CN105158519B - 一种利用量子隧穿效应来实现纳米级跟进的装置 - Google Patents

一种利用量子隧穿效应来实现纳米级跟进的装置 Download PDF

Info

Publication number
CN105158519B
CN105158519B CN201510521523.5A CN201510521523A CN105158519B CN 105158519 B CN105158519 B CN 105158519B CN 201510521523 A CN201510521523 A CN 201510521523A CN 105158519 B CN105158519 B CN 105158519B
Authority
CN
China
Prior art keywords
follow
nanoscale
propulsion device
pair
realized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510521523.5A
Other languages
English (en)
Other versions
CN105158519A (zh
Inventor
边义祥
钱国明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yangzhou University
Original Assignee
Yangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yangzhou University filed Critical Yangzhou University
Priority to CN201510521523.5A priority Critical patent/CN105158519B/zh
Publication of CN105158519A publication Critical patent/CN105158519A/zh
Application granted granted Critical
Publication of CN105158519B publication Critical patent/CN105158519B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

一种利用量子隧穿效应来实现纳米级跟进的装置,包括前推进装置、后推进装置、导轨,前推进装置、后推进装置安装在轨道上,前推进装置、后推进装置与轨道之间分别设有电磁锁,在前、后两个推进装置之间设有一对金属电极,一对金属电极分别安装在前推进装置的后表面与后推进装置前表面,两金属电极尖端之间的距离小于100纳米,前、后两个推进装置在轨道延伸方向向前推进实现纳米级跟进。本发明精度非常高,可用于高精度纳米级加工机床上,或者其他精密精细机床操作上,因其定位精度高,且进给距离小,因此只能用于比较精密仪器的使用。

Description

一种利用量子隧穿效应来实现纳米级跟进的装置
技术领域
本发明涉及一种轨道跟紧装置,特别是利用量子隧穿效应来实现纳米级跟进的装置。跟进精度达到纳米级别。
背景技术
自1982年国际商业机器公司苏黎世实验室Gerd Binnig博士和Heinricn Rohrer博士利用量子力学中的隧道效应研制出世界上首台扫描隧道显微镜(STM),使人类第一次能够实时地观察单个原子在物质表面的排列状态和与表面电子行为有关的物理化学性质,不仅为纳米技术的发展提供了强有力地观察和实验工具,而且直接促进了纳米科技的快速发展,作为纳米技术纳米技术发展历史上里程碑式的发明,扫描隧道显微镜被国际科学界公认为八十年代世界十大科技成就之一,其发明者在1986年被授予诺贝尔物理学奖。
STM基本的工作原理是量子理论中的隧道效应,通过探针针尖和样品表面间的隧穿电流来探测探针和样品之间的距离,分辨率达到0.01nm,即可分辨出单个原子。
虽然用隧穿电流来检测距离或位移的方法分辨率很高,但是,目前采用这种方法的仪器设备(包括扫描隧道显微镜在内)结构复杂,要有专人操作,使用时要多次校准,价格昂贵,使用场合或应用领域受到很大限制。
基于此,我们发明一种轨道跟进装置,每次行进距离在100nm以下,且行进距离精确重复性好,精度高,但其原理是利用隧道电流效应。
发明内容
本发明的目的是要克服上述现有技术的不足,提供一种利用量子隧穿效应来实现纳米级跟进的装置,构造隧道电流实现的条件,通过隧道电流的变化来数值化前推进装置行进的距离,再通过控制后推进装置让其行进相同的距离,隧道电流对电流非常敏感,距离改变0.01nm,隧道电流呈10倍变化关系,使跟进精度达到纳米级别。
本发明的目的是这样实现的,一种利用量子隧穿效应来实现纳米级跟进的装置,其特征是,包括前推进装置、后推进装置、导轨,前推进装置、后推进装置安装在轨道上,前推进装置、后推进装置与轨道之间分别设有电磁锁,在前、后两个推进装置之间设有一对金属电极,一对金属电极分别安装在前推进装置的后表面与后推进装置前表面,两金属电极尖端之间的距离小于100纳米,前、后两个推进装置在轨道延伸方向向前推进实现纳米级跟进。
所述前、后两个装置的推进通过压电驱动控制,并且进给到预定位置后用电磁锁暂时锁定其所在位置点。
所述一对金属电极处于水平位置。
所述一对金属电极的顶端为针尖形状或近似为针尖形状多面体,顶端尖部宽度等于或小于10nm。
所述一对金属电极的材料为钨、金、铂金、铱,或其混合物。
本发明通过将一对金属电极分别布置在前、后两个推进装置之间,电极尖端之间的距离要求在100纳米以下,此时才会有隧道电流产生,这个距离通过调控前后两推进装置的控制系统来得到保障,此时在电极之间便会有隧道电流产生;当前推进装置沿轨道行进纳米级距离时,隧道电流便会改变,通过调控后推进装置并不断检测隧道电流的大小,当与初始值相同时,即后推进装置亦已行进同样的距离,后退过程亦是如此。装置在轨道延伸方向能实现纳米级跟进的功能,进给方向只能延轨道延伸方向向前推进。本发明的一种利用量子隧穿效应来实现纳米级跟进的装置,精度非常高,可用于高精度纳米级加工机床上,或者其他精密精细机床操作上,因其定位精度高,且进给距离小,因此只能用于比较精密仪器的使用。
附图说明
图1是本发明的一种实施方式的结构示意图。
图中:1前推进装置,2后推进装置,3导轨,4电磁锁,5电磁锁,6金属电极。
具体实施方式
下面结合附图描述本发明的一个具体实施例。
如图1所示,一种利用量子隧穿效应来实现纳米级跟进的装置,包括前推进装置、后推进装置、导轨,前推进装置、后推进装置安装在轨道上,前推进装置、后推进装置与轨道之间分别设有电磁锁,电磁锁安装在前推进装置、后推进装置的底部。在前、后两个推进装置之间设有一对金属电极,一对金属电极分别安装在前推进装置的后表面与后推进装置前表面,一对金属电极处于水平位置,两金属电极尖端之间的距离小于100纳米,前、后两个推进装置在轨道延伸方向向前推进实现纳米级跟进。前、后两个装置的推进通过压电驱动控制,并且进给到预定位置后用电磁锁暂时锁定其所在位置点。一对金属电极的两个金属电极顶端为针尖形状或近似为针尖形状多面体,顶端尖部宽度等于或小于10nm,金属电极的材料为钨、金、铂金、铱,或其混合物。
由上述描述可见,本发明提供了一种利用量子隧穿效应来实现纳米级跟进的装置,当两金属电极之间距离在100纳米以下时,此时两金属电极之间就会有隧道电流的产生,当控制前推进装置行进一定距离时,隧道电流变化发生变化,其行进的距离与电流的变化值直接相关,行进的距离也可以通过隧道电流的变化得到,此时控制电磁锁4锁定前推进装置的位置,同时,控制后推进装置2向前行进,在行进的过程中,不断采集隧道电流的大小,当数值与初始值相同时,即后推进装置2亦行进相同的距离,再通过控制电磁锁5锁定后推进装置此时的位置,实现纳米级跟进的功能。

Claims (4)

1.一种利用量子隧穿效应来实现纳米级跟进的装置,其特征是,包括前推进装置、后推进装置、导轨,前推进装置、后推进装置安装在轨道上,前推进装置、后推进装置与轨道之间分别设有电磁锁,在前、后两个推进装置之间设有一对金属电极,一对金属电极分别安装在前推进装置的后表面与后推进装置前表面,两金属电极尖端之间的距离小于100纳米,前、后两个推进装置在轨道延伸方向向前推进实现纳米级跟进;前、后两个装置的推进通过压电驱动控制,并且进给到预定位置后用电磁锁暂时锁定其所在位置点。
2.根据权利要求1所述的一种利用量子隧穿效应来实现纳米级跟进的装置,其特征是,所述一对金属电极处于水平位置。
3.根据权利要求1所述的一种利用量子隧穿效应来实现纳米级跟进的装置,其特征是,所述一对金属电极的顶端为针尖形状或近似为针尖形状多面体,顶端尖部宽度等于或小于10nm。
4.根据权利要求1所述的一种利用量子隧穿效应来实现纳米级跟进的装置,其特征是,所述一对金属电极的材料为钨、金、铂金、铱,或为钨、金、铂金、铱的合金材料。
CN201510521523.5A 2015-08-24 2015-08-24 一种利用量子隧穿效应来实现纳米级跟进的装置 Active CN105158519B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510521523.5A CN105158519B (zh) 2015-08-24 2015-08-24 一种利用量子隧穿效应来实现纳米级跟进的装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510521523.5A CN105158519B (zh) 2015-08-24 2015-08-24 一种利用量子隧穿效应来实现纳米级跟进的装置

Publications (2)

Publication Number Publication Date
CN105158519A CN105158519A (zh) 2015-12-16
CN105158519B true CN105158519B (zh) 2018-05-25

Family

ID=54799440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510521523.5A Active CN105158519B (zh) 2015-08-24 2015-08-24 一种利用量子隧穿效应来实现纳米级跟进的装置

Country Status (1)

Country Link
CN (1) CN105158519B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452312A (zh) * 2003-05-23 2003-10-29 南开大学 全数字细分型高精度步进电机控制器
CN1683917A (zh) * 2005-02-05 2005-10-19 厦门大学 扫描隧道显微镜和扫描微电极联用测量系统及其测量技术

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63238493A (ja) * 1987-03-27 1988-10-04 工業技術院長 移動機構
JPH04259015A (ja) * 1991-02-13 1992-09-14 Canon Inc 微動駆動装置
US5214342A (en) * 1991-10-21 1993-05-25 Yang Kei Wean C Two-dimensional walker assembly for a scanning tunneling microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1452312A (zh) * 2003-05-23 2003-10-29 南开大学 全数字细分型高精度步进电机控制器
CN1683917A (zh) * 2005-02-05 2005-10-19 厦门大学 扫描隧道显微镜和扫描微电极联用测量系统及其测量技术

Also Published As

Publication number Publication date
CN105158519A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
US6905586B2 (en) DNA and RNA sequencing by nanoscale reading through programmable electrophoresis and nanoelectrode-gated tunneling and dielectric detection
Terabe et al. Quantum point contact switch realized by solid electrochemical reaction
Terabe et al. Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring
Kumar et al. A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes
CN106290507A (zh) 使用新型可喷印碳化钛/氧化石墨烯复合材料制备过氧化氢电化学传感器的方法
Zhou et al. An electrochemical jump-to-contact STM-break junction approach to construct single molecular junctions with different metallic electrodes
Yoo et al. Micro-electrical discharge machining characteristics of newly developed conductive SiC ceramic
Lazenby et al. Nanoscale intermittent contact-scanning electrochemical microscopy
Gusev et al. Structure and properties of nanoscale Ag2S/Ag heterostructure
CN105158519B (zh) 一种利用量子隧穿效应来实现纳米级跟进的装置
CN101653735A (zh) 尖端上的催化剂颗粒
Kim et al. How femtosecond laser irradiation can affect the gas sensing behavior of SnO2 nanowires toward reducing and oxidizing gases
Kumar et al. Nano electrical discharge machining–the outlook, challenges, and opportunities
Virwani et al. Understanding dielectric breakdown and related tool wear characteristics in nanoscale electro-machining process
Liu et al. Direct fabrication of graphite-mica heterojunction and in situ control of their relative orientation
Wang et al. STM tip-induced nanostructuring of Zn in an ionic liquid on Au (1 1 1) electrode surfaces
CN106744675B (zh) 一种纳米材料切断加工方法
Krasnikov et al. Writing with atoms: Oxygen adatoms on the MoO 2/Mo (110) surface
Gutiérrez et al. Conductance of a molecular junction mediated by unconventional metal-induced gap states
Zhao et al. Shaping and edge engineering of few-layered freestanding graphene sheets in a transmission electron microscope
Fujita et al. Active nanocharacterization of nanofunctional materials by scanning tunneling microscopy
Yang et al. Investigation of the nanoscale features fabricated on the HOPG surface induced by STM electric lithography under different voltage regions in ambient conditions
CN103252544A (zh) 长度可控碳纳米管电极制备与导电性能检测方法及装置
Inpan et al. Synthesis of molybdenum trioxide: structure properties and sensing film preparation
Liang et al. Correlating conductance and structure of silver nano-contacts created by jump-to-contact STM break junction

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant