CN105158170A - Heating structure of sample measuring apparatus - Google Patents

Heating structure of sample measuring apparatus Download PDF

Info

Publication number
CN105158170A
CN105158170A CN201510308073.1A CN201510308073A CN105158170A CN 105158170 A CN105158170 A CN 105158170A CN 201510308073 A CN201510308073 A CN 201510308073A CN 105158170 A CN105158170 A CN 105158170A
Authority
CN
China
Prior art keywords
sample measuring
heating
heating arrangement
measuring device
thermal source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510308073.1A
Other languages
Chinese (zh)
Inventor
邓文平
朱道龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU PUDAO OPTOELECTRONICS TECHNOLOGY Co Ltd
Original Assignee
SUZHOU PUDAO OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU PUDAO OPTOELECTRONICS TECHNOLOGY Co Ltd filed Critical SUZHOU PUDAO OPTOELECTRONICS TECHNOLOGY Co Ltd
Priority to CN201510308073.1A priority Critical patent/CN105158170A/en
Publication of CN105158170A publication Critical patent/CN105158170A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

The invention provides a heating structure of a sample measuring apparatus. The heating structure comprises at least one son heat source and is characterized in that the son heat sources are dispersed in each target heating area and are driven by mutually independent temperature control modules. The sample measuring apparatus is a multiple reflection spectral measurement apparatus and comprises an optical element and an installation part thereof, a sample measuring cell and a heating device, wherein the heating device is used for heating the optical element and the installation part thereof and heating the sample measuring cell. Since the son heat sources are respectively used for heating different target areas of the sample measuring cell and are driven by the mutually independent temperature control modules, different target areas of the sample measuring cell can be selectively heated, the heating device can realize uniform heating, and the goal of temperature control can be effectively achieved; moreover, the heating structure has the characteristics of high heating efficiency, low power dissipation and high reliability.

Description

A kind of sample measuring device heating arrangement
Technical field
The present invention relates to a kind of heating arrangement, be especially applied to sample measuring device heating arrangement.
Background technology
In industrial process gas on-line analysis process, sample composition is very complicated, and in the lower situation of temperature, sample easily solidifies, cause gas analyzer sample measuring cell optical element and pond body inwall contaminated, thus add frequency of maintenance and maintenance cost.In addition, in the lower situation of temperature, the moisture in sample is more prone to etchant gas analyser sample measuring cell, thus may cause gas analyzer system crash.In order to ensure the result of use of gas analyzer, under normal circumstances, the sample measuring cell of gas analyzer often arranges heating arrangement, generally heated by heating plate radiation mode, the sample measuring cell of band heating plate is placed in insulation can simultaneously, thus makes the sample in sample measuring cell keep uniform temperature.In the case, heating plate will heat sample measuring cell and whole insulation can space simultaneously, and the transfer mode of heat is mainly by radiation and the internal convection of heating plate heat, and the efficiency of heating surface is low, in thermal-insulating body, temperature distributing disproportionation is even, causes each parts of instrument to be heated the serious waste of inequality and heat.This type of type of heating can not the different parts of optionally heated sample measuring cell, can not meet the demand for heat of higher temperature, there is certain limitation.
Summary of the invention
In order to solve the problem, the invention provides the sample measuring device heating arrangement that a kind of efficiency of heating surface is high, heating zones of different targetedly.
As depicted in figs. 1 and 2, the present invention proposes a kind of sample measuring device heating arrangement, and comprise at least one sub-thermal source, described sub-thermal source dispersed placement is in each target heating region, and each sub-thermal source is driven by separate temperature control modules.
In preferably embodiment, described sample measuring device is multiple reflections spectral measurement device, comprises optical element and mounting portion, sample measuring cell and heating arrangement, and described heating arrangement is used for heat optical element and mounting portion thereof and sample measuring cell.
In preferably embodiment, described sub-thermal source acts on each target heating region in the mode contacting conduction.
In preferably embodiment, described heating arrangement is outside equipped with insulation can.
In preferably embodiment, described sub-thermal source material can be one in pottery, mica, cast copper, cast iron, cast aluminium, stainless steel, quartz and combination thereof.
By the technical scheme of above-mentioned improvement, the technique effect that this invention is useful is, sub-thermal source acts on sample measuring cell to contact conduction pattern, improves the efficiency of heating surface.Simultaneously, because sub-thermal source calorifies sample measuring cell different target region respectively, and sub-thermal source is driven by separate temperature control modules, make it possible to the zones of different of optionally heated sample measuring cell, make heating devices heat even, can effectively reach temperature control target, also there is the feature that the efficiency of heating surface is high, low in energy consumption, reliability is high simultaneously.
Accompanying drawing explanation
Accompanying drawing 1 is a kind of sample measuring device heating arrangement of the present invention front view.
Accompanying drawing 2 is a kind of sample measuring device heating arrangement of Fig. 1 cut-open views along direction shown in arrow.
Accompanying drawing 3 is a kind of sample measuring device embodiment of the present invention.
Accompanying drawing 4 is a kind of sample measuring device embodiment of the present invention.
Accompanying drawing 5 is a kind of sample measuring device embodiment of the present invention.
Embodiment
Describe the present invention below with reference to embodiment shown in the drawings.But structure, method or conversion functionally that the those of ordinary skill that these embodiments do not limit field of the present invention is made according to these embodiments are all included in protection scope of the present invention.
As depicted in figs. 1 and 2, Fig. 1 is a kind of sample measuring device heating arrangement of the present invention front view, Fig. 2 is for a kind of sample measuring device heating arrangement of Fig. 1 is along the cut-open view in direction shown in arrow, in the specific embodiment of the invention, comprise three sub-thermals source 1, described three sub-thermal source 1 dispersed placement are in each target heating region 2 of sample measuring cell 3, and each sub-thermal source is driven by separate temperature control modules.
According to specifically implementing needs, between parton thermal source, also same temperature control module can be shared.
In the present embodiment, described temperature control modules, for accepting the temperature data of temperature sensor, controls the temperature of heat target according to the control strategy preset.
As shown in Figure 3, it is a kind of embodiment of sample measuring device heating arrangement, described sample measuring device is that incident light 5 is successively after the first optical element and mounting portion 7, sample measuring cell 3 and the second optical element and mounting portion 8 thereof, produce emergent light 6 by the second optical element and mounting portion 8 thereof, described sub-thermal source 1 calorifies the first optical element and mounting portion 7, sample measuring cell 3 and the second optical element and mounting portion 8 thereof.
As shown in Figure 4, it is a kind of embodiment of sample measuring device heating arrangement, described sample measuring device is that incident light 5 is successively after the first optical element and mounting portion 7, sample measuring cell 3 and the second optical element and mounting portion 8 thereof, by the second optical element and mounting portion 8 return, and producing emergent light 6 by the first optical element and mounting portion 7 thereof, described sub-thermal source 1 calorifies the first optical element and mounting portion 7, sample measuring cell 3 and the second optical element and mounting portion 8 thereof.
As shown in Figure 5, it is a kind of embodiment of sample measuring device heating arrangement, by parameter and the distance between the two such as bore, curvature to described first optical element and mounting portion 7, second optical element and mounting portion 8 thereof, make incident light 5 after the first optical element and mounting portion 7 thereof, the repeatedly roundtrip of pre-determined number is completed in sample measuring cell 3, emergent light 6 is produced by an optical element and mounting portion 7 thereof, emergent light 6 is non-parallel with incident light 5, and has the angle being greater than zero degree.
In the present embodiment, described sub-thermal source 1 acts on the first optical element and mounting portion 7, second optical element thereof and mounting portion 8 thereof and sample measuring cell 3 in the mode contacting conduction.
In order to heat targetedly each target heating region 2 of sample measuring cell 3, the target area that sub-thermal source 1 quantity heats as required and determining.
In the present embodiment, heating arrangement is outside equipped with insulation can 4, reduces thermal loss.
In the present embodiment, sub-thermal source 1 material can be one in pottery, mica, cast copper, cast iron, cast aluminium, stainless steel, quartz and combination thereof.
In the present embodiment, sub-heat source mode comprises electrical heating, magnetic heating, microwave heating.
In specific implementation process, each sub-thermal source scattering device in the first optical element and mounting portion 7, second optical element thereof and mounting portion 8 thereof and sample measuring cell 3, and is driven by separate temperature control modules.
By the technical scheme of above-mentioned improvement, the technique effect that this invention is useful is, sub-thermal source acts on different target region to contact conduction pattern, improves the efficiency of heating surface.Simultaneously, because sub-thermal source calorifies sample measuring cell different target region respectively, and sub-thermal source is driven by separate temperature control modules, make it possible to the zones of different of optionally heated sample measuring cell, make heating devices heat even, can effectively reach temperature control target, also there is the feature that the efficiency of heating surface is high, low in energy consumption, reliability is high simultaneously.

Claims (5)

1. a sample measuring device heating arrangement, comprise at least one sub-thermal source, it is characterized in that, described sub-thermal source dispersed placement is in each target heating region, and each sub-thermal source is driven by separate temperature control modules.
2. a kind of sample measuring device heating arrangement according to claim 1, it is characterized in that, described sample measuring device is multiple reflections spectral measurement device, comprise optical element and mounting portion, sample measuring cell and heating arrangement, described heating arrangement is used for heat optical element and mounting portion thereof and sample measuring cell.
3., according to the arbitrary described a kind of sample measuring device heating arrangement of claim 1-2, it is characterized in that, described sub-thermal source acts on each target heating region in the mode contacting conduction.
4., according to the arbitrary described a kind of sample measuring device heating arrangement of claim 1-2, it is characterized in that, heating arrangement is outside equipped with insulation can.
5. according to the arbitrary described a kind of sample measuring device heating arrangement of claim 1-2, it is characterized in that, described sub-thermal source material is one in pottery, mica, cast copper, cast iron, cast aluminium, stainless steel, quartz and combination thereof.
CN201510308073.1A 2015-06-08 2015-06-08 Heating structure of sample measuring apparatus Pending CN105158170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510308073.1A CN105158170A (en) 2015-06-08 2015-06-08 Heating structure of sample measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510308073.1A CN105158170A (en) 2015-06-08 2015-06-08 Heating structure of sample measuring apparatus

Publications (1)

Publication Number Publication Date
CN105158170A true CN105158170A (en) 2015-12-16

Family

ID=54799105

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510308073.1A Pending CN105158170A (en) 2015-06-08 2015-06-08 Heating structure of sample measuring apparatus

Country Status (1)

Country Link
CN (1) CN105158170A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2608976Y (en) * 2003-04-28 2004-03-31 崔娥 Pesticide residue fast measuring card detector
CN101416042A (en) * 2006-02-06 2009-04-22 意法半导体股份有限公司 Nucleic acid analysis chip integrated with waveguide and optical apparatus for nucleic acid probe checkout
CN101441168A (en) * 2008-12-06 2009-05-27 中国海洋大学 Optical spectrum observation platform simulating sea environment
CN103115883A (en) * 2013-01-24 2013-05-22 重庆大学 Sample detecting system of micro biochemical detection instrument
US20140063496A1 (en) * 2012-08-31 2014-03-06 Shimadzu Corporation Spectrophotometer
CN205003073U (en) * 2015-06-08 2016-01-27 苏州谱道光电科技有限公司 Sample measuring device heating structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2608976Y (en) * 2003-04-28 2004-03-31 崔娥 Pesticide residue fast measuring card detector
CN101416042A (en) * 2006-02-06 2009-04-22 意法半导体股份有限公司 Nucleic acid analysis chip integrated with waveguide and optical apparatus for nucleic acid probe checkout
CN101441168A (en) * 2008-12-06 2009-05-27 中国海洋大学 Optical spectrum observation platform simulating sea environment
US20140063496A1 (en) * 2012-08-31 2014-03-06 Shimadzu Corporation Spectrophotometer
CN103674863A (en) * 2012-08-31 2014-03-26 株式会社岛津制作所 Spectrophotometer
CN103115883A (en) * 2013-01-24 2013-05-22 重庆大学 Sample detecting system of micro biochemical detection instrument
CN205003073U (en) * 2015-06-08 2016-01-27 苏州谱道光电科技有限公司 Sample measuring device heating structure

Similar Documents

Publication Publication Date Title
CN109211970B (en) Heat insulation performance testing device, heat insulation performance testing method and application
WO2002021607A3 (en) Thermoelectric module with integrated heat exchanger and method of use
DE60223711D1 (en) RADIANT HEATING PLATE FOR SOLAR SYSTEM
WO2010116809A1 (en) Heating apparatus for x-ray inspection
CN205003073U (en) Sample measuring device heating structure
KR101898037B1 (en) High temperature structure for measuring of properties of curved thermoelectric device, system for measuring of properties of curved thermoelectric device using the same and method thereof
CN102230841A (en) Controlled infrared planar radiative heat source with high degree of homogeneity
PL1628777T3 (en) Thermo-stable coating die design method and apparatus
Thankakan et al. Investigation of thermoelectric generators connected in different configurations for micro‐grid applications
CN105158170A (en) Heating structure of sample measuring apparatus
CN100437076C (en) Method for eliminating temperature gradient in metal strip sample heat treatment test
TWI624662B (en) Contact test device and environmental test method
ATE509513T1 (en) DEVICE AND METHOD FOR HEAT TRANSFER OF CONTROL DEVICES
CN103954117A (en) Electric heating plate for vacuum drying oven
JP6166065B2 (en) High frequency heating device
CN2789744Y (en) Black-body heat source for infrared ray shaft temperature detection system function simulator
CN105445312A (en) Micro-region heating device
CN203534145U (en) Improved structure of muffle furnace
JP2015094714A5 (en)
JP4959844B2 (en) X-ray inspection heating device
CN203444769U (en) Thermal inertia simulation test piece for pressure container
JP2018530746A (en) Apparatus for removing test contacts in a test contact configuration
CN107271476B (en) Motor iron core axial heat conductivity coefficient testing device and testing method
WO1998059098A3 (en) Method and device for producing electrically conductive continuity in semiconductor components
KR101610244B1 (en) Heating device of fixed temperature for shielding electromagnetic field

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20151216