化学测试。对催化剂的析氧催化起始状态做研究,图4为该复合氧电极在天然海水中的LSV曲线,可看出在电位超过1.0V vs Ag/AgCl时即开始发生析氧反应,且催化电流随着电位增大而急剧增加。图5为氧电极在海水中不同过电位下的单钴原子转换频率图,代表着电极在单位时间内单位金属活性位点产生的氧气分子数量,在过电位接近0.8V时转化效率最高值可达0.88s-1,代表了该复合氧电极的优秀析氧催化能力。
图6和图7分别是该氧电极在海水中对OER的I-t曲线和氧气法拉第效率图,在电位为1.05V vs Ag/AgCl时的电流密度为29mA/cm2,反应10h以上电流强度仍能保持在89%以上,8h析氧量累积达到200μmol以上。
实施例2:
钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极在人工海水内催化析氧
(1)制备钴铁水滑石活性物质:称取17.454g Co(NO3)2·6H2O、移取8.076g Fe(NO3)3·9H2O溶解在100mL去离子水中配成混合盐溶液;然后再称取4.62g NaOH和4.83gNa2CO3溶解在100mL去离子水中配成混合碱溶液;将上述两种溶液同时倒入全返混旋转液膜反应器中反应2min,所得浆液在50℃下水浴晶化10h,得到钴铁水滑石浆液,离心洗涤至pH=8,在70℃下干燥16h,研磨后得到水滑石纳米粒子粉末。
(2)以步骤(1)得到的钴铁水滑石作为活性物质,CoFe LDH与导电剂炭黑(VulcanXC-72)按照质量比3:7的比例混合均匀后,称取19.52mg混合物(包含5.84g CoFe LDH)分散在总体积1mL异丙醇/水(体积比为3:1)的混合溶剂中,再注入100μL萘酚溶液(wt=5%),超声分散2.5h以保证扩散完全。
(3)金属钛网基底在使用前先分别投入丙酮,乙醇,去离子水3种液体中超声振荡以除去表面油污杂质,清洗完成后以高纯氮气吹干表面,并放置烘箱内于70℃烘干,最后裁剪成1×4cm的长条状以备用。将活性物质混合液涂覆在泡沫镍表面约1×1cm范围内,静置干燥,控制活性物质(除炭)的负载量在0.8mg/cm2左右。得到钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极。
以Mocledon人工海水溶液为电解液,将制备得到的氧电极作为工作电极,Ag/AgCl为参比电极,铂网为辅助电极构成三电极体系,进行OER催化电化学测试。根据LSV曲线,可看出在电位超过1.0V vs Ag/AgCl时即开始发生析氧反应,且催化电流随着电位增大而急剧增加。原子转换频率在过电位接近0.78V时转化效率最高值可达0.86s-1,I-t曲线显示电极在电位为1.05V vs Ag/AgCl时的电流密度为28mA/cm2,反应10h以上电流强度仍能保持在88.7%以上,8h析氧量累积达到200μmol以上。
实施例3:
钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极在中性氯化钠溶液内催化析氧
(1)制备钴铁水滑石活性物质:称取14.16g Co(NO3)2·6H2O、移取9.11g Fe(NO3)3·9H2O溶解在100mL去离子水中配成混合盐溶液;然后再称取3.96g NaOH和4.24gNa2CO3溶解在100mL去离子水中配成混合碱溶液;将上述两种溶液同时倒入全返混旋转液膜反应器中反应1.5min,所得浆液在55℃下水浴晶化5h,得到钴铁水滑石浆液,离心洗涤至pH=7.5,在60℃下干燥24h,研磨后得到水滑石纳米粒子粉末。
(2)以步骤(1)得到的钴铁水滑石作为活性物质,CoFe LDH与导电剂炭黑(VulcanXC-72)按照质量比3:7的比例混合均匀后,称取17.11mg混合物(包含4.92g CoFe LDH)分散在总体积1mL异丙醇/水(体积比为3:1)的混合溶剂中,再注入100μL萘酚溶液(wt=5%),超声分散至少1.5小时以保证扩散完全。
(3)金属钛网基底在使用前先分别投入丙酮,乙醇,去离子水3种液体中超声振荡以除去表面油污杂质,清洗完成后以高纯氮气吹干表面,并放置烘箱内于70℃烘干,最后裁剪成1×4cm的长条状以备用。将活性物质混合液涂覆在泡沫镍表面约1×1cm范围内,静置干燥,控制活性物质(除炭)的负载量在1.3mg/cm2左右。得到钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极。
以0.1M中性氯化钠非缓冲溶液为电解液,将制备得到的氧电极作为工作电极,Ag/AgCl为参比电极,铂网为辅助电极构成三电极体系,进行OER催化电化学测试。根据LSV曲线,可看出在电位超过1.0V vs Ag/AgCl时即开始发生析氧反应,且催化电流随着电位增大而急剧增加。原子转换频率在过电位接近0.75V时转化效率最高值可达0.077s-1,该氧电极在电位为1.05V vs Ag/AgCl时的电流密度为8.1mA/cm2,反应10h以上电流强度仍能保持在65%以上,此电极在中性无机盐非缓冲溶液中催化OER时,累计析氧量超过20μmol,也表现出远高于钴基磷酸盐的稳定产氧效率(反应1h以上便几乎完全失去催化活性)。
上述实例只是本发明的举例,尽管为说明目的公开了本发明的最佳实施例和附图,然而并非用于限制本发明,任何熟悉本领域的技术人员,在不脱离本发明及所附的权利要求的精神和范围内,各种替换、变化和修改都是可能的。因此,本发明不应局限于最佳实施例和附图所公开的内容。

