CN105119243A - 基于故障电压比值与多信息融合的广域后备保护方法 - Google Patents

基于故障电压比值与多信息融合的广域后备保护方法 Download PDF

Info

Publication number
CN105119243A
CN105119243A CN201510581627.5A CN201510581627A CN105119243A CN 105119243 A CN105119243 A CN 105119243A CN 201510581627 A CN201510581627 A CN 201510581627A CN 105119243 A CN105119243 A CN 105119243A
Authority
CN
China
Prior art keywords
circuit
fault
protection
voltage ratio
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510581627.5A
Other languages
English (en)
Other versions
CN105119243B (zh
Inventor
何怡刚
李珊
项胜
尹柏强
佐磊
何威
童晋
李兵
袁莉芬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN201510581627.5A priority Critical patent/CN105119243B/zh
Publication of CN105119243A publication Critical patent/CN105119243A/zh
Application granted granted Critical
Publication of CN105119243B publication Critical patent/CN105119243B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

基于故障电压比值与多信息融合的广域后备保护方法,包括以下步骤:(1)检测广域保护的故障区域;(2)依据故障电压比值求取线路的故障概率;(3)依据多信息融合的方法求取线路的故障概率;(4)将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率。本发明使广域保护兼具高容错性和在复杂工况下良好的动作性能。

Description

基于故障电压比值与多信息融合的广域后备保护方法
技术领域
本发明涉及一种基于故障电压比值与多信息融合的广域后备保护方法。
背景技术
电网的结构日益复杂,传统基于本地测量信息的后备保护动作延时长、整定困难,难以适应电网结构的灵活变化;而且潮流转移发生时,难以区分过负荷和线路内部故障,易导致连锁跳闸事故。近些年,广域测量技术取得了一定的发展,广域保护也由此引起电力研究者的普遍关注。
现如今,高压电网主保护一般采用纵联保护,整定简单,动作正确率高、速度快且不受负荷转移的影响,而广域信息采样要求同步性,且由于采样装置或传输通道故障等原因,易造成保护信息错误或缺失。因此,广域保护的研究主要针对后备保护,致力于提高后备保护的性能。
2010年,张保会在文献具有容错性能的广域后备保护算法中提出,通过综合利用距离保护信息和方向元件信息识别故障元件,所需的广域信息较少,当任一保护信息错误或缺失时均能准确判别出故障。2010年,汪华在文献基于故障电压分布的广域后备保护算法中提出,利用故障电压比值构建故障识别判据的广域保护算法,该算法在电网高阻接地、故障转换、非全相运行等工况下具有良好的动作性能。2013年,王睿在文献基于相关矩阵的电网广域后备保护算法中提出,利用本线路和相邻线路的相关保护信息识别故障线路的广域后备保护算法,该算法有较高容错性。
利用广域信息准确识别故障元件是目前广域后备保护的研究核心之一。广域后备保护一般采用两类信息构建故障识别判据:一类是保护动作信息;另一类是电流、电压等可直接测得的电气量信息。
广域信息采集范围较大,且很难做到传统保护装置那样精密的抗干扰措施,传输信息由于装置或通道故障等原因会出现保护信息缺失或错误等情况,因此广域保护对于容错性有较高要求。并且广域后备保护在高阻接地、故障转换、非全相运行等复杂工况下不能具备良好的动作性能。现有技术只针对广域保护的容错性或者保护在复杂工况下的动作性能进行研究,未考虑在提高保护容错性的同时提高保护在复杂工况下的动作性能;或者在提高保护在复杂工况下的动作性能时研究保护的容错性。
发明内容
本发明所要解决的技术问题是,克服上述背景技术的不足,提供一种使广域保护兼具高容错性和在复杂工况下良好的动作性能的基于故障电压比值与多信息融合的广域后备保护方法。
本发明解决其技术问题采用的技术方案是,一种基于故障电压比值与多信息融合的广域后备保护方法,包括以下步骤:
(1)检测广域保护的故障区域;
(2)依据故障电压比值求取线路的故障概率;
(3)依据多信息融合的方法求取线路的故障概率;
(4)将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率。
进一步,所述步骤(1)中,检测广域保护的故障区域的具体方法如下:
(1-1)构建子站启动判据
( | U · m 2 | ≥ K N U N ) ∪ ( | U · m 0 | ≥ K Z U N ) ∪ ( | U · m 1 | ≤ K P U N ) , 满足此判据的子站将母线序电压上传至决策中心;其中,表示母线的负序电压,表示母线的零序电压,表示母线的正序电压,UN表示母线的额定电压;KN为负序电压比值系数,其值整定为0.1;KZ为零序电压比值系数,其值整定为0.1;KP为正序电压比值系数,其值整定为0.5;
(1-2)将序电压排序前3位的母线选为故障相关母线,并根据母线与线路的连接关系,将所有与故障相关母线相连的线路选为故障疑似线路。
进一步,所述步骤(2)中,依据故障电压比值求取线路的故障概率的具体方法如下:
(2-1)利用PMU测得线路mn两端的电压电流利用测得的线路mn两端的电压电流分别计算线路mn两端的故障电压估算值计算公式如下: 其中,表示线路mn两端的电压,表示线路mn两端的电流,表示线路mn两端的故障电压估算值,ZL为线路的等效阻抗;
(2-2)定义线路mn两端的故障电压比值系数 且取Kmax=max(Km,Kn);当线路区外发生故障时,线路两端电压推算值与测量值相等,即Kmax=max(Km,Kn)=1;当线路区内发生故障时,Km、Kn均大于1,且与过渡电阻无关,此时Kmax=max(Km,Kn)>1;其中,表示线路mn两端的电压,表示线路mn两端的故障电压估算值,Km,Kn为线路mn两端的故障电压比值系数,Kmax为故障电压比值系数最大值;
(2-3)利用故障电压比值获取线路的故障概率PΙ;令y=Kmax/Kset,其中Kset为整定值,取Kset=1.2,取值如下所示:
P I = 1 y &GreaterEqual; 1.4 0.95 1.2 &le; y < 1.4 0.85 1 &le; y < 1.2 0.35 0.83 &le; y < 1 0.05 y < 0.83 .
进一步,所述步骤(3)中,依据多信息融合的方法求取线路的故障概率的具体方法如下:
(3-1)依据主保护、距离保护I段、距离保护II段、距离保护III段、方向元件对线路故障判别的影响程度,主保护的权值取0.6,距离保护I段的权值取0.6,距离保护II段的权值取0.3,距离保护III段的权值取0.2,本线路方向元件的权值取0.3,相邻线路方向元件的权值取为0.2;
(3-2)引入两个相关系数:本线路相关系数LAF和相邻线路相关系数AAF,本线路相关系数LAF反映本线路保护信息对本线路故障的综合判断,相邻线路相关系数AAF反映相邻线路保护信息对本线路故障的综合判断;
L A F = 0.6 ( A + A &prime; ) + 0.6 ( B I + B I &prime; ) + 0.3 ( B I I + B I I &prime; ) + 0.2 ( B I I I 0 + B I I I 0 &prime; ) + 0.3 ( C + C &prime; ) ; 其中,A为本线路一侧的主保护信息,BΙ,BΙΙ,BΙΙΙ0分别为本线路一侧的距离ΙΙΙΙΙΙ段保护信息,C为本线路一侧的方向元件信息;A'为本线路另一侧的主保护信息,B'Ι,B'ΙΙ,B'ΙΙΙ0分别为本线路另一侧的距离ΙΙΙΙΙΙ段保护信息,C'为本线路另一侧的方向元件信息;BΙΙΙi为相邻线路i远离本线路那侧的距离保护III段信息;CiN、CiF分别为相邻线路近侧、远侧的方向信息,CiN取值为+1或0或-1,CiF取值为+1或0或-1;Nn表示本线路相邻线路的个数;i表示其他相邻线路序号;
(3-3)计算线路的故障判断综合值Fout和故障门槛值Fset
故障判断综合值Fout的计算方法如下:FoutFout=LAF+AAF;其中,LAF表示本线路相关系数,AAF表示相邻线路相关系数;
故障门槛值Fset的计算方法如下:设定线路首端IED失效,当首端发生故障时,LAF=0.6×1+0.6×0+0.3×1+0.2×1+0.3×1=1.4,若末端发生故障,LAF=0.6×1+0.6×1+0.3×1+0.2×1+0.3×1=2;设定相邻线路近侧IED失效, A A F = &Sigma; i = 1 N n 0.2 C i F + 0.2 &Sigma; i = 1 N B I I I i , F s e t = 1 2 ( 1.4 + 2 ) + A A F = 1 2 ( 1.4 + 2 ) + &Sigma; i = 1 N n ( 0.2 C i F + 0.2 B I I I i ) ; 其中,CiF表示相邻线路远侧的方向信息,Nn表示本线路相邻线路的个数;i表示其他相邻线路序号;BΙΙΙi为相邻线路i远离本线路那侧的距离保护III段信息;
(3-4)计算传统保护信息判断线路的故障概率:
对Fout做如下处理:获得故障确认比值x,x=Fout/Fset
对x作如下处理:获得利用线路保护信息判断线路的故障概率PΙΙ
P I I = { 1 x > 1 x 0 &le; x &le; 1 0 x < 0 .
进一步,所述步骤(4)中,将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率的具体方法如下:
将PΙ、PΙΙ加权后获得线路的综合故障概率P,两种概率的权值分别取0.5和0.5,P=0.5PΙ+0.5PΙΙ
进一步,所述步骤(2-2)中故障电压比值系数最大值Kmax的选定方法如下:
对于电网中较常发生的不对称故障,利用线路两侧的零、负序电压比值系数最大值作为故障电压比值系数最大值Kmax,Kmax=Kmax0-2=max(Km0,Kn0,Km2,Kn2), 其中,Km0,Kn0为线路mn两侧的零序故障电压比值系数,Km2,Kn2为线路mn两侧的负序故障电压比值系数;为线路mn两侧测量到的零序电压分量,为线路mn两侧测量到的负序电压分量;为由本侧测量信息计算得到的对侧零序电压分量,为由本侧测量信息计算得到的对侧负序电压分量;对于三相对称故障,利用正序电压突变量构成故障电压比值系数最大值Kmax,Kmax=Kmax1=max(Km1,Kn1), 其中,Km1,Kn1为线路mn两侧的正序故障电压比值系数,分别为线路mn两侧测量得到的正序电压突变量;分别为由本侧测量信息计算得到的对侧正序电压突变量。
与现有技术相比,本发明的优点如下:
(1)保护的容错性较高,不会因采样装置或传输通道故障等原因造成的保护信息错误或缺失而导致不能正确识别故障线路。
(2)引入故障电压比较的方法,保护在高阻接地、非全相运行再故障等复杂工况下具有良好的动作性能。
(3)本发明兼顾保护的高容错性和在复杂工况下良好的动作性能,算法简单,且对采样数据的同步性要求较低。
附图说明
图1是本发明实施例的流程图。
具体实施方式
下面结合附图及具体实施例对本发明作进一步详细描述。
本实施例包括以下步骤:
(1)检测广域保护的故障区域;
(2)依据故障电压比值求取线路的故障概率;
(3)依据多信息融合的方法求取线路的故障概率;
(4)将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率。
所述步骤(1)中,检测广域保护的故障区域的具体方法如下:
(1-1)构建子站启动判据
满足此判据的子站将母线序电压上传至决策中心;其中,表示母线的负序电压,表示母线的零序电压,表示母线的正序电压,UN表示母线的额定电压;KN为负序电压比值系数,其值整定为0.1;KZ为零序电压比值系数,其值整定为0.1;KP为正序电压比值系数,其值整定为0.5;KP整定为0.5是为了防止子站在电网正常状态切换运行方式时的频繁启动;
(1-2)为了保证故障相关母线选择的冗余性,将序电压排序前3位的母线选为故障相关母线,并根据母线与线路的连接关系,将所有与故障相关母线相连的线路选为故障疑似线路。
所述步骤(2)中,依据故障电压比值求取线路的故障概率的具体方法如下:
(2-1)利用PMU(同步相量测量装置PhasorMeasurementUnit)测得线路mn两端的电压电流利用测得的线路mn两端的电压电流分别计算线路mn两端的故障电压估算值计算公式如下:其中, 表示线路mn两端的电压,表示线路mn两端的电流,表示线路mn两端的故障电压估算值,ZL为线路的等效阻抗;
(2-2)定义线路mn两端的故障电压比值系数 且取Kmax=max(Km,Kn);当线路区外发生故障时,线路两端电压推算值与测量值相等,即Kmax=max(Km,Kn)=1;当线路区内发生故障时,Km、Kn均大于1,且与过渡电阻无关,此时Kmax=max(Km,Kn)>1;其中,表示线路mn两端的电压,表示线路mn两端的故障电压估算值,Km,Kn为线路mn两端的故障电压比值系数,Kmax为故障电压比值系数最大值;
(2-3)利用故障电压比值获取线路的故障概率PΙ;令y=Kmax/Kset,其中Kset为整定值,考虑到电压、电流的测量误差和电网运行方式切换导致电压电流暂态变化的影响,取Kset=1.2,PΙ取值如下所示:
P I = { 1 y &GreaterEqual; 1.4 0.95 1.2 &le; y < 1.4 0.85 1 &le; y < 1.2 0.35 0.83 &le; y < 1 0.05 y < 0.83 .
所述步骤(3)中,依据多信息融合的方法求取线路的故障概率的具体方法如下:
(3-1)依据主保护、距离保护I段、距离保护II段、距离保护III段、方向元件对线路故障判别的影响程度,主保护的权值取0.6,距离保护I段的权值取0.6,距离保护II段的权值取0.3,距离保护III段的权值取0.2,本线路方向元件的权值取0.3,相邻线路方向元件的权值取为0.2;此处将本线路方向元件和相邻线路方向元件的权值区分开来,取不同的值,是考虑到出现相邻线路方向元件误动或拒动个数较多的情况,正常线路可能会误判为故障,因此适当降低相邻线路方向元件信息对本线路故障判断的权值;
(3-2)引入两个相关系数:本线路相关系数LAF和相邻线路相关系数AAF,本线路相关系数LAF反映本线路保护信息对本线路故障的综合判断,相邻线路相关系数AAF反映相邻线路保护信息对本线路故障的综合判断;
L A F = 0.6 ( A + A &prime; ) + 0.6 ( B I + B I &prime; ) + 0.3 ( B I I + B I I &prime; ) + 0.2 ( B I I I 0 + B I I I 0 &prime; ) + 0.3 ( C + C &prime; ) ;
A A F = 0.2 &Sigma; i = 1 N n B I I I i + &Sigma; i = 1 N n ( - 0.2 C i N + 0.2 C i F ) ; 其中,A为本线路一侧的主保护信息,BΙ,BΙΙ,BΙΙΙ0分别为本线路一侧的距离ΙΙΙΙΙΙ段保护信息,C为本线路一侧的方向元件信息;A'为本线路另一侧的主保护信息,B'Ι,B′II,B′III0分别为本线路另一侧的距离ΙΙΙΙΙΙ段保护信息,C'为本线路另一侧的方向元件信息;BΙΙΙi为相邻线路i远离本线路那侧的距离保护III段信息;CiN、CiF分别为相邻线路近侧、远侧的方向信息,CiN取值为+1或0或-1,CiF取值为+1或0或-1;Nn表示本线路相邻线路的个数;i表示其他相邻线路序号;
(3-3)计算线路的故障判断综合值Fout和故障门槛值Fset
故障判断综合值Fout的计算方法如下:FoutFout=LAF+AAF;其中,LAF表示本线路相关系数,AAF表示相邻线路相关系数;
故障门槛值Fset的计算方法如下:设定线路首端IED(IntelligentElectronicDevice,智能电子设备)失效,当首端发生故障时,LAF=0.6×1+0.6×0+0.3×1+0.2×1+0.3×1=1.4,若末端发生故障,LAF=0.6×1+0.6×1+0.3×1+0.2×1+0.3×1=2;设定相邻线路近侧IED失效, A A F = &Sigma; i = 1 N n 0.2 C i F + 0.2 &Sigma; i = 1 N n B I I I i , F s e t = 1 2 ( 1.4 + 2 ) + A A F = 1 2 ( 1.4 + 2 ) + &Sigma; i = 1 N n ( 0.2 C i F + 0.2 B I I I i ) ; 其中,CiF表示相邻线路远侧的方向信息,Nn表示本线路相邻线路的个数;i表示其他相邻线路序号;BΙΙΙi为相邻线路i远离本线路那侧的距离保护III段信息;
(3-4)计算传统保护信息判断线路的故障概率:对Fout做如下处理:获得故障确认比值x,x=Fout/Fset;对x作如下处理:获得利用线路保护信息判断线路的故障概率PΙΙ
P I I = { 1 x > 1 x 0 &le; x &le; 1 0 x < 0 .
所述步骤(4)中,将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率的具体方法如下:
将PΙ、PΙΙ加权后获得线路的综合故障概率P,两种概率的权值分别取0.5和0.5,P=0.5PΙ+0.5PΙΙ
所述步骤(2-2)中,故障电压比值系数最大值Kmax的选定方法如下:
对于电网中较常发生的不对称故障,利用线路两侧的零、负序电压比值系数最大值作为故障电压比值系数最大值Kmax,Kmax=Kmax0-2=max(Km0,Kn0,Km2,Kn2), 其中,Km0,Kn0为线路mn两侧的零序故障电压比值系数,Km2,Kn2为线路mn两侧的负序故障电压比值系数;为线路mn两侧测量到的零序电压分量,为线路mn两侧测量到的负序电压分量;为由本侧测量信息计算得到的对侧零序电压分量,为由本侧测量信息计算得到的对侧负序电压分量;对于三相对称故障,利用正序电压突变量构成故障电压比值系数最大值Kmax,Kmax=Kmax1=max(Km1,Kn1), 其中,Km1,Kn1为线路mn两侧的正序故障电压比值系数,分别为线路mn两侧测量得到的正序电压突变量;分别为由本侧测量信息计算得到的对侧正序电压突变量。
参照图1,本实施例的具体流程如下:
步骤01:满足启动判据的子站启动,并将其序电压上传至决策中心;
步骤02:依据各子站上传的序电压选出故障相关母线,并检测出故障疑似线路Li(i=1,2,...,n),i为故障疑似线路编号,n为故障疑似线路总数;
步骤03:初始化:i=1,并更新Li
步骤04:计算利用故障电压比值判断线路Li的故障概率PI
步骤05:计算利用保护信息判断线路Li的故障概率PII
步骤06:计算线路Li的故障综合故障概率P;
步骤07:判断P≥0.8是否成立,若成立,则执行步骤09;若不成立,则执行步骤08,
步骤08:判断是否0.7<P<0.8,且其两侧主保护均未动作是否满足,若满足,则执行步骤09,若不满足,则返回步骤03;
步骤09:确定线路Li故障;
步骤10:判断i=n是否成立,若成立,则执行步骤11;若不成立,则返回步骤03;
步骤11:对已确定的故障线路发跳闸命令;
步骤12:结束。
本发明在提高保护容错性的同时,引入故障电压比较的方法,提高了保护在高阻接地、非全相运行再故障等复杂工况下的动作性能,使广域保护兼具高容错性和在复杂工况下良好的动作性能的优点。
本领域的技术人员可以对本发明实施例进行各种修改和变型,倘若这些修改和变型在本发明权利要求及其等同技术的范围之内,则这些修改和变型也在本发明的保护范围之内。
说明书中未详细描述的内容为本领域技术人员公知的现有技术。

Claims (6)

1.一种基于故障电压比值与多信息融合的广域后备保护方法,其特征在于,包括以下步骤:
(1)检测广域保护的故障区域;
(2)依据故障电压比值求取线路的故障概率;
(3)依据多信息融合的方法求取线路的故障概率;
(4)将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率。
2.如权利要求1所述的基于故障电压比值与多信息融合的广域后备保护方法,其特征在于,所述步骤(1)中,检测广域保护的故障区域的具体方法如下:
(1-1)构建子站启动判据 ( | U &CenterDot; m 2 | &GreaterEqual; K N U N ) &cup; ( | U &CenterDot; m 0 | &GreaterEqual; K Z U N ) &cup; ( | U &CenterDot; m 1 | &le; K P U N ) , 满足此判据的子站将母线序电压上传至决策中心;其中,表示母线的负序电压,表示母线的零序电压,表示母线的正序电压,UN表示母线的额定电压;KN为负序电压比值系数,其值整定为0.1;KZ为零序电压比值系数,其值整定为0.1;KP为正序电压比值系数,其值整定为0.5;
(1-2)将序电压排序前3位的母线选为故障相关母线,并根据母线与线路的连接关系,将所有与故障相关母线相连的线路选为故障疑似线路。
3.如权利要求1或2所述的基于故障电压比值与多信息融合的广域后备保护方法,其特征在于,所述步骤(2)中,依据故障电压比值求取线路的故障概率的具体方法如下:
(2-1)利用PMU测得线路mn两端的电压电流利用测得的线路mn两端的电压电流分别计算线路mn两端的故障电压估算值计算公式如下: 其中,表示线路mn两端的电压,表示线路mn两端的电流,表示线路mn两端的故障电压估算值,ZL为线路的等效阻抗;
(2-2)定义线路mn两端的故障电压比值系数 且取Kmax=max(Km,Kn);当线路区外发生故障时,线路两端电压推算值与测量值相等,即Kmax=max(Km,Kn)=1;当线路区内发生故障时,Km、Kn均大于1,且与过渡电阻无关,此时Kmax=max(Km,Kn)>1;其中,表示线路mn两端的电压,表示线路mn两端的故障电压估算值,Km,Kn为线路mn两端的故障电压比值系数,Kmax为故障电压比值系数最大值;
(2-3)利用故障电压比值获取线路的故障概率PΙ;令y=Kmax/Kset,其中Kset为整定值,取Kset=1.2,取值如下所示:
P I = 1 y &GreaterEqual; 1.4 0.95 1.2 &le; y < 1.4 0.85 1 &le; y < 1.2 0.35 0.83 &le; y < 1 0.05 y < 0.83 .
4.如权利要求1或2所述的基于故障电压比值与多信息融合的广域后备保护方法,其特征在于,所述步骤(3)中,依据多信息融合的方法求取线路的故障概率的具体方法如下:
(3-1)依据主保护、距离保护I段、距离保护II段、距离保护III段、方向元件对线路故障判别的影响程度,主保护的权值取0.6,距离保护I段的权值取0.6,距离保护II段的权值取0.3,距离保护III段的权值取0.2,本线路方向元件的权值取0.3,相邻线路方向元件的权值取为0.2;
(3-2)引入两个相关系数:本线路相关系数LAF和相邻线路相关系数AAF,本线路相关系数LAF反映本线路保护信息对本线路故障的综合判断,相邻线路相关系数AAF反映相邻线路保护信息对本线路故障的综合判断;
LAF=0.6(A+A')+0.6(BΙ+B′Ι)+0.3(BΙΙ+B′ΙΙ)+0.2(BΙΙΙ0+B′ΙΙΙ0)+0.3(C+C'); A A F = 0.2 &Sigma; i = 1 N n B I I I i + &Sigma; i = 1 N n ( - 0.2 C i N + 0.2 C i F ) ; 其中,A为本线路一侧的主保护信息,BΙ,BΙΙ,BΙΙΙ0分别为本线路一侧的距离Ι、ΙΙ、ΙΙΙ段保护信息,C为本线路一侧的方向元件信息;A'为本线路另一侧的主保护信息,B'Ι,B'ΙΙ,B'ΙΙΙ0分别为本线路另一侧的距离Ι、ΙΙ、ΙΙΙ段保护信息,C'为本线路另一侧的方向元件信息;BΙΙΙi为相邻线路i远离本线路那侧的距离保护III段信息;CiN、CiF分别为相邻线路近侧、远侧的方向信息,CiN取值为+1或0或-1,CiF取值为+1或0或-1;Nn表示本线路相邻线路的个数;i表示其他相邻线路序号;
(3-3)计算线路的故障判断综合值Fout和故障门槛值Fset
故障判断综合值Fout的计算方法如下:FoutFout=LAF+AAF;其中,LAF表示本线路相关系数,AAF表示相邻线路相关系数;
故障门槛值Fset的计算方法如下:设定线路首端IED失效,当首端发生故障时,LAF=0.6×1+0.6×0+0.3×1+0.2×1+0.3×1=1.4,若末端发生故障,LAF=0.6×1+0.6×1+0.3×1+0.2×1+0.3×1=2;设定相邻线路近侧IED失效, A A F = &Sigma; i = 1 N n 0.2 C i F + 0.2 &Sigma; i = 1 N n B I I I i , F s e t = 1 2 ( 1.4 + 2 ) + A A F = 1 2 ( 1.4 + 2 ) + &Sigma; i = 1 N n ( 0.2 C i F + 0.2 B I I I i ) ; 其中,CiF表示相邻线路远侧的方向信息,Nn表示本线路相邻线路的个数;i表示其他相邻线路序号;BΙΙΙi为相邻线路i远离本线路那侧的距离保护III段信息;
(3-4)计算传统保护信息判断线路的故障概率:
对Fout做如下处理:获得故障确认比值x,x=Fout/Fset
对x作如下处理:获得利用线路保护信息判断线路的故障概率PΙΙ
P I I = 1 x > 1 x 0 &le; x &le; 1 0 x < 0 .
5.如权利要求1或2所述的基于故障电压比值与多信息融合的广域后备保护方法,其特征在于,所述步骤(4)中,将步骤(2)中的故障概率和步骤(3)中的故障概率加权综合获得线路的综合故障概率的具体方法如下:
将PΙ、PΙΙ加权后获得线路的综合故障概率P,两种概率的权值分别取0.5和0.5,P=0.5PΙ+0.5PΙΙ
6.如权利要求3所述的基于故障电压比值与多信息融合的广域后备保护方法,其特征在于,所述步骤(2-2)中故障电压比值系数最大值Kmax的选定方法如下:
对于电网中较常发生的不对称故障,利用线路两侧的零、负序电压比值系数最大值作为故障电压比值系数最大值Kmax,Kmax=Kmax0-2=max(Km0,Kn0,Km2,Kn2), 其中,Km0,Kn0为线路mn两侧的零序故障电压比值系数,Km2,Kn2为线路mn两侧的负序故障电压比值系数;为线路mn两侧测量到的零序电压分量,为线路mn两侧测量到的负序电压分量;为由本侧测量信息计算得到的对侧零序电压分量,为由本侧测量信息计算得到的对侧负序电压分量;对于三相对称故障,利用正序电压突变量构成故障电压比值系数最大值Kmax,Kmax=Kmax1=max(Km1,Kn1), 其中,Km1,Kn1为线路mn两侧的正序故障电压比值系数,分别为线路mn两侧测量得到的正序电压突变量;分别为由本侧测量信息计算得到的对侧正序电压突变量。
CN201510581627.5A 2015-09-11 2015-09-11 基于故障电压比值与多信息融合的广域后备保护方法 Active CN105119243B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510581627.5A CN105119243B (zh) 2015-09-11 2015-09-11 基于故障电压比值与多信息融合的广域后备保护方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510581627.5A CN105119243B (zh) 2015-09-11 2015-09-11 基于故障电压比值与多信息融合的广域后备保护方法

Publications (2)

Publication Number Publication Date
CN105119243A true CN105119243A (zh) 2015-12-02
CN105119243B CN105119243B (zh) 2018-10-16

Family

ID=54667169

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510581627.5A Active CN105119243B (zh) 2015-09-11 2015-09-11 基于故障电压比值与多信息融合的广域后备保护方法

Country Status (1)

Country Link
CN (1) CN105119243B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207998A (zh) * 2016-09-06 2016-12-07 国家电网公司 基于信息容错的保护系统与方法
CN106849023A (zh) * 2017-03-09 2017-06-13 西安科技大学 基于行波信息的广域后备保护关联域识别方法
CN106918758A (zh) * 2017-02-17 2017-07-04 国电南瑞科技股份有限公司 一种基于电气量和非电气量的小电流接地综合选线方法
CN107104416A (zh) * 2016-11-28 2017-08-29 华北电力大学(保定) 一种多端柔性中压直流配电系统的直流线路继电保护方法
CN107271851A (zh) * 2017-07-03 2017-10-20 西南交通大学 一种基于差动有功功率的广域后备保护方法
CN107425511A (zh) * 2017-07-06 2017-12-01 西南交通大学 一种基于分区加权故障匹配的广域后备保护方法
CN108681822A (zh) * 2018-05-22 2018-10-19 广东工业大学 广域保护启动和故障区域定位的可靠性评估方法及装置
CN109444666A (zh) * 2018-12-17 2019-03-08 国网山东省电力公司电力科学研究院 一种配电网单相高阻断线故障辨识方法及装置
CN109698549A (zh) * 2017-10-23 2019-04-30 云南电网有限责任公司 一种基于广域诊断信息系统的配网主动抢修的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580010A (zh) * 2013-10-24 2014-02-12 华北电力大学 基于距离保护契合因子的区域保护系统及故障识别方法
CN103901320A (zh) * 2014-03-11 2014-07-02 国家电网公司 一种计及多源数据的电力系统故障诊断方法
CN104297632A (zh) * 2014-09-29 2015-01-21 西南交通大学 有限pmu下基于最小二乘法估计的电网故障在线检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103580010A (zh) * 2013-10-24 2014-02-12 华北电力大学 基于距离保护契合因子的区域保护系统及故障识别方法
CN103901320A (zh) * 2014-03-11 2014-07-02 国家电网公司 一种计及多源数据的电力系统故障诊断方法
CN104297632A (zh) * 2014-09-29 2015-01-21 西南交通大学 有限pmu下基于最小二乘法估计的电网故障在线检测方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李振兴等: ""基于序电流相位比较和幅值比较的广域后备保护方法"", 《电工技术学报》 *
汪华等: ""基于故障电压分布的广域后备保护算法"", 《电力系统自动化》 *
童晓阳等: ""基于保护元件与PMU数据多源的广域后备保护算法"", 《电力系统自动化》 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106207998A (zh) * 2016-09-06 2016-12-07 国家电网公司 基于信息容错的保护系统与方法
CN107104416A (zh) * 2016-11-28 2017-08-29 华北电力大学(保定) 一种多端柔性中压直流配电系统的直流线路继电保护方法
CN107104416B (zh) * 2016-11-28 2018-12-28 华北电力大学(保定) 一种多端柔性中压直流配电系统的直流线路继电保护方法
CN106918758A (zh) * 2017-02-17 2017-07-04 国电南瑞科技股份有限公司 一种基于电气量和非电气量的小电流接地综合选线方法
CN106918758B (zh) * 2017-02-17 2020-03-20 国电南瑞科技股份有限公司 一种基于电气量和非电气量的小电流接地综合选线方法
CN106849023A (zh) * 2017-03-09 2017-06-13 西安科技大学 基于行波信息的广域后备保护关联域识别方法
CN106849023B (zh) * 2017-03-09 2019-04-02 西安科技大学 基于行波信息的广域后备保护关联域识别方法
CN107271851A (zh) * 2017-07-03 2017-10-20 西南交通大学 一种基于差动有功功率的广域后备保护方法
CN107271851B (zh) * 2017-07-03 2019-02-26 西南交通大学 一种基于差动有功功率的广域后备保护方法
CN107425511B (zh) * 2017-07-06 2019-03-01 西南交通大学 一种基于分区加权故障匹配的广域后备保护方法
CN107425511A (zh) * 2017-07-06 2017-12-01 西南交通大学 一种基于分区加权故障匹配的广域后备保护方法
CN109698549A (zh) * 2017-10-23 2019-04-30 云南电网有限责任公司 一种基于广域诊断信息系统的配网主动抢修的方法
CN108681822A (zh) * 2018-05-22 2018-10-19 广东工业大学 广域保护启动和故障区域定位的可靠性评估方法及装置
CN108681822B (zh) * 2018-05-22 2020-05-19 广东工业大学 广域保护启动和故障区域定位的可靠性评估方法及装置
CN109444666A (zh) * 2018-12-17 2019-03-08 国网山东省电力公司电力科学研究院 一种配电网单相高阻断线故障辨识方法及装置

Also Published As

Publication number Publication date
CN105119243B (zh) 2018-10-16

Similar Documents

Publication Publication Date Title
CN105119243A (zh) 基于故障电压比值与多信息融合的广域后备保护方法
CN109119977B (zh) 基于单端电压的多端柔性直流电网直流线路快速保护方法及系统
CN106058828B (zh) 一种多端柔性直流电网线路方向纵联保护方法
CN107979075B (zh) 一种多端柔性直流电网直流线路单端量保护方法
Bo et al. Transient based protection for power transmission systems
CN109444644A (zh) 基于暂态量差动的配电网单相接地故障选线方法
CN101814730B (zh) 同杆并架双回线保护的故障选相方法
CN101593964B (zh) 同杆并架双回线的纵联零序功率方向保护方法
CN101345414B (zh) 基于gps与故障暂态信号的主输电线路集成故障定位保护系统
WO2010034149A1 (en) Method and device for supervising secondary circuit of instrument transformer in power system
US8102634B2 (en) Differential protection method, system and device
CN112595930B (zh) 含分布式电源花瓣式城市电网区域后备保护方法
CN105518958B (zh) Dc电网电流差动保护方法及其系统
CN101640410B (zh) 一种利用故障暂态电流分量保护的继电器及其应用方法
CN103580009A (zh) 基于复合相量平面的自适应过负荷识别系统及其方法
CN100418283C (zh) 网络环境下基于模式匹配的电力系统继电保护信息安全防护方法
CN109066610A (zh) 一种孤岛电网线路故障定位方法
CN106058827A (zh) 一种独立微电网故障保护方法
CN102868137A (zh) 特高压输电线路单相自动重合闸控制装置及方法
CN106385011B (zh) 一种智能区域备自投系统的故障范围识别装置及识别方法
CN101958579A (zh) 数字化变电站集中式保护装置站内信息缺失的处理方法
CN109193595B (zh) 基于电流相位比较的有源配电网故障隔离方法
Bo et al. Transient based protection-A new concept in power system protection
CN110416981A (zh) 一种电动汽车接入配电网区域电流保护方法及系统
CN111478298B (zh) 一种四轨牵引供电系统单极对地故障保护方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant