CN105121334B - 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统 - Google Patents

使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统 Download PDF

Info

Publication number
CN105121334B
CN105121334B CN201480023552.2A CN201480023552A CN105121334B CN 105121334 B CN105121334 B CN 105121334B CN 201480023552 A CN201480023552 A CN 201480023552A CN 105121334 B CN105121334 B CN 105121334B
Authority
CN
China
Prior art keywords
oxygen
stream
synthesis gas
membrane
reforming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480023552.2A
Other languages
English (en)
Other versions
CN105121334A (zh
Inventor
S.查克拉瓦蒂
R.F.德尔内维奇
M.M.莎
I.C.斯图克特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Praxair Technology Inc
Original Assignee
Praxair Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Praxair Technology Inc filed Critical Praxair Technology Inc
Priority to CN201710594776.4A priority Critical patent/CN107311106B/zh
Publication of CN105121334A publication Critical patent/CN105121334A/zh
Application granted granted Critical
Publication of CN105121334B publication Critical patent/CN105121334B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0446Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical
    • B01J8/0449Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds
    • B01J8/0457Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds the flow within the beds being predominantly vertical in two or more cylindrical beds the beds being placed in separate reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/04Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
    • B01J8/0496Heating or cooling the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/382Multi-step processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/0053Controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00157Controlling the temperature by means of a burner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0244Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being an autothermal reforming step, e.g. secondary reforming processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0838Methods of heating the process for making hydrogen or synthesis gas by heat exchange with exothermic reactions, other than by combustion of fuel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0872Methods of cooling
    • C01B2203/0883Methods of cooling by indirect heat exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • C01B2203/1264Catalytic pre-treatment of the feed
    • C01B2203/127Catalytic desulfurisation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/14Details of the flowsheet
    • C01B2203/142At least two reforming, decomposition or partial oxidation steps in series
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695

Abstract

公开了在氧输送膜基重整系统中制造合成气的方法与系统,其进行初级重整过程、次级重整过程。

Description

使用具有次级重整的氧输送膜基重整系统的生产合成气的方 法与系统
技术领域
本发明涉及在氧输送膜基重整系统中生产合成气的方法与系统,更具体地涉及在提供初级和次级重整的氧输送膜基重整系统中以非常低的甲烷逃逸生产合成气的方法与系统。
发明背景
生产含有氢和一氧化碳的合成气用于多种工业应用,例如,制氢、化学品与合成燃料的生产。通常,合成气在直热式重整器中生产,在该重整器中,天然气和水蒸气在含有镍催化剂的重整器管中在高温(例如850℃至1000℃)和中等压力(例如16至30巴)下重整以生产该合成气。在该重整器管中发生的水蒸气甲烷重整反应的吸热加热要求由加热该炉的燃烧器来提供,所述燃烧器由一部分天然气提供燃料。为了提高水蒸气甲烷重整(SMR)法制得的合成气的氢含量,可以对该合成气施以水煤气变换反应以便使合成气中的残余水蒸气与一氧化碳反应。
已确立的水蒸气甲烷重整的替代方法是非催化部分氧化法(POx),通过该方法,使低于化学计量量的氧与天然气进料反应,在高温下生成水蒸气和二氧化碳。该高温残余甲烷通过与高温水蒸气和二氧化碳的反应重整。
用于生产合成气的有吸引力的替代方法是自热重整器(ATR)法,该方法采用氧化来产生热,其具有催化剂以便允许在比POx法更低的温度下进行重整。类似于POx法,需要氧在燃烧器中部分氧化天然气以提供热、高温二氧化碳和水蒸气来重整该残余甲烷。通常,需要向天然气中添加一部分水蒸气以控制在催化剂上的碳形成。但是,ATR和POx法都需要单独的空气分离单元(ASU)以产生高压氧,这增加了整个工艺的复杂性以及投资和运行成本。
当原料含有显著量的重质烃时,在SMR和ATR法之前通常进行预重整步骤。预重整是基于催化剂的方法,用于将高级烃转化为甲烷、氢、一氧化碳和二氧化碳。预重整中包括的反应是吸热的。大多数预重整器绝热运行,因此预重整的原料在比进入预重整器的原料低得多的温度下离开。在本发明中将讨论的另一种方法是次级重整法,其基本上是一种进料来自水蒸气甲烷重整法的产品的自热法。因此,进入次级重整法的进料主要是来自水蒸气甲烷重整的合成气。根据最终应用,一部分天然气可以绕过SMR法并直接被引入该次级重整步骤。同样,当SMR后接次级重整法时,该SMR可以在较低的温度下运行,例如650℃至825℃对850℃至1000℃。
如可以理解的那样,如上文已经讨论的制造合成气的常规方法是昂贵的,并需要复杂的设施。为了克服此类设施的复杂性和高昂价格,已经提出了在使用氧输送膜的反应器中生成合成气以供应氧并由此产生支持水蒸气甲烷重整反应的吸热加热要求所需的热量。典型的氧输送膜具有致密的层(其对空气或其它含氧气体是不透性的),该层在施以提高的运行温度和跨膜的氧分压差时将输送氧离子。
用于生产合成气的氧输送膜基重整系统的实例可以在美国专利第6,048,472;6,110,979;6,114,400;6,296,686;7,261,751;8,262,755;和8,419,827号中找到。所有这些氧输送膜基系统都存在操作问题,因为此类氧输送膜必须在大约900℃至1100℃的高温下运行。当对烃类如甲烷和更高级的烃类在氧输送膜中经历此类高温时,发生过度的碳形成,尤其在高压和低水蒸气/碳比下。碳形成问题在上述现有技术的氧输送膜基系统中特别严重。在合成气生产中使用氧输送膜基重整系统的不同方法公开在美国专利第8,349,214号中,其提供了氧输送膜基重整系统,该系统使用氢和一氧化碳作为进料至氧输送膜管的一部分反应物气体进料并最大程度减少进入该氧输送膜管渗透侧的进料的烃含量。在氧输送膜管中生成的过量热主要通过辐射传送至常规材料制成的重整管。使用送入氧输送膜管的低烃含量高氢与一氧化碳的进料解决了使用早期氧输送膜系统的许多突出问题。
现有技术的氧输送膜基重整系统出现的其它问题是该氧输送膜模块的成本和此类氧输送膜基重整系统的低于期望的耐久性、可靠性和运行可行性。这些问题是氧输送膜基重整系统尚未成功商业化的主要原因。在氧输送膜材料方面的进展已经解决了与氧通量、膜降解和蠕变寿命相关的问题,但是从成本的观点以及从运行可靠性和可用性观点来看仍然需要进行大量工作来实现商业上可用的氧输送膜基重整系统。
本发明通过提供使用反应性驱动氧输送膜基系统制备合成气的改进方法解决了前述问题,所述系统由两个可以为含催化剂的管组形式的反应器——重整反应器和氧输送膜反应器组成。部分氧化和一些重整在该氧输送膜的渗透(含催化剂)侧发生,通过重整器催化剂促进的重整过程在重整反应器中紧邻氧输送膜反应器发生。该部分氧化过程(其是放热的)以及该重整过程(其是吸热的)均发生在该氧输送膜基系统中并由此具有高的热集成度,使得在氧化过程中释放的热供给重整过程所吸收的热。
具体而言,对反应性驱动氧输送膜基系统的改进包括修改该反应性驱动氧输送膜基系统以便在填充催化剂的重整反应器中进行初级重整过程以及在含有催化剂的氧输送膜反应器中进行次级重整过程。
对反应性驱动氧输送膜基系统的其它改进包括对水蒸气和烃进料流的修改以及合成气的下游调节。此外,使用由氢和一氧化碳作为一部分进料的反应性驱动氧输送膜反应器与仅使用水蒸气-甲烷进料的反应性驱动氧输送膜相比产生了更高的氧通量。通量性能方面的实际差异随压力、温度和反应物气体浓度而改变。最后,对热回收系列(heatrecovery train)提出某些修改或改变以减少不利地影响该系统的系统性能、可靠性与耐久性的金属尘化和碳形成问题。
发明内容
本发明的特征在于一种在氧输送膜基重整系统中生产合成气的方法,所述系统由两个可以为含催化剂的管组形式的反应器——重整反应器和氧输送膜反应器组成,该方法包括以下步骤:(i)在热的存在下在重整反应器中部分重整包含含烃进料流与水蒸气的混合进料流以产生包含氢、一氧化碳和未重整的烃气体的部分重整的合成气料流;(ii)将该部分重整的合成气料流进料至反应性驱动和含催化剂的氧输送膜反应器的反应物一侧,其中该氧输送膜反应器包括至少一个氧输送膜元件;(iii)使一部分部分重整的合成气料流与渗透穿过至少一个氧输送膜元件的氧反应以产生跨越该至少一个氧输送膜元件的氧分压差并生成含有水蒸气的加热的反应产物料流和热量;(iv)将一部分作为该反应的结果所产生的热转移至含催化剂的氧输送膜反应器中的气体;一部分通过辐射转移至该重整反应器;一部分通过对流转移至该贫氧料流;和(v)在氧输送膜反应器中所含一种或更多种催化剂与热的存在下重整该部分重整的合成气料流中的未重整的烃气体以产生合成气产物料流。
本发明的特征还在于一种用于生产合成气的氧输送膜基重整系统,其包含:(a)反应器外壳;(b)安置在反应器外壳中并配置为从含氧进料流中分离氧并产生在氧输送膜元件或管的渗透侧的渗透氧与贫氧料流的多个含催化剂与反应性驱动的氧输送膜元件或管,该催化剂邻近该氧输送膜管或元件的渗透侧安置;(c)与该氧输送膜元件或管并列地安置在反应器外壳中的多个含催化剂的重整器管。
该含催化剂的重整器管配置为通过在该重整器管中所含催化剂和由并列的氧输送膜元件或管辐射的热的存在下重整含烃进料与水蒸气来生产部分重整的合成气料流。含催化剂的重整器管的出口流体连接到多个氧输送膜元件或管的渗透侧,以使得部分重整的合成气流经该含有催化剂的氧输送膜元件或管。
多个氧输送膜元件或管配置为从含氧进料流中分离氧并产生在氧输送膜元件或管的渗透侧的渗透氧和贫氧料流,催化剂邻近该氧输送膜元件的渗透侧安置。该氧输送膜元件或管配置为使该部分重整的合成气料流中的氢、一氧化碳和甲烷与氧输送膜元件或管的渗透侧的渗透氧反应以便反应性驱动氧从含氧进料流中的分离并生产部分氧化反应产物与热。此外,该氧输送膜反应器进一步配置为通过部分氧化和通过在一种或更多种催化剂与热的存在下进一步重整进料到该氧输送膜元件或管的渗透侧的部分重整的合成气料流来制造合成气产品料流。
附图简述
虽然本说明书以清楚地指出申请人视为其发明的主题的权利要求为结束,据信,当与附图结合时将更好地理解本发明,其中图1是设计为在该氧输送膜反应器中既进行初级重整过程又进行次级重整过程的氧输送膜基重整系统的实施方案的示意图。
发明详述
图1提供了本发明的氧输送膜基重整系统201和组装件200的实施方案的示意图。如其中所见,含氧料流210如空气通过强制通风(FD)风扇214引入到该系统中,进入热交换器213以便预热该含氧进料流210。热交换器213优选是与含氧进料流210和加热的滞留料流224运行相关设置的高效的、循环连续旋转的陶瓷蓄热器。该陶瓷蓄热器213将进入的空气进料流210加热到大约500℃至1050℃的温度。
该贫氧空气作为加热的滞留料流224在与加热的空气进料流215相比相同或略高的温度下离开该氧输送膜重整管。任何温度升高,通常<30℃,可归因于氧输送膜管中氢与一氧化碳的氧化反应所生成的和通过对流转移至该空气料流的能量部分。该加热的、贫氧的滞留料流224首先用于将该混合进料流加热到大约450℃至650℃的温度,更优选加热到500℃至600℃的温度,并随后用于将水蒸气进一步加热为过热水蒸气。
该贫氧滞留料流224的温度优选随后在被引导至陶瓷热交换器或蓄热器213之前需要升温返回到大约1050℃至1200℃的温度。滞留料流224的这种温度升高优选通过使用管道燃烧器226来实现,所述管道燃烧器使用滞留料流224中的一部分残留氧促进了补充燃料流228的燃烧。可以想象的是,混合进料加热器和蒸汽过热器可以替代地位于单独的火焰加热器(未显示)中。在这种情况下,管道燃烧器226的燃料要求将少得多。
在该陶瓷热交换器或蓄热器213中,加热的贫氧滞留料流提供能量以便将进入的进料空气流从环境温度升温到大约850℃至1050℃的温度。离开该陶瓷热交换器的所得冷滞留料流(通常含有少于5%的氧)在大约150℃的温度下作为废气232离开该氧输送膜基重整系统201。
该氧输送膜基重整系统201包含两个可以为含催化剂的管组形式的反应器——重整反应器和氧输送膜反应器。该重整反应器由其中发生初级重整的重整管240组成,氧输送膜反应器由其中发生次级重整的氧输送膜管220组成。尽管紧邻三个初级重整管240仅显示了六个次级重整氧输送膜管220,如本领域技术人员能够想到的那样,在各个氧输送膜子系统中可以存在许多此类次级重整氧输送膜管和许多初级重整管。同样地,将存在用于氧输送膜基重整系统201的工业应用的多个氧输送膜子系统。
经由进气管道216将加热的含氧料流215引导至并入该氧输送膜系统201中的多个次级重整氧输送膜管220。该次级重整氧输送膜管220优选配置为能够在提高的工作温度下传导氧离子的多层陶瓷管,其中该次级重整氧输送膜管220的氧化剂侧或滞留物侧是暴露于加热的含氧料流215的陶瓷管的外表面,该反应物侧或渗透侧是该陶瓷管的内表面。在各个次级重整氧输送膜管220中的是一种或更多种促进部分氧化和重整的催化剂。
尽管未显示,氧输送膜基重整系统的替代实施方案可以在进气管道216中在反应器上游设置管道燃烧器226和补充燃料流228。此类安排将允许使用更小的陶瓷热交换器或蓄热器213和不那么苛刻的陶瓷热交换器或蓄热器213的运行条件。
如下文中更详细地描述地,待重整的含烃进料流292(优选天然气)通常与少量的氢或富氢气体293混合并在充当预热器的热交换器250中预热至大约370℃。天然气通常含有不可接受的高水平的硫物质,加入氢以促进脱硫。加热的进料流282经由装置290经历除硫过程,如加氢处理以便将硫物质还原为H2S,其随后使用类似ZnO和/或CuO的材料在保护床中除去。该加氢处理步骤还饱和含烃进料流中存在的任何烯烃。尽管未显示,加热的进料流还可以经历在绝热预重整器中的预重整步骤(该步骤将更高级的烃类转化为甲烷、氢、一氧化碳和二氧化碳)或加热的预重整步骤。在加热预重整的情况下,考虑基于催化剂的预重整器与该氧输送膜基重整系统热耦合。
根据需要,将过热水蒸气280添加到预处理过的天然气和氢进料流中以生产具有大约1.0至2.5、更优选大约1.2至2.2的水蒸气/碳比的混合进料流238。该过热水蒸气280优选为大约15巴至80巴和大约300℃至600℃,并使用安置在滞留物管道225中的水蒸气盘管279通过与加热的滞留料流224的间接热交换来生成。任何没有在天然气与氢进料流282中添加或使用的过热水蒸气280是用于发电的排放水蒸气281。该混合进料流238使用安置在滞留物管道225中的盘管289通过与加热的滞留料流的间接热交换被加热到优选大约450℃至650℃、更优选大约500℃至600℃。
随后将加热的混合进料流238送至重整管240,其含有常规重整催化剂。离开该重整管240的部分重整的富氢合成气298的温度通常设计为650℃至850℃。该合成气随后进料到填充有重整催化剂的氧输送膜管220。来自加热的进入空气的氧渗透穿过该氧输送膜管220并促进一部分部分重整的合成气298的反应。由该反应生成的一部分能量或热用于部分重整合成气298中残余甲烷的原位次级重整。该能量或热的剩余部分通过辐射传送至重整管240以驱动初级重整反应,和通过对流传送至贫氧料流224。离开氧输送膜管220(其基本充当次级重整器)的合成气242处在大约900℃至1050℃的温度下。
通过来自次级重整氧输送膜管220的一部分热的辐射以及由加热的滞留料流224提供的对流传热来供给发生在初级重整管240中的重整过程的吸热加热要求。此外,当加热的贫氧滞留料流224离开该氧输送膜基重整系统201时,其还经由使用安置在滞留料流管道225中的一个或更多个盘管289的间接热传递将混合进料流238加热到大约450℃至650℃的温度。
在本发明的反应器系统的设计中必须确保在释放热的陶瓷氧输送膜管与吸收热的含催化剂的重整器管之间充足的热耦合或热传递。在该陶瓷氧输送膜管与相邻的含催化剂的重整器管之间的一部分热传递通过热传递的辐射模式,由此表面积、表面视角因数(surface view factor)、表面发射率和管之间的非线性温度差(即T氧输送膜管 4-T重整器 4)是实现所需热耦合的关键要素。表面发射率和温度通常由管材料和反应的要求来决定。该表面积和辐射视角因数通常由各个模块和整个反应器中的管排列或配置来决定。虽然存在能满足氧输送膜管与重整器管之间热耦合要求的许多管排列或配置,关键的挑战是实现每单位容积相对高的生产速率,这反过来依赖于在该单位容积中包含的活性氧输送膜面积的量。在本发明的实施方案中,在氧输送膜管辐射热至含有催化剂的重整器管之间的优选视角因数为大于或等于大约0.4。
要注意的是,术语“视角因数”是本领域已知的量,其限定了到达另一表面的离开表面的总能量的分数。视角因数在用于确定辐射热传递的公式中使用。本领域中公知的该公式是:
;
其中q 12 是在表面1和2之间的辐射热传递,Є是发射率,σ是斯蒂芬.玻尔兹曼常数,A 2 是表面2的面积,F 21 是由表面2至表面1的视角因数,T 1 是表面1的绝对温度,T 2 是表面2的绝对温度。
实现最佳热耦合性能的另一挑战是优化陶瓷氧输送膜管和含催化剂的重整器管的尺寸,更特别是各个管的有效表面积比A重整器/A氧输送膜管。当然,此类性能优化必需针对可制造性要求、成本以及可靠性、可维护性、模块与反应器的运行可行性来平衡。优选地,在本实施方案中含催化剂的重整器管与向该重整器管辐射热的含催化剂的氧输送膜管的面积比A重整器/A氧输送膜管为大约0.5至1.0。
回到图1,由该氧输送膜基重整系统201生产的合成气料流242通常含有氢、一氧化碳、未转化的甲烷、水蒸气、二氧化碳和其它成分。来自合成气料流242的相当一部分显热可以使用热交换段或回收系列204来回收。热交换段204设计为冷却离开该氧输送膜基重整系统201的制得的合成气料流242。在所示实施方案中,还可以设计热交换段204,以使得在冷却该合成气料流242时,生成工艺用汽,预热烃进料流,以及加热锅炉进料水和给水。
为了最大程度减少金属尘化的问题,在工艺气体(PG)锅炉249中将热的合成气242直接冷却至大约400℃或更低。该初始冷却的合成气料流244随即用于在燃料预热器250中预热天然气和氢进料流282的混合物,并随后用于在节热器256中预热锅炉进料水288以及用于加热进料水料流259。在所示实施方案中,锅炉进料水料流288优选使用进料水泵(未显示)泵送,在节热器256中加热,并送至蒸汽鼓筒257,而加热的进料水259送至提供锅炉进料水288的除气器(未显示)。离开给水加热器258的合成气优选为大约150℃。使用翅扇式冷却器261和进料冷却水266的合成气冷却器264将其冷却至40℃。冷却的合成气248随后进入分离鼓268,在那里作为工艺冷凝物料流270从塔底除去水,尽管未显示,将所述工艺冷凝物料流270再循环用作给水,并且冷却的合成气272在塔顶回收。
冷却的合成气料流272任选在合成气压缩机274中压缩以产生合成气产品276。根据氧输送膜基重整系统的运行压力,回收的合成气的压力优选为大约10巴至35巴,更优选为12巴至30巴。在所述实施方案中制得的合成气的模数通常小于大约2.0,并常常小于大约1.9,而对于某些合成气应用如甲醇合成,所需合成气模数优选为大约2.0至2.2。相对于没有预重整器的配置,在该OTM反应器的前面使用绝热预重整器可以将该模数提高大约0.05至0.1。使用加热的预重整器,有可能实现更高的模数,优选大于2并肯定大于1.9。确切的模数值取决于运行温度。
本文中公开的实施方案中使用的氧输送膜元件或管优选包含复合结构,其结合了致密层、多孔载体和位于致密层与多孔载体之间的中间多孔层。致密层与中间多孔层各自能够在提高的运行温度下传导氧离子和电子以便从进入的空气流中分离氧。多孔载体层由此形成了反应物侧或渗透侧。致密层和中间多孔层优选分别包含离子传导性材料和电导性材料的混合物以传导氧离子和电子。该中间多孔层优选具有比多孔载体层更低的渗透性和更小的平均孔隙尺寸以便朝向该多孔载体层分配由该致密层分离的氧。
在优选实施方案中,该氧输送膜管包括混合相氧离子传导致密陶瓷分离层,其包含氧化锆基氧离子传导相和主要为电子导电的钙钛矿相的混合物。该薄的、致密的分离层在较厚的惰性多孔载体上实现。该中间多孔层可以具有大约10微米至大约40微米的厚度,大约25%至大约40%的孔隙率和大约0.5微米至大约3微米的平均孔径。该致密层可以具有大约10微米至大约30微米的厚度。可以提供具有大约10微米至大约40微米的厚度、大约30%至大约60%的孔隙率和大约1微米至大约4微米的孔径的多孔表面交换层,并且该载体层可以具有大约0.5毫米至大约10.0毫米但优选0.9毫米的厚度,和不超过50微米的孔隙尺寸。该中间多孔层可以含有大约60重量%的(La0.825Sr0.175)0.96 Cr0.76Fe0.225V0.015O3-δ与剩余的10Sc1YSZ的陶瓷混合物,而该致密层可以由大约40重量%的(La0.825Sr0.175)0.94Cr0.72Mn0.26V0.02O3-x与剩余的10Sc1YSZ的陶瓷混合物形成,该多孔表面交换层可以由大约50重量%的(La0.8Sr0.2)0.98MnO3-δ与剩余的10Sc1CeSZ的陶瓷混合物构成。
氧化催化剂粒子或含有氧化催化剂粒子的前体的溶液任选位于中间多孔层中和邻接该中间多孔层的更厚的惰性多孔载体中。该氧化催化剂粒子含有氧化催化剂,选择该氧化催化剂以便在引入到多孔载体的孔隙中时在渗透氧的存在下在其与中间多孔层相对的一侧上促进部分重整合成气料流的氧化。该氧化催化剂可以是钆掺杂的二氧化铈。此外,可以提供多孔表面交换层与中间多孔层相对地接触该致密层。在此类情况下,该多孔表面交换层将构成滞留物一侧。该载体层优选由萤石结构化材料构成,例如3摩尔%氧化钇稳定的氧化锆,或3YSZ。
虽然已经以各种方式表征本发明并就优选实施方案描述了本发明,本领域技术人员将想到,可以对其进行大量增加、改变和修改而不离开所附权利要求中描述的本发明的精神与范围。

Claims (4)

1.在氧输送膜基重整系统中生产合成气的方法,其中所述系统包括重整反应器和氧输送膜反应器,该方法包括以下步骤:在热的存在下在包括重整管的重整反应器中部分重整包含含烃进料流与水蒸气的混合进料流以生产包含氢、一氧化碳和未重整的烃气体的部分重整的合成气料流;将所述部分重整的合成气料流进料至包括氧输送膜元件的反应性驱动和含催化剂的氧输送膜反应器的反应物一侧,其中所述氧输送膜反应器包括至少一个氧输送膜元件,所述氧输送膜元件配置成在被施以提高的运行温度和跨越所述至少一个氧输送膜元件的氧分压差时经氧离子传输从含氧料流中分离氧并产生贫氧料流,使一部分部分重整合成气料流与渗透穿过至少一个氧输送膜元件的氧反应以产生跨越所述至少一个氧输送膜元件的氧分压差并生成含有水蒸气的加热的反应产物料流和热量;将一部分作为所述反应的结果所产生的热:(i)转移至含催化剂的氧输送膜反应器中的气体;(ii)通过辐射转移至所述重整反应器;和(iii)通过对流转移至所述贫氧料流;和在所述氧输送膜反应器中所含一种或多种催化剂与热的存在下重整所述部分重整的合成气料流中的未重整的烃气体以生产合成气产物料流。
2.权利要求1所述的方法,其中所述混合进料流具有1.6至3.0的水蒸气/碳比和500℃至750℃的温度。
3.权利要求1所述的方法,进一步包括将所述合成气产物料流直接冷却至400℃或更低的温度的步骤。
4.权利要求1所述的方法,进一步包括使用安置在氧输送膜基重整系统之中或附近的管道燃烧器将所述贫氧料流重新加热到1050℃至1200℃的温度的步骤,其中所述管道燃烧器配置为燃烧补充燃料流和贫氧料流中的残余氧以便经由间接热交换加热进入的含氧料流。
CN201480023552.2A 2013-04-26 2014-04-07 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统 Expired - Fee Related CN105121334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710594776.4A CN107311106B (zh) 2013-04-26 2014-04-07 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361816326P 2013-04-26 2013-04-26
US61/816326 2013-04-26
US14/078,897 US9023245B2 (en) 2013-04-26 2013-11-13 Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming
US14/078897 2013-11-13
PCT/US2014/033162 WO2014176021A1 (en) 2013-04-26 2014-04-07 Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201710594776.4A Division CN107311106B (zh) 2013-04-26 2014-04-07 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统

Publications (2)

Publication Number Publication Date
CN105121334A CN105121334A (zh) 2015-12-02
CN105121334B true CN105121334B (zh) 2017-07-11

Family

ID=51788495

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480023552.2A Expired - Fee Related CN105121334B (zh) 2013-04-26 2014-04-07 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统
CN201710594776.4A Expired - Fee Related CN107311106B (zh) 2013-04-26 2014-04-07 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201710594776.4A Expired - Fee Related CN107311106B (zh) 2013-04-26 2014-04-07 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统

Country Status (8)

Country Link
US (2) US9023245B2 (zh)
EP (1) EP2989049B1 (zh)
CN (2) CN105121334B (zh)
BR (1) BR112015026890A2 (zh)
CA (1) CA2909977C (zh)
MX (1) MX365493B (zh)
RU (1) RU2653151C2 (zh)
WO (1) WO2014176021A1 (zh)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9561476B2 (en) 2010-12-15 2017-02-07 Praxair Technology, Inc. Catalyst containing oxygen transport membrane
US9486735B2 (en) 2011-12-15 2016-11-08 Praxair Technology, Inc. Composite oxygen transport membrane
EP2791082B1 (en) 2011-12-15 2021-01-20 Praxair Technology, Inc. Method of producing composite oxygen transport membrane
JP2016505501A (ja) 2012-12-19 2016-02-25 プラクスエア・テクノロジー・インコーポレイテッド 酸素輸送膜集合体をシールするための方法
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
US9938145B2 (en) 2013-04-26 2018-04-10 Praxair Technology, Inc. Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
US9365422B2 (en) 2013-04-26 2016-06-14 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system with recycling of the produced synthesis gas
US9023245B2 (en) 2013-04-26 2015-05-05 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming
US9296671B2 (en) 2013-04-26 2016-03-29 Praxair Technology, Inc. Method and system for producing methanol using an integrated oxygen transport membrane based reforming system
US9115045B2 (en) 2013-04-26 2015-08-25 Praxair Technology, Inc. Method and system for producing methanol using an oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9611144B2 (en) 2013-04-26 2017-04-04 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
RU2680048C2 (ru) 2013-10-07 2019-02-14 Праксайр Текнолоджи, Инк. Реактор с комплектом керамических транспортирующих кислород мембран и способ риформинга
CA2924201A1 (en) 2013-10-08 2015-04-16 Praxair Technology, Inc. System and method for temperature control in an oxygen transport membrane based reactor
WO2015084729A1 (en) 2013-12-02 2015-06-11 Praxair Technology, Inc. Method and system for producing hydrogen using an oxygen transport membrane based reforming system with secondary reforming
CN105980666B (zh) 2014-02-12 2019-04-09 普莱克斯技术有限公司 用于生成电力的基于氧传输膜反应器的方法和系统
US10822234B2 (en) 2014-04-16 2020-11-03 Praxair Technology, Inc. Method and system for oxygen transport membrane enhanced integrated gasifier combined cycle (IGCC)
US9551278B2 (en) * 2014-07-16 2017-01-24 Air Products And Chemicals, Inc. Hydrogen production system and process
WO2016057164A1 (en) 2014-10-07 2016-04-14 Praxair Technology, Inc Composite oxygen ion transport membrane
US10441922B2 (en) 2015-06-29 2019-10-15 Praxair Technology, Inc. Dual function composite oxygen transport membrane
US10118823B2 (en) * 2015-12-15 2018-11-06 Praxair Technology, Inc. Method of thermally-stabilizing an oxygen transport membrane-based reforming system
US9938146B2 (en) 2015-12-28 2018-04-10 Praxair Technology, Inc. High aspect ratio catalytic reactor and catalyst inserts therefor
JP2019513081A (ja) 2016-04-01 2019-05-23 プラクスエア・テクノロジー・インコーポレイテッド 触媒含有酸素輸送膜
US11208315B2 (en) 2018-04-02 2021-12-28 Pepsico, Inc. Unattended beverage dispensing systems and methods
EP3797085A1 (en) 2018-05-21 2021-03-31 Praxair Technology, Inc. Otm syngas panel with gas heated reformer
US11961373B2 (en) 2020-07-01 2024-04-16 Pepsico, Inc. Method and system of touch-free vending

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926096A1 (en) * 1997-12-23 1999-06-30 Air Products And Chemicals, Inc. Production of synthesis gas by mixed conducting membranes
US6077323A (en) * 1997-06-06 2000-06-20 Air Products And Chemicals, Inc. Synthesis gas production by ion transport membranes
US6114400A (en) * 1998-09-21 2000-09-05 Air Products And Chemicals, Inc. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
US20070289215A1 (en) * 2006-06-19 2007-12-20 John William Hemmings Method and apparatus for producing synthesis gas
US20130009102A1 (en) * 2011-07-08 2013-01-10 Kelly Sean M Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4650814A (en) 1984-03-07 1987-03-17 Keller Arnold P Process for producing methanol from a feed gas
US5975130A (en) 1997-04-07 1999-11-02 Valve Concepts, Inc. Check valve with a low inertia moving part for low or high pressure differentials
GB9714744D0 (en) 1997-07-15 1997-09-17 Ici Plc Methanol
US6139810A (en) * 1998-06-03 2000-10-31 Praxair Technology, Inc. Tube and shell reactor with oxygen selective ion transport ceramic reaction tubes
US6296686B1 (en) 1998-06-03 2001-10-02 Praxair Technology, Inc. Ceramic membrane for endothermic reactions
US6293084B1 (en) 2000-05-04 2001-09-25 Praxair Technology, Inc. Oxygen separator designed to be integrated with a gas turbine and method of separating oxygen
US6382958B1 (en) 2000-07-12 2002-05-07 Praxair Technology, Inc. Air separation method and system for producing oxygen to support combustion in a heat consuming device
US6562104B2 (en) 2000-12-19 2003-05-13 Praxair Technology, Inc. Method and system for combusting a fuel
US6394043B1 (en) 2000-12-19 2002-05-28 Praxair Technology, Inc. Oxygen separation and combustion apparatus and method
US6695983B2 (en) * 2001-04-24 2004-02-24 Praxair Technology, Inc. Syngas production method utilizing an oxygen transport membrane
US20030039601A1 (en) * 2001-08-10 2003-02-27 Halvorson Thomas Gilbert Oxygen ion transport membrane apparatus and process for use in syngas production
US6783750B2 (en) 2001-08-22 2004-08-31 Praxair Technology, Inc. Hydrogen production method
US6916362B2 (en) 2003-05-06 2005-07-12 Praxair Technology, Inc. Ion transport membrane isolation device
US7179323B2 (en) 2003-08-06 2007-02-20 Air Products And Chemicals, Inc. Ion transport membrane module and vessel system
US7160357B2 (en) * 2003-08-14 2007-01-09 Praxair Technology, Inc. Oxygen transport membrane reactor and method
KR101046116B1 (ko) 2004-01-22 2011-07-01 에이스텍스 (사이프러스) 리미티드 아세트산 및 메탄올을 위한 통합 방법
US7261751B2 (en) 2004-08-06 2007-08-28 Conocophillips Company Synthesis gas process comprising partial oxidation using controlled and optimized temperature profile
GB0510823D0 (en) 2005-05-27 2005-07-06 Johnson Matthey Plc Methanol synthesis
US7427368B2 (en) 2005-08-16 2008-09-23 Praxair Technology, Inc. Synthesis gas and carbon dioxide generation method
US7947116B2 (en) * 2006-02-06 2011-05-24 Eltron Research & Development, Inc. Hydrogen separation process
US20070292342A1 (en) 2006-06-19 2007-12-20 John William Hemmings Synthesis gas production method and reactor
US20080169449A1 (en) * 2006-09-08 2008-07-17 Eltron Research Inc. Catalytic membrane reactor and method for production of synthesis gas
US7856829B2 (en) 2006-12-15 2010-12-28 Praxair Technology, Inc. Electrical power generation method
US8262755B2 (en) 2007-06-05 2012-09-11 Air Products And Chemicals, Inc. Staged membrane oxidation reactor system
US7954458B2 (en) 2007-11-14 2011-06-07 Alstom Technology Ltd Boiler having an integrated oxygen producing device
EP2147896A1 (en) * 2008-07-22 2010-01-27 Uhde GmbH Low energy process for the production of ammonia or methanol
FR2946546B1 (fr) * 2009-06-15 2012-06-08 Air Liquide Procede de regulation de la purete d'oxygene produit par une unite d'adsorption par controle du debit
US8246719B2 (en) 2009-09-25 2012-08-21 Air Products And Chemicals, Inc. Use of impure inert gases in the controlled heating and cooling of mixed conducting metal oxide materials
US20110142722A1 (en) 2009-12-14 2011-06-16 John William Hemmings Method and apparatus for producing synthesis gas
US8287762B2 (en) 2010-04-02 2012-10-16 Air Products And Chemicals, Inc. Operation of staged membrane oxidation reactor systems
FI20105503A (fi) * 2010-05-10 2011-11-11 Neste Oil Oyj Menetelmä hiilivetykoostumuksen tuottamiseksi
CN201825722U (zh) * 2010-10-29 2011-05-11 华南理工大学 流化床透氧膜反应器
CN102060269B (zh) * 2010-10-29 2012-09-05 华南理工大学 流化床透氧膜反应器及其生产含氢合成气的方法
US8349214B1 (en) * 2011-07-08 2013-01-08 Praxair Technology, Inc. Synthesis gas method and apparatus
US9394219B2 (en) 2011-10-26 2016-07-19 Stamicarbon B.V. Method for producing synthesis gas for methanol production
US9453644B2 (en) 2012-12-28 2016-09-27 Praxair Technology, Inc. Oxygen transport membrane based advanced power cycle with low pressure synthesis gas slip stream
US20140219884A1 (en) 2013-01-07 2014-08-07 Sean M. Kelly High emissivity and high temperature diffusion barrier coatings for an oxygen transport membrane assembly
US9115045B2 (en) 2013-04-26 2015-08-25 Praxair Technology, Inc. Method and system for producing methanol using an oxygen transport membrane based reforming system
US9212113B2 (en) 2013-04-26 2015-12-15 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
US9023245B2 (en) 2013-04-26 2015-05-05 Praxair Technology, Inc. Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming
US9365422B2 (en) 2013-04-26 2016-06-14 Praxair Technology, Inc. Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system with recycling of the produced synthesis gas

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077323A (en) * 1997-06-06 2000-06-20 Air Products And Chemicals, Inc. Synthesis gas production by ion transport membranes
EP0926096A1 (en) * 1997-12-23 1999-06-30 Air Products And Chemicals, Inc. Production of synthesis gas by mixed conducting membranes
US6114400A (en) * 1998-09-21 2000-09-05 Air Products And Chemicals, Inc. Synthesis gas production by mixed conducting membranes with integrated conversion into liquid products
US20070289215A1 (en) * 2006-06-19 2007-12-20 John William Hemmings Method and apparatus for producing synthesis gas
US20130009102A1 (en) * 2011-07-08 2013-01-10 Kelly Sean M Oxygen transport membrane system and method for transferring heat to catalytic/process reactors

Also Published As

Publication number Publication date
EP2989049A1 (en) 2016-03-02
CA2909977A1 (en) 2014-10-30
US9352296B2 (en) 2016-05-31
CN105121334A (zh) 2015-12-02
RU2015150594A (ru) 2017-05-31
US20150190776A1 (en) 2015-07-09
MX2015014985A (es) 2016-02-05
MX365493B (es) 2019-06-05
CN107311106A (zh) 2017-11-03
CA2909977C (en) 2018-10-30
RU2653151C2 (ru) 2018-05-07
WO2014176021A1 (en) 2014-10-30
US9023245B2 (en) 2015-05-05
BR112015026890A2 (pt) 2017-07-25
US20140319424A1 (en) 2014-10-30
CN107311106B (zh) 2019-09-20
EP2989049B1 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
CN105121334B (zh) 使用具有次级重整的氧输送膜基重整系统的生产合成气的方法与系统
CN105764842B (zh) 使用具有二段转化的基于氧转运膜的重整系统生产氢气的方法和系统
US10005664B2 (en) Method and system for producing a synthesis gas using an oxygen transport membrane based reforming system with secondary reforming and auxiliary heat source
CN105377798B (zh) 使用基于氧转运膜的重整系统生产甲醇的方法和系统
US8623241B2 (en) Oxygen transport membrane system and method for transferring heat to catalytic/process reactors
JP2004115365A (ja) 水蒸気リフォーミング方法
CN106103339A (zh) 用于由fischer‑tropsch方法使用由基于氧传输膜的重整反应器产生的合成气体产生液态烃产物的方法
JP4427173B2 (ja) 合成ガスの製造方法
EP3596005B1 (en) Method and system for producing hydrogen using an oxygen transport membrane based reforming system
CN105492379B (zh) 使用集成的基于氧传输膜的重整系统生产甲醇的方法和系统
US9611144B2 (en) Method and system for producing a synthesis gas in an oxygen transport membrane based reforming system that is free of metal dusting corrosion
US9938145B2 (en) Method and system for adjusting synthesis gas module in an oxygen transport membrane based reforming system
CN105517950B (zh) 用于使用具有二级重整和辅助热源的基于氧传输膜的重整系统来生产合成气的方法和系统
CN105377750A (zh) 在基于氧气输送膜的转化系统内生产合成气的方法和系统
JP2010153255A (ja) 水素生成装置を多段に備える燃料電池システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170711

CF01 Termination of patent right due to non-payment of annual fee