Claims (3)

1.一种适用于自然水体中高效水裂解氧电极,其特征在于,该电极中钴铁水滑石的质量百分含量为3~5%,粒子直径为50~100nm,比表面积在30~50m2/g之间;使用的导电炭黑为Vulcan XC-72型,其质量百分含量为7~16%;使用的钛网为经纬向丝径密度相同的平纹钛网,厚度0.2~0.5mm,其质量百分比为79~90%;
所述的钴铁水滑石的制备如下:
用去离子水中配制含有二价金属Co2+和三价金属Fe3+的混合盐溶液,其中n[Co2+]/n[Fe3 +]=2~3,控制其总浓度为0.15~0.3mol/L;然后将NaOH和Na2CO3的混合碱溶液加入以上混合盐溶液中,使其中n(NaOH)/[n(Co2+)+n(Fe3+)]=1.5~2;将上述混合溶液同时倒入全返混旋转液膜反应器中反应1~2min,所得的浆液在30~60℃下水浴晶化5~12h,得到钴铁水滑石浆液,离心洗涤至pH=7~8,在50~80℃下干燥12~24h后得到钴铁水滑石。
2.如权利要求1所述用于自然水体的高效水裂解氧电极,其特征在于,作为工作电极,以饱和的氯化钾Ag/AgCl为参比电极,铂网为辅助电极,无需缓冲溶液体系,直接在中性及近中性的自然水体中,施加电压1.0~1.4V vs Ag/AgCl即可产生氧气,产氧量可达到150~200μmol,TOF值可达0.1~0.6s-1,连续电解5~8h后其电流密度保持初始值80~90%,其转化效率在95~98%,无副反应发生。
3.一种权利要求1所述的适用于自然水体中高效水裂解氧电极的制备方法,其特征在于,包括以下步骤:
(1)钴铁水滑石的制备:用去离子水中配制含有二价金属Co2+和三价金属Fe3+的混合盐溶液,其中n[Co2+]/n[Fe3+]=2~3,控制其总浓度为0.15~0.3mol/L;然后将NaOH和Na2CO3的混合碱溶液加入以上混合盐溶液中,使其中n(NaOH)/[n(Co2+)+n(Fe3+)]=1.5~2;将上述混合溶液同时倒入全返混旋转液膜反应器中反应1~2min,所得的浆液在30~60℃下水浴晶化5~12h,得到钴铁水滑石浆液,离心洗涤至pH=7~8,在50~80℃下干燥12~24h后得到钴铁水滑石;
(2)将预先剪裁好的钛网用砂纸打磨至出现金属光泽且表面光滑无划痕,然后将打磨完的钛网分别依次用丙酮、无水乙醇、去离子水超声清洗,在50~80℃下干燥6~12h后备用;
(3)将钴铁水滑石与导电炭黑以质量比1:2~1:3的比例混合均匀后,称取混合物分散于总体积0.8~1.5mL异丙醇/水的体积比3:1~2:1混合溶剂中,再注入50~100μL萘酚溶液,控制总浓度在15~20mg/mL;超声振荡1~2h,得到分散均匀的混合液;用微量注射器移取混合液滴涂到清洗干燥完的钛网基底电极上,控制最终活性物质的负载量在0.5~1.5mg/cm2,静置室温干燥,得到钴铁水滑石-导电炭黑复合物/钛网水裂解氧电极。
CN201510247017.1A 2015-05-14 2015-05-14 适用于自然水体中高效水裂解氧电极及制备方法 Active CN105177618B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510247017.1A CN105177618B (zh) 2015-05-14 2015-05-14 适用于自然水体中高效水裂解氧电极及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510247017.1A CN105177618B (zh) 2015-05-14 2015-05-14 适用于自然水体中高效水裂解氧电极及制备方法

Publications (2)

Publication Number Publication Date
CN105177618A CN105177618A (zh) 2015-12-23
CN105177618B true CN105177618B (zh) 2019-03-29

Family

ID=54900026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510247017.1A Active CN105177618B (zh) 2015-05-14 2015-05-14 适用于自然水体中高效水裂解氧电极及制备方法

Country Status (1)

Country Link
CN (1) CN105177618B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107694566B (zh) * 2017-10-23 2020-04-14 深圳大学 银纳米线/水滑石复合电催化剂及其制备方法
WO2019193486A1 (en) * 2018-04-04 2019-10-10 Zolfaghar Rezvani Oxidation of water using layered double hydroxide catalysts
CN110592611A (zh) * 2019-09-23 2019-12-20 苏州大学 催化电极及其制备方法及应用
CN111115765A (zh) * 2020-01-15 2020-05-08 福建工程学院 一种洗浴用水发生器
CN112458483B (zh) * 2020-12-10 2022-01-07 吉林大学 一种NiFe LDH@Super-P复合电催化材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290989A (zh) * 2007-04-18 2008-10-22 比亚迪股份有限公司 一种燃料电池催化电极的制备方法
CN103949271A (zh) * 2014-05-11 2014-07-30 北京化工大学 一种钴锰水滑石负载纳米金催化剂及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101290989A (zh) * 2007-04-18 2008-10-22 比亚迪股份有限公司 一种燃料电池催化电极的制备方法
CN103949271A (zh) * 2014-05-11 2014-07-30 北京化工大学 一种钴锰水滑石负载纳米金催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Efficient Co–Fe layered double hydroxide photocatalysts for water oxidation under visible light;Sang Jun Kim et. al.;《J. Mater. Chem. A》;20140114;第2卷;第4136-4139页
Fang Song and Xile Hu.Ultrathin Cobalt−Manganese Layered Double Hydroxide Is an Efficient Oxygen Evolution Catalyst.《J. Am. Chem. Soc.》.2014,第136卷第16481−16484页.
Trinary Layered Double Hydroxides as High-Performance Bifunctional Materials for Oxygen Electrocatalysis;Li Qian et. al.;《Adv. Energy Mater.》;20150503;第1500245页
固体聚合物电解质水电解池膜电极的研究;王伟;《中国优秀硕士学位论文全文数据库工程科技Ⅱ辑》;20090415(第04期);第C042-361页

Also Published As

Publication number Publication date
CN105177618A (zh) 2015-12-23

Similar Documents

Publication Publication Date Title
Yang et al. Synchronously integration of Co, Fe dual-metal doping in Ru@ C and CDs for boosted water splitting performances in alkaline media
Yang et al. Rapid room-temperature fabrication of ultrathin Ni (OH) 2 nanoflakes with abundant edge sites for efficient urea oxidation
Ullah et al. In situ growth of M-MO (M= Ni, Co) in 3D graphene as a competent bifunctional electrocatalyst for OER and HER
Wu et al. Non-noble metal-based bifunctional electrocatalysts for hydrogen production
Huang et al. CeO2-embedded mesoporous CoS/MoS2 as highly efficient and robust oxygen evolution electrocatalyst
Xu et al. Template-directed assembly of urchin-like CoS x/Co-MOF as an efficient bifunctional electrocatalyst for overall water and urea electrolysis
Li et al. Enhanced OER performance of composite Co–Fe-based MOF catalysts via a one-pot ultrasonic-assisted synthetic approach
Song et al. Nickel phosphate-based materials with excellent durability for urea electro-oxidation
CN105177618B (zh) 适用于自然水体中高效水裂解氧电极及制备方法
Hua et al. Pt nanoparticles supported on submicrometer-sized TiO2 spheres for effective methanol and ethanol oxidation
CN107871875B (zh) 一种析氧反应电催化剂、其制备方法及应用
CN107829107B (zh) 一种石墨烯/碳纳米管负载单分散金属原子复合催化剂及其制备方法和应用
Zhao et al. Cobalt phosphide-embedded reduced graphene oxide as a bifunctional catalyst for overall water splitting
Du et al. Construction of an internal charge field: CoS1. 097/Ni3S2 heterojunction promotes efficient urea oxidation reaction
Al-Sharif et al. Mesoporous cobalt phosphate electrocatalyst prepared using liquid crystal template for methanol oxidation reaction in alkaline solution
Guan et al. S element-doped synergistically well-mixed MOFs as highly efficient oxygen precipitation electrocatalyst
Liu et al. Amorphous bimetallic phosphate–carbon precatalyst with deep self-reconstruction toward efficient oxygen evolution reaction and Zn–air batteries
Sun et al. Three-dimensional layered double hydroxides on carbon nanofibers: The engineered mass transfer channels and active sites towards oxygen evolution reaction
Yang et al. A three-dimensional nanostructure of NiFe (OH) X nanoparticles/nickel foam as an efficient electrocatalyst for urea oxidation
CN113201759B (zh) 一种三维多孔碳支撑的硫化铋/氧化铋复合催化剂及其制备方法和应用
Shi et al. “Polyoxometalate electron sponge” induces the accurate regulation of electron states at Ni sites to enhance oxidation of water
Wang et al. Effect of in situ growth of NiSe2 on NiAl layered double hydroxide on its electrocatalytic properties for methanol and urea
Qin et al. Multi-functional layered double hydroxides supported by nanoporous gold toward overall hydrazine splitting
Zhang et al. Nickel hydroxide array coated with NiFe alloy nanosheets for overall mixed water splitting
Tian et al. Heterometallic polyoxotitanium clusters as bifunctional electrocatalysts for overall water splitting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant