CN105119629B - 同时同频全双工终端和系统 - Google Patents

同时同频全双工终端和系统 Download PDF

Info

Publication number
CN105119629B
CN105119629B CN201510402978.5A CN201510402978A CN105119629B CN 105119629 B CN105119629 B CN 105119629B CN 201510402978 A CN201510402978 A CN 201510402978A CN 105119629 B CN105119629 B CN 105119629B
Authority
CN
China
Prior art keywords
signal
controllable
full duplex
phase
channel full
Prior art date
Application number
CN201510402978.5A
Other languages
English (en)
Other versions
CN105119629A (zh
Inventor
赵士青
郭爱平
胡胜钢
Original Assignee
惠州Tcl移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl移动通信有限公司 filed Critical 惠州Tcl移动通信有限公司
Priority to CN201510402978.5A priority Critical patent/CN105119629B/zh
Publication of CN105119629A publication Critical patent/CN105119629A/zh
Application granted granted Critical
Publication of CN105119629B publication Critical patent/CN105119629B/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • H04B1/12Neutralising, balancing, or compensation arrangements
    • H04B1/123Neutralising, balancing, or compensation arrangements using adaptive balancing or compensation means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/44Transmit/receive switching
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/50Circuits using different frequencies for the two directions of communication
    • H04B1/52Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa
    • H04B1/525Hybrid arrangements, i.e. arrangements for transition from single-path two-direction transmission to single-direction transmission on each of two paths or vice versa with means for reducing leakage of transmitter signal into the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • H04B1/54Circuits using the same frequency for two directions of communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks

Abstract

本发明公开了同时同频全双工终端和系统,包括中央处理器、射频发射接收器、功率分配器、功率放大器、本机发射天线、可控自适应模块、信号混合器和本机接收天线,中央处理器控制射频发射接收器发射射频信号,射频信号经功率分配器分配为两路,一路射频信号经功率放大器放大并由本机发射天线发射,另一路射频信号作为采样信号,经可控自适应模块进行放大和移相处理,使采样信号与本机接收天线接收的自干扰信号的幅度相等、相位相反,并送入信号混合器与本机接收天线接收的基站信号、自干扰信号混合后,传输给射频发射接收器解调后送中央处理器处理并根据接收到的信号来实时控制采样信号的幅度与相位,抑制了自干扰信号,实现同时同频全双工通信。

Description

同时同频全双工终端和系统

技术领域

[0001]本发明涉及通信技术领域,特别涉及同时同频全双工终端和系统。

背景技术

[0002]随着用户速率和业务量需求的飞速增长,无线通信系统所需的带宽不断增大,对 频谱资源的需求迅速增加。然而,无线资源是有限的,扩展无线通信频段也会带来各方面的 挑战。同时同频全双工技术是下一代通信5G的潜在关键技术,是指在相同时间里使用相同 的频率进行同时发射和同时接收。

[0003]同时同频全双工技术理论上在相同条件下比传统通信可以提升一倍的传输速率, 但同时同频全双工的本地发射信号会对本地接收信号产生很强的自干扰,因此需要在射频 前端进行自干扰抑制。

[0004] 因而现有技术还有待改进和提高。

发明内容

[0005] 鉴于上述现有技术的不足之处,本发明的目的在于提供同时同频全双工终端和系 统,能最大程度的抑制自干扰信号。

[0006] 为了达到上述目的,本发明采取了以下技术方案:

[0007] —种同时同频全双工终端,其包括:

[0008] 中央处理器、射频发射接收器、功率分配器、功率放大器、本机发射天线、可控自适 应模块、信号混合器和本机接收天线;

[0009] 所述中央处理器控制射频发射接收器发射射频信号,射频发射接收器发射的射频 信号经功率分配器分配为两路,一路射频信号经功率放大器放大后,由本机发射天线向外 发射,另一路射频信号作为采样信号,经可控自适应模块进行放大和移相处理,使采样信号 与本机接收天线接收的自干扰信号的幅度相等、相位相反,并送入信号混合器与本机接收 天线接收的基站信号、自干扰信号混合后,传输给射频发射接收器。

[0010] 所述的同时同频全双工终端中,所述可控自适应模块包括可控放大器和可控移相 器;所述可控放大器将另一路射频信号放大,使放大后的采样信号与接收天线接收到的自 千扰信号的幅度相等;所述可控移相器对放大后的采样信号进行移相处理,使采样信号与 接收天线接收到的自干扰信号的相位相反。

[0011] 所述的同时同频全双工终端中,所述中央处理器用于实时控制可控放大器的放大 倍数。

[0012] 所述的同时同频全双工终端中,所述中央处理器还用于实时控制所述可控移相器 移相的相位。

[0013] 所述的同时同频全双工终端中,所述功率放大器还用于隔离本机发射天线接收的 基站信号。

[0014] 一种同时同频全双工系统,包括基站和如上所述的同时同频全双工终端。

[0015] 相较于现有技术,本发明提供的同时同频全双工终端和系统,通过中央处理器控 制射频发射接收器发射射频信号,射频信号经功率分配器分配为两路,一路射频信号经功 率放大器放大后,由本机发射天线向外发射,另一路射频信号作为采样信号,经可控自适应 模块进行放大和移相处理,使采样信号与本机接收天线接收的自干扰信号的幅度相等、相 位相反,并送入信号混合器与本机接收天线接收的基站信号、自干扰信号混合后,传输给射 频发射接收器,从而实现了实时控制采样信号使其保持与自干扰信号幅度相等、相位相反, 最大程度的抑制自干扰信号,达到同时同频全双工通信的目的。

附图说明

[0016] 图1为本发明同时同频全双工终端的结构框图。

[0017] 图2为本发明同时同频全双工系统的结构框图。

[0018] 图3为本发明同时同频全双工系统的原理示意图。

具体实施方式

[0019] 本发明提供一种同时同频全双工终端和系统,为使本发明的目的、技术方案及效 果更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所 描述的具体实施例仅用以解释本发明,并不用于限定本发明。

[0020] 请参阅图1,本发明提供的同时同频全双工终端包括:中央处理器10、射频发射接 收器20、功率分配器30、功率放大器40、本机发射天线50、可控自适应模块60、信号混合器7〇 和本机接收天线80。中央处理器10连接射频发射接收器20和可控自适应模块60,射频发射 接收器20的TX端口连接功率分配器30,所述功率分配器30的一输出端通过功率放大器40连 接本机发射天线50,所述功率分配器30的另一输出端通过可控自适应模块60连接本机接收 天线80。

[0021] 其中,所述中央处理器10用于控制所述射频发射接收器20发射射频信号,及接收 外部射频信号。所述射频发射接收器20通过TX端口输出射频信号,通过RX端口接收射频信 号。其中,通过所述射频发射接收器20的TX端口输出的射频信号,经所述功率分配器30分配 为两路,一路射频信号经所述功率放大器40放大后,由所述本机发射天线50向外发射,另一 路射频信号作为采样信号,送入所述可控自适应模块60进行放大和移相处理。

[0022] 本发明实施例中,用于抑制自干扰信号的采样信号来自所述射频发射接收器20的 TX端口输出的射频信号,保证了采样信号的纯净,提高了自干扰抑制性能。

[0023] 请继续参阅图1,经所述功率分配器30分配的采样信号需经所述可控自适应模块 60进行放大和移相处理。其中,所述可控自适应模块60包括可控放大器601和可控移相器 602,所述可控放大器601用于对采样信号的幅度进行放大,所述可控移相器602用于对采样 信号的相位进行调整。

[0024] 具体地,所述可控放大器601将采样信号放大,使放大后的采样信号与自干扰信号 (即由本机发射天线50输出,被本机接收天线80接收的信号)的幅度相等,所述可控移相器 602对放大后的采样信号进行移相处理,使采样信号与自干扰信号的相位相反,从而最大程 度的抑制自干扰信号,达到同时同频全双工通信的目的。

[0025] 请继续参阅图1,采样信号经所述可控自适应模块60进行放大和移相处理后送入 所述信号混合器70与所述本机接收天线80接收的自干扰信号和基站信号混合,使自干扰信 号与调整后的采样信号完全相抵,之后传输给所述射频发射接收器20。

[0026]由于所述射频发射接收器20输出的信号、接收天线80接收的自干扰信号不是一成 不变的,因此需要对自千扰抑制的采样信号进行实时控制,本发明中所述中央处理器10还 可根据功率放大器40的放大倍数和TX端口输出射频信号的相位,实时控制所述可控放大器 601的放大倍数,及控制所述可控移相器602移相的相位,从而实现了对采样信号的实时调 整,使其一直保持与自干扰信号的幅度相等、相位相反,进一步提高了自干扰抑制的性能。 [0027] 请继续参阅图1,所述功率放大器40还用于隔离所述本机发射天线50接收的基站 信号,进一步保证了采样信号不被外界噪声信号污染,提高采样信号的纯净度。同时,为了 提高同时同频全双工的性能,所述本机发射天线50和所述本机接收天线80的隔离度应尽量 大。

[0028] 请参阅图2,本发明还相应提供一种同时同频全双工系统,其包括基站和如上所述 的同时同频全双工终端。所述基站为CCFD (Co-time Co-frequency Full-Duplex,同时同频 全双工)基站100,其包括基站接收天线101和基站发射天线102,由于上文已对同时同频全 双工终端进行了详细描述,且CCFD基站为现有技术,此处不作详述。

[0029]以下对本发明的同时同频全双工系统工作过程进行详细说明:

[0030] 如图3所示,射频发射接收器20通过其TX端口输出射频信号,同时通过RX端口接收 射频信号。通过射频发射接收器20的TX端口输出的发射信号,经功率分配器30分成两路信 号,其中:一路射频信号输出到功率放大器40,经本机发射天线50向外发射,另一路射频信 号作为采样信号,经可控自适应模块60进行放大和移相处理,并送入信号混合器70与本机 接收天线80接收的基站信号、自干扰信号混合后,传输给射频发射接收器20。

[0031]具体应用时,本机发射天线50主要包含两个信号:其一为本机发射信号S(t),其二 为通过本机发射天线接收到的基站信号Sn⑴,其中,本机发射信号S (t)通过本机发射天线 向外发射,而本机发射天线接收到的基站发射信号Sn(t)由于功率放大器的隔离作用而无 法进入功率分配器30,即无法与采样信号混合,保证了采样信号不被外界噪声信号污染。 [0032]本机接收天线80接收到的两个信号,其一为基站的发射信号Rw(t),其二为本机的 发射信号Rn⑴,即本机接收天线80总的接收信号R⑴为:

[0033] R ⑴=Rw ⑴ +Rn ⑴

[0034] $了实现把本机接收天线80接收到的本机发射信号Rn (t),即自干扰信号消除掉, 本发明将采样信号经中央处理器10实时控制的可控放大器601放大,使放大后的信号幅度 等于本机接收天线80接收到的自干扰信号Rn(t)的幅度,并使该信号再经过中央处理器1〇 实时控制的可控移相器602移相处理,使移相后的采样信号Sd⑴在相位上和自干扰信号Rn ⑴的相位相反,gp:

[0035] Sd ⑴=-Rn ⑴

[0036]处理后的采样信号Sd⑴和本机接收天线80接收到的自干扰信号Rn⑴在信号混 合器70中混合,混合结果如下:

[0037] Sd⑴ + Rn⑴=〇

[0038]接收总信号R (t)和经处理后的采样信号Sd⑴在信号混合器7〇中混合输出后的信 号记为Rin (t),Rin⑴的值计算如下:

[0039] Rin ⑴=R ⑴ +Sd ⑴

[0040] = [Rw ⑴ +Rn ⑴]+ [-Rn ⑴]

[0041] =RW ⑴

[0042]即本机接收天线80接收到的信号和经处理后的采样信号混合后,理论上完全消除 了自干扰,输出至射频发射接收器20中的射频信号恰好是本机接收天线80接收到基站1〇〇 发来的信号Rw⑴,即Rin (t) =Rw (t) oRin⑴信号经射频发射接收器20的接收端RX接收,经 解调后送中央处理器10进行处理,从而实现了实时控制采样信号的幅度与相位,最大程度 的抑制自干扰信号,达到同时同频全双工通信的目的。

[0043] 综上所述,本发明提供的同时同频全双工终端和系统通过中央处理器控制射频发 射接收器发射射频信号,射频信号经功率分配器分配为两路,一路射频信号经功率放大器 放大后,由本机发射天线向外发射,另一路射频信号作为采样信号,经可控自适应模块进行 放大和移相处理,使采样信号与本机接收天线接收的自干扰信号的幅度相等、相位相反,并 送入信号混合器与本机接收天线接收的基站信号混合后,传输给射频发射接收器,从而实 现了实时控制采样信号的幅度与相位,最大程度的抑制自干扰信号,提高自干扰抑制性能。 [0044]可以理解的是,对本领域普通技术人员来说,可以根据本发明的技术方案及其发 明构思加以等同替换或改变,而所有这些改变或替换都应属于本发明所附的权利要求的保 护范围。

Claims (6)

1. 一种同时同频全双工终端,其特征在于,包括: 中央处理器、射频发射接收器、功率分配器、功率放大器、本机发射天线、可控自适应模 块、信号混合器和本机接收天线; 所述中央处理器控制射频发射接收器发射射频信号,射频发射接收器发射的射频信号 经功率分配器分配为两路,一路射频信号经功率放大器放大后,由本机发射天线向外发射, 另一路射频信号作为采样信号,经可控自适应模块进行放大和移相处理,使采样信号与本 机接收天线接收的自干扰信号的幅度相等、相位相反,并送入信号混合器与本机接收天线 接收的基站信号、自千扰信号混合后,传输给射频发射接收器; 所述射频发射接收器通过TX端口输出射频信号; 所述中央处理器根据功率放大器的放大倍数和TX端口输出射频信号的相位,实时控制 所述可控放大器的放大倍数,及控制所述可控移相器移相的相位。
2.根据权利要求1所述的同时同频全双工终端,其特征在于,所述可控自适应模块包括 可控放大器和可控移相器;所述可控放大器将另一路射频信号放大,使放大后的采样信号 与自千扰信号的幅度相等;所述可控移相器对放大后的采样信号进行移相处理,使采样信 号与接收天线接收到的自干扰信号的相位相反。
3.根据权利要求2所述的同时同频全双工终端,其特征在于,所述中央处理器用于实时 控制可控放大器的放大倍数。
4.根据权利要求2或3所述的同时同频全双工终端,其特征在于,所述中央处理器还用 于实时控制所述可控移相器移相的相位。
5.根据权利要求1所述的同时同频全双工终端,其特征在于,所述功率放大器还用于隔 离本机发射天线接收的基站信号。
6.—种同时同频全双工系统,其特征在于,包括基站和如权利要求卜5任意一项所述的 同时同频全双工终端。
CN201510402978.5A 2015-07-10 2015-07-10 同时同频全双工终端和系统 CN105119629B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510402978.5A CN105119629B (zh) 2015-07-10 2015-07-10 同时同频全双工终端和系统

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201510402978.5A CN105119629B (zh) 2015-07-10 2015-07-10 同时同频全双工终端和系统
PCT/CN2016/078644 WO2017008542A1 (zh) 2015-07-10 2016-04-07 同时同频全双工终端和系统
US15/316,961 US10291381B2 (en) 2015-07-10 2016-04-07 Co-time, co-frequency full-duplex terminal and system

Publications (2)

Publication Number Publication Date
CN105119629A CN105119629A (zh) 2015-12-02
CN105119629B true CN105119629B (zh) 2018-04-06

Family

ID=54667541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510402978.5A CN105119629B (zh) 2015-07-10 2015-07-10 同时同频全双工终端和系统

Country Status (3)

Country Link
US (1) US10291381B2 (zh)
CN (1) CN105119629B (zh)
WO (1) WO2017008542A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105119629B (zh) * 2015-07-10 2018-04-06 惠州Tcl移动通信有限公司 同时同频全双工终端和系统
CN105634541B (zh) * 2015-12-29 2018-11-27 北京邮电大学 全双工携能通信方法及节点
CN106130594B (zh) * 2016-01-26 2018-08-17 西北工业大学 基于中频域自干扰抑制的同时同频全双工通信方法及装置
CN105898783A (zh) * 2016-06-07 2016-08-24 北京小米移动软件有限公司 无线全双工通信自干扰信号的处理方法及装置
CN106877899B (zh) * 2016-12-26 2019-10-01 集美大学 一种rfid读写器载波泄露消除系统
WO2020133159A1 (zh) * 2018-12-28 2020-07-02 Oppo广东移动通信有限公司 采样自干扰信号的方法、终端设备和网络设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811069A (zh) * 2012-07-25 2012-12-05 华为技术有限公司 一种收发信机和干扰对消方法
CN103580720A (zh) * 2013-11-20 2014-02-12 东南大学 一种同频全双工自干扰抵消装置
CN203872199U (zh) * 2014-01-13 2014-10-08 郑州航空工业管理学院 无线通信系统的自干扰消除电路
CN104170340A (zh) * 2014-04-04 2014-11-26 华为技术有限公司 同频干扰抵消方法、装置及系统

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4406016A (en) * 1981-11-27 1983-09-20 The United States Of America As Represented By The Secretary Of The Army VHF Sensor in-band radio relay
CN103916148B (zh) * 2013-01-05 2016-08-03 华为技术有限公司 一种自适应射频干扰抵消装置、方法、接收机及通信系统
CN105978588B (zh) * 2013-02-22 2019-06-11 华为技术有限公司 信号干扰的处理方法及装置
US9225382B2 (en) * 2013-05-20 2015-12-29 Rf Micro Devices, Inc. Tunable filter front end architecture for non-contiguous carrier aggregation
CN103427872B (zh) * 2013-09-03 2015-01-21 电子科技大学 一种同时同频全双工多抽头射频自干扰抵消系统及方法
US9520983B2 (en) * 2013-09-11 2016-12-13 Kumu Networks, Inc. Systems for delay-matched analog self-interference cancellation
BR112016030000A2 (pt) * 2014-06-26 2018-06-19 Huawei Tech Ltd aparelho e método de anulação da interferência
US9450623B2 (en) * 2014-09-19 2016-09-20 Qualcomm Incorporated Noise canceler for use in a transceiver
CN104506209B (zh) 2014-12-15 2017-02-22 北京邮电大学 一种基于耦合线紧耦合器的全双工自干扰信号消除方法和系统
CN104716980B (zh) 2015-01-13 2017-09-15 中央军委装备发展部第六十三研究所 一种同时同频全双工射频多子带自干扰消除方法
CN105119629B (zh) 2015-07-10 2018-04-06 惠州Tcl移动通信有限公司 同时同频全双工终端和系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102811069A (zh) * 2012-07-25 2012-12-05 华为技术有限公司 一种收发信机和干扰对消方法
CN103580720A (zh) * 2013-11-20 2014-02-12 东南大学 一种同频全双工自干扰抵消装置
CN203872199U (zh) * 2014-01-13 2014-10-08 郑州航空工业管理学院 无线通信系统的自干扰消除电路
CN104170340A (zh) * 2014-04-04 2014-11-26 华为技术有限公司 同频干扰抵消方法、装置及系统

Also Published As

Publication number Publication date
US20170279589A1 (en) 2017-09-28
WO2017008542A1 (zh) 2017-01-19
US10291381B2 (en) 2019-05-14
CN105119629A (zh) 2015-12-02

Similar Documents

Publication Publication Date Title
JP6393406B2 (ja) キャリアアグリゲーション装置
US9819324B2 (en) Tunable duplexing circuit
US10063364B2 (en) Wireless full-duplex system and method using sideband test signals
US9768826B2 (en) Self-interference cancellation method, transceiver, and communications device for transmit/receive shared antenna
Okada et al. 20.3 A 64-QAM 60GHz CMOS transceiver with 4-channel bonding
US8660168B2 (en) Method and system for communicating via a spatial multilink repeater
CN204761429U (zh) 一种终端设备
US9209885B2 (en) Systems and methods for improved high capacity in wireless communication systems
US10230419B2 (en) Adaptive techniques for full duplex communications
US9225500B2 (en) Microwave backhaul system having a dual channel over a single interconnect
KR101455894B1 (ko) 직접 변환 통신 시스템의 불균형 보상
EP2941827B1 (en) Interference cancellation for division free duplexing or full duplex operation
US9654241B2 (en) Systems and methods for signal frequency division in wireless communication systems
US8023886B2 (en) Method and system for repeater with gain control and isolation via polarization
US9504039B2 (en) Universal remote radio head
US9673886B2 (en) Apparatus and methods for radio frequency signal boosters
EP2127434B1 (en) Transceiver with receive and transmit path performance diversity
US7155193B2 (en) Multi-channel filtering system for transceiver architectures
CN103427872B (zh) 一种同时同频全双工多抽头射频自干扰抵消系统及方法
US8761694B2 (en) Multiple antenna transceiver
US20120302161A1 (en) Signal Repeater With Gain Control And Spatial Isolation
CN103338172B (zh) 一种多径环境下同时同频全双工自干扰抵消方法
WO2019174304A1 (en) Multi-way switch, radio frequency system, and wireless communication device
US9979531B2 (en) Method and apparatus for tuning a communication device for multi band operation
US20190348968A1 (en) Apparatus and method for selecting frequency band

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant