CN105102116A - 用于制备任选官能化的具有双峰孔隙度的玻璃的方法和所述玻璃 - Google Patents

用于制备任选官能化的具有双峰孔隙度的玻璃的方法和所述玻璃 Download PDF

Info

Publication number
CN105102116A
CN105102116A CN201380071420.2A CN201380071420A CN105102116A CN 105102116 A CN105102116 A CN 105102116A CN 201380071420 A CN201380071420 A CN 201380071420A CN 105102116 A CN105102116 A CN 105102116A
Authority
CN
China
Prior art keywords
glass
macroporosity
surfactant
bimodal pore
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380071420.2A
Other languages
English (en)
Inventor
玛丽·古洛特
弗雷德里克·格特曼
卡罗尔·德尔谢
萨巴赫·埃尔·穆拉比特
阿涅丝·格朗让
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Montpellier Ii, University of
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Montpellier Ii, University of
Centre National de la Recherche Scientifique CNRS
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Montpellier Ii, University of, Centre National de la Recherche Scientifique CNRS, Commissariat a lEnergie Atomique et aux Energies Alternatives CEA filed Critical Montpellier Ii, University of
Publication of CN105102116A publication Critical patent/CN105102116A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0225Compounds of Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt
    • B01J20/0229Compounds of Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28083Pore diameter being in the range 2-50 nm, i.e. mesopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28088Pore-size distribution
    • B01J20/28092Bimodal, polymodal, different types of pores or different pore size distributions in different parts of the sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • B01J20/3064Addition of pore forming agents, e.g. pore inducing or porogenic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3202Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the carrier, support or substrate used for impregnation or coating
    • B01J20/3204Inorganic carriers, supports or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3214Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the method for obtaining this coating or impregnating
    • B01J20/3217Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond
    • B01J20/3219Resulting in a chemical bond between the coating or impregnating layer and the carrier, support or substrate, e.g. a covalent bond involving a particular spacer or linking group, e.g. for attaching an active group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3246Non-macromolecular compounds having a well defined chemical structure
    • B01J20/3257Non-macromolecular compounds having a well defined chemical structure the functional group or the linking, spacer or anchoring group as a whole comprising at least one of the heteroatoms nitrogen, oxygen or sulfur together with at least one silicon atom, these atoms not being part of the carrier as such
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3293Coatings on a core, the core being particle or fiber shaped, e.g. encapsulated particles, coated fibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3291Characterised by the shape of the carrier, the coating or the obtained coated product
    • B01J20/3295Coatings made of particles, nanoparticles, fibers, nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C11/00Multi-cellular glass ; Porous or hollow glass or glass particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C15/00Surface treatment of glass, not in the form of fibres or filaments, by etching
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/30Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/06Glass compositions containing silica with more than 90% silica by weight, e.g. quartz
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • B01D15/26Selective adsorption, e.g. chromatography characterised by the separation mechanism
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/006Radioactive compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/166Nitrites
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/305Endocrine disruptive agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/306Pesticides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/327Polyaromatic Hydrocarbons [PAH's]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/06Doped silica-based glasses
    • C03C2201/30Doped silica-based glasses containing metals
    • C03C2201/32Doped silica-based glasses containing metals containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2201/00Glass compositions
    • C03C2201/80Glass compositions containing bubbles or microbubbles, e.g. opaque quartz glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/31Pre-treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Glass Compositions (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

本发明涉及用于制备具有大孔性和中孔性双峰孔隙度的玻璃的方法,其在于使大孔性玻璃经受假同晶转化。本发明还涉及所述如此制备的并任选官能化的玻璃以及它们的不同用途。

Description

用于制备任选官能化的具有双峰孔隙度的玻璃的方法和所述玻璃
技术领域
本发明属于可用于许多应用如催化剂、美容术、药物、净化、液-固萃取和化学检测的多孔玻璃的领域。
更特别地本发明提出一种允许通过实施假同晶转化来制备具有双峰孔隙度的玻璃(大孔性和中孔性孔隙度)的方法。本发明还涉及如此制备的具有双峰孔隙度的玻璃和其用途,特别地其在催化剂、美容术、药物、净化、液-固萃取或者化学检测中的用途。
背景技术
液-固萃取基于与液-液萃取相同的原理,不同的是俘获溶解物的分子被接枝或者吸附在固相上。目前使用的主要固体载体是离子交换树脂和无机载体,如二氧化硅、氧化铝、氧化钛或者氧化锆。
这两种类型载体在工业规模上被广泛地使用但是具有一些缺点。
当离子交换树脂在硝酸存在下使用时,它们具有反应性问题(爆炸)[1]。此外,当它们用于俘获放射性元素时,它们在辐射分解的作用下可快速地退化[2]。最后,当用在流化床中时,它们的低密度产生问题。
类似地,为粉末形式的无机载体通常具有对于在柱分离方法中的使用来说过小的粒度,特别地由于高的压头损失。而且,尽管这样的载体具有大的交换表面积,但这些有时是几乎不可到达的。
如果使用的材料表现出双峰孔隙度,即大孔隙,以确保令人满意的进料转移和在大孔隙的表面上支承的中孔隙,以确保获得大的比表面积并由此足够的萃取分子的填充率,这些问题可以大大地得到改善。
目前,具有双峰孔隙度的氧化物的最通常应用的合成基于亚稳态分解现象[3]。这种方法已经工业化用于生产高效液相色谱柱(HPLC),其由Merck特别地以商标名生产。
专利申请US2007/065356描述了用于从胶凝模型制备单块多孔模制物(moulages)的方法,该胶凝模型特别地从玻璃或者熔融石英制备[4]。在这种方法中,胶凝模型首先通过表面蚀刻和/或通过使用四烷氧基硅烷和/或有机烷氧基硅烷提高表面面积和/或通过使用双官能硅烷或者特别的烷氧基硅烷的化学改性进行活化。如此活化的胶凝模型然后用包含二氧化硅颗粒和/或(陶瓷)玻璃纤维和/或有机烷氧基硅烷的单体溶胶装满。然后使该单体溶胶聚合和使获得的凝胶老化以使得形成孔隙。
然而,这些合成在工业规模上是相当难以控制的并且获得的整料仍然是很贵的。本发明人因此已经设定的目标为提出一种允许制备具有双峰孔隙度的材料的方法,其是易于实施并且对于制备用于液-固萃取的材料的工业应用是经济的。
平行地,专利申请US2010/055000提出无机/有机完全混合的多孔球状二氧化硅颗粒,后者用于分离装置中[5]。所述颗粒在一种或多种表面活性剂和膨胀剂和任选的有机金属醇盐存在时经由假同晶转化由多孔金属氧化物颗粒(二氧化硅、氧化铝、氧化锆或者二氧化钛)进行制备。如此获得的颗粒具有其平均孔隙尺寸分布是窄的整齐孔隙,特别地具有1.5至100纳米的平均孔隙尺寸分布。
此外,由Galarneau领导的团队最近提出使用表面活性剂的假同晶合成技术,允许要获得的稳定的中孔性材料(用于在色谱分离法或者催化剂中的潜在应用)具有受限的孔隙尺寸分布[6-7]。在由这两篇文章介绍的工作中,原材料是二氧化硅基无定形前体,如由Merck以商标名Lichrosphere销售的硅胶球体[6],或者其它列在[7]的表1中的材料。
应当注意的是,对玻璃纤维实施的假同晶转化测试没有给出确定性的结果,因为玻璃纤维不能接纳由于掺入在这种假同晶转化期间使用的表面活性剂而引起的膨胀,这体现为玻璃纤维的破裂[8]。
发明内容
本发明允许解决先前列举的在现有技术中的材料和方法的技术问题和缺点。本发明人开发了允许制备具有双峰孔隙度(大孔性和中孔性)的材料的操作方法,其涉及合理的步骤数目和合理的成本,这对于所述操作方法允许所设想的工业应用。
更特别地,本发明人已经选择经由假同晶转化将大孔性玻璃,其已经成功地用于固-液萃取,转化为中孔性材料。
从由本发明人获得的结果,看起来与中孔性二氧化硅的传统合成途径相反,假同晶方法甚至允许获得组织化、可控孔隙度,以及对二氧化硅的初始宏观形成提供控制,以促进其应用(例如在催化剂或者萃取法中的应用)。
虽然先前提到的假同晶方法已经成功地用于制备在纯二氧化硅中的中孔性材料,完全地令人惊奇的是,首先这种合成能够延伸至玻璃制备组合物,其次当应用于具有预先存在大孔隙的材料时,它可以允许制备具有双峰孔隙度的材料。特别地鉴于迄今可获得的关于在玻璃制造材料上实施假同晶合成的数据,它是令人惊奇的[8]。
本发明因此涉及用于制备具有大孔性和中孔性双峰孔隙度的玻璃的方法,其在于使大孔性玻璃经受假同晶转化。
在关于假同晶转化的文件[5-7]中给出并且在矿物学中找到它们来源的定义适用于本发明。因此,“假同晶转化”或者“假同晶合成”表示这样的方法,其中与表面活性剂一起存在的起始大孔性玻璃在表面上和在深度中(在该材料的内表面也部分地溶解的意义上)部分地溶解并且直接地再沉淀在胶束的间隙中的表面上和深度中,由此具有胶束尺寸的孔隙在玻璃中形成,具有规则的,并且在一些实施方案中有序的孔隙结构。在实施假同晶转化之后获得的玻璃的尺寸和形态与起始玻璃的尺寸和形态相似,该两种玻璃在孔隙水平上基本是不同的,在起始玻璃中仅仅存在大孔隙和在实施假同晶转化之后在获得的玻璃中同时存在大孔隙和中孔隙。这种中孔隙的存在暗示经由假同晶途径处理的玻璃具有比起始玻璃更大的比表面积,这对于目标应用是特别有利的。
任何销售的或者合成的大孔性玻璃可用于本发明中。
“玻璃”表示具有玻璃化转变并且由二氧化硅或者氧化硅(SiO2)和任选的一种或多种其它相同的或者不同的元素组成的无定形固体。举例来说,其它在本发明中使用的玻璃中可以包含的元素,可以提到铝、硼、钒、磷、钙、镁、钠、锂、钾或者它们的混合物中的一种。玻璃,除如前面定义的元素之外,任选地还可以包含至少一种掺杂剂,特别地如硒、硫、锗、砷、铁、钛、镍、锌、锰、铜、锡、钴、锑、银、金或者它们的混合物中的一种。
“多孔玻璃”表示其密度低于无孔玻璃的理论密度的玻璃,这种至少5%的密度差异是在多孔玻璃中存在的孔隙或者空隙的结果。玻璃的孔隙度可以通过氮吸附/解吸的测量或者通过本领域的技术人员熟知的压汞孔隙度测定法而确定。特别地,在本发明范围中使用的大孔性玻璃的孔隙度可以为相对于该玻璃总体积的按体积计5至50%,特别地10至30%。
“大孔性玻璃”表示它包含的孔隙或者空隙主要是大孔隙的玻璃。“大孔隙”表示具有大于50纳米,特别地大于70纳米的平均直径的孔隙或者空隙。有利地,在本发明范围中使用的大孔性玻璃包含低于10%,特别地低于5%的中孔隙和/或微孔隙,所述百分比以相对于该玻璃的总孔隙度的体积的按体积表示。
在第一种变型中,在本发明中使用的大孔性玻璃既不包含微孔隙也不包含中孔隙,或者如果它包含这些微孔隙或者中孔隙,以相对于这种玻璃的大孔隙可忽略的量包含它们。“可忽略的量”表示低于1%,特别地低于0.1%的中孔隙和/或微孔隙,所述百分比以相对于该玻璃的总孔隙度的体积的按体积计表示。
在第二种变型中,在本发明范围中使用的大孔性玻璃具有大孔隙和在较小程度上的中孔隙。“较少量”表示在1%至10%的中孔隙和/或微孔隙的量,所述百分比以相对于该玻璃的总孔隙度的体积并按体积计表示。本发明的方法的实施,即,假同晶处理允许获得提高经处理的具有双峰孔隙度的玻璃的中孔隙度(当与起始玻璃相比较时)并且任选地允许使这种中孔隙再组织化,特别地当该起始玻璃的中孔隙度被较差界定时。
在本发明中使用的大孔性玻璃中,大孔隙有利地有规律地分布在整个玻璃中。在本发明中使用的大孔性玻璃中,大孔隙可以彼此连通或者互相隔离。有利地,在本发明中使用的大孔性玻璃具有开口孔隙度,即这种玻璃的大孔隙的大部分彼此连通。
在本发明中使用的大孔性玻璃可以具有各种尺寸与形状。它可以是呈珠,颗粒,微米颗粒,纳米颗粒,纤维,整料,管或者片材形式。本领域的技术人员将根据所设想的用于该制备的中孔性和大孔性玻璃的应用确定最好的适合的尺寸和形状。在一个特别的实施方案中,使用的大孔性玻璃呈具有1微米至10毫米,特别地10微米至1毫米的受控粒度的粉末类型的颗粒形式。在这种特别的实施方案中,大孔性玻璃具有5至500m2/g,特别地10至50m2/g的BET比表面积。
在本发明中使用的大孔性玻璃可以是销售的大孔性玻璃或者在实施本发明的方法之前使用本领域技术人员已知的任何技术,特别地涉及使用一种或多种致孔剂、一种或多种酸和/或碱化学侵蚀和/或一种或多种热处理的技术制备的大孔性玻璃。有利地,在本发明中使用的玻璃的大孔隙是受控反混合(demixion)然后化学侵蚀的结果。
如先前解释的,通过本发明的方法制备的具有大孔性和中孔性双峰孔隙度的玻璃显示大孔隙(其对应于起始大孔性玻璃制造材料的大孔隙,即其具有平均直径大于50纳米,特别地大于70纳米的孔隙)和由实施该方法产生的中孔隙。因此,具有双峰孔隙度的玻璃具有平均直径为2至50纳米,特别地2至20纳米的中孔隙。有利地,通过实施本发明的方法获得的具有双峰孔隙度的材料的中孔隙位于该大孔隙的表面上(即在壁上)的层中。
更具体地,本发明的方法包含以下步骤:
a)制备包含至少一种表面活性剂和所述大孔性玻璃的碱性溶液;
b)使在步骤(a)制备的溶液经受允许使所述大孔性材料假同晶转化的热处理;
c)回收该在步骤(b)获得的经处理的玻璃并且使得可获得所述玻璃的中孔性和大孔性双峰孔隙度。
本发明的方法的步骤(a)因此在于制备包含至少一种表面活性剂和大孔性玻璃的碱性溶液。
“碱性溶液”表示具有高于10,特别地高于11,更特别地高于12的pH的溶液。步骤(a)的溶液优选地被缓冲至通常高于10,特别地高于11,更特别高于12的碱性pH。用于形成这种溶液的碱可以选自不同的盐,如氢氧化钠、碳酸钠、氢氧化锂、碳酸锂、氢氧化钾、碳酸钾、氢氧化铵、碳酸铵或者它们的混合物之一。
碱的浓度和在步骤(a)的溶液体积的选择根据待处理玻璃的量来进行。本领域的技术人员能通过考虑先前提到的pH标准和在任何情况下都必须不导致玻璃的完全溶解的原则来进行相应的选择。为此目的,碱/SiO2摩尔比有利地低于4,特别地低于1,更特别低于0.5。
举例来说,氢氧化钠可以以10mM至5M,特别地0.1M至1M,更特别约0.7M(即0.7M±0.1M)的量存在于步骤(a)的溶液中。
在步骤(a)制备的碱性溶液的溶剂有利地是水,任选地与简单的醇,如甲醇、乙醇或者它们的混合物之一进行混合。使用的水可以是自来水、去离子水、蒸馏水、它们是碱性的或非碱性的。
“表面活性剂”表示包含亲脂性部分(非极性)和亲水部分(极性)的分子。有利地,所述至少一种在本发明的方法的步骤(a)制备的溶液中包含的表面活性剂选自阴离子表面活性剂,阳离子表面活性剂,两性离子表面活性剂,两性表面活性剂和非离子型表面活性剂。在该方法的步骤(a)制备的溶液可以包含数种属于先前列举的表面活性剂同一种类(即阴离子的、阳离子的、两性离子的或者两性的)的表面活性剂或者数种属于这些不同表面活性剂种类的至少两种的表面活性剂。
用于回顾,阴离子型表面活性剂是其亲水部分是带负电荷的表面活性剂,如与抗衡离子如铵离子(NH4+),季铵(如四丁铵),和碱阳离子(如Na+,Li+和K+)结合的烷基或者芳基磺酸盐、硫酸盐、磷酸盐或者磺基丁二酸盐。作为阴离子表面活性剂,可以例如使用四乙基铵对甲苯磺酸盐、十二烷基硫酸钠、棕榈酸钠、硬脂酸钠、肉豆蔻酸钠、二(2-乙基己基)磺基丁二酸钠、甲苯磺酸盐和乙苯磺酸盐。
阳离子表面活性剂是其亲水部分是带正电荷的表面活性剂,亲水部分特别地选自与抗衡阴离子结合的包含至少一种C4-C22脂肪链的季铵,该抗衡阴离子选自硼的衍生物,如四氟硼酸盐,或者卤化物离子如F-、Br-、I-或者Cl-离子。作为阳离子型表面活性剂,可以例如使用四丁基-氯化铵,十四烷基-氯化铵,十四烷基-三甲基-溴化铵(TTAB),鲸蜡基-三甲基-溴化铵(CTAB),十八烷基-三甲基-溴化铵,十六基-三甲基-溴化铵,携带脂肪链的烷基吡啶鎓的卤化物,和烷基铵的卤化物。
两性离子表面活性剂是具有一个单位和相反符号的形式电荷的中性化合物,特别地选自具有C5-C20烷基链的化合物,该烷基链通常用带负电荷的官能团如硫酸根或者羧酸根和带正电荷的官能团如铵取代。作为两性离子表面活性剂,可以提到N,N二甲基-十二烷基铵丁酸钠、二甲基-十二烷基-铵丙酸钠和氨基酸。
两性表面活性剂是根据它们被放置在其中的介质其可以表现为酸或者表现为碱的化合物。作为两性表面活性剂,可以使用月桂酰两性二乙酸二钠和甜菜碱如烷基酰胺丙基甜菜碱或者月桂基羟基磺酰基甜菜碱。
非离子(或者中性)表面活性剂是其表面活性性质,特别地亲水性是由包含杂原子如氮或者氧的非带电的官能团如醇,醚,酯或者酰胺提供。由于这些官能团的低的亲水贡献,非离子型表面活性剂化合物最通常是多官能的。作为非离子型表面活性剂,可以使用聚醚,如聚乙氧基化表面活性剂,如聚乙二醇月桂基醚(POE23或35)、多元醇(糖衍生的表面活性剂)特别地葡萄糖烷基化物,如葡萄糖己酸酯或者嵌段共聚物,如pluronicF
在本发明中,该使用的表面活性剂(一种或多种)有利地选自阴离子型表面活性剂和阳离子表面活性剂,更特别选自阳离子表面活性剂。
在步骤(a)使用的一种或多种表面活性剂以相对于溶液的总重量的0.1%至90%,特别地1至50%,更特别约10%(即10%±5%)的重量比存在于步骤(a)的溶液中。
最后,如先前定义的大孔性玻璃以10-600g/升溶液,特别地50-400g/升溶液,更特别100-200g/升溶液的量存在于在本发明的方法的步骤(a)中制备的溶液中。
在本发明的方法的步骤(a)可以设想数种变型。可以为:
a1)通过将该溶液包含的不同元素混合在一起制备步骤(a)的溶液,任选地然后改变pH以使得该溶液是碱性的;
a2)制备包含至少一种表面活性剂的第一溶液,任选地改变其pH以使得它是碱性的,然后向其中加入大孔性玻璃并且任选地改变如此获得的溶液的pH以使得它是碱性的;或者
a3)制备包含大孔性玻璃的第一溶液,任选地改变其pH以使得它是碱性的,然后向其中加入至少一种表面活性剂并且任选地改变如此获得的溶液的pH以使得它是碱性的。
有利地,在本发明的方法的步骤(a)预先制备包含至少一种表面活性剂的第一溶液并且任选地改变pH以使得它是碱性的,然后加入大孔性玻璃并且任选地改变获得的溶液的pH以使得它是碱性的(上面变型(a2))。更特别地,在本发明的方法的步骤(a)预先制备包含至少一种表面活性剂的第一溶液,在下文表示为溶液(S1),改变这种第一溶液的pH以使得它是碱性的,然后加入大孔性玻璃。
有利地,如同在步骤(a)制备的溶液,溶液(S1)具有水作为溶剂,任选地与简单的醇,如甲醇、乙醇或者它们的混合物之一进行混合。使用的水可以是自来水、去离子水、蒸馏水、它们是酸化的或者是碱性的。因此溶液(S1)是包含一种或多种(不同的)表面活性剂的水溶液。
该表面活性剂(一种或多种)可以以固体形式或者以液体形式被加入到溶液(S1)中。当使用数种不同的表面活性剂时,它们可以在一次中混合或者它们可以相继地或者分组地被加入。该一种或多种表面活性剂在溶液(S1)中的混合和任选的溶解通过使用搅拌器、磁搅拌棒、超声波浴或者均化器在搅拌下进行实施,并且可以在10至40℃,有利地15至30℃的温度,更特别在环境温度(即23℃±5℃)下进行实施5分钟至2小时,特别地15分钟至1小时,更特别约30分钟(即30分钟±10分钟)的时间段。
一旦这种第一混合已经实施,允许改变该溶液(S1)的pH并以使得它是碱性的一种或多种盐以固体形式或者液体形式以适当的量加入到这种溶液中。当使用数种不同的盐时,它们可以在一次中被加入到溶液(S1)或者可以相继地或者分组地被加入。使产生的溶液混合至均匀的。这种第二混合步骤通过使用搅拌器,磁搅拌棒,超声波浴或者均化器进行实施并且可以在10-40℃,有利地15-30℃温度下,更特别在环境温度(即23℃±5℃)进行实施15秒至15分钟,特别地30秒至5分钟的时间段。然后,将大孔性玻璃加到获得的包含至少一种表面活性剂的碱性溶液中,由此制备步骤(a)的溶液。在加入大孔性玻璃之后,还可以设想和该先前描述的两个混合步骤之一相同的附加混合步骤。
在本发明的方法的步骤(b)使在步骤(a)制备的碱性溶液,即包含至少一种表面活性剂和大孔性玻璃的碱性溶液,经受假同晶合成。
为此目的,在步骤(a)制备的碱性溶液经受在高于或等于60℃的温度,特别地在70℃至160℃的温度,更特别地在80℃至130℃的温度和进一步特别地在约100℃(即100℃±15℃)的温度下的热处理。
本领域的技术人员能确定本发明的方法的步骤(b)的持续时间,特别地根据假同晶合成的其它参数,如反应温度和碱浓度。本发明的方法的步骤(b)有利地在高压锅中或者在回流下进行实施大于15分钟,特别地30分钟至10小时,更特别地1小时至5小时,进一步特别地约3小时(即3小时±1小时,特别地3小时±30分钟)的时间段。
而且,本发明的方法的步骤(b)可以通过使用搅拌器、磁搅拌棒、超声波浴或者均化器在搅拌下进行实施。
可以在本发明的方法的步骤(c)使用任何允许回收该在步骤(b)期间获得的大孔性和中孔性双峰孔隙度玻璃的技术。有利地,这种步骤(c)一方面用于从该在步骤(a)和(b)期间使用的溶液分离该双峰孔隙度玻璃,和另一方面用于除去与这种玻璃结合的表面活性剂(一种或多种)。因此本发明的方法的步骤(c)使用一个或多个步骤,相同的或者不同的,选自过滤、离心、沉降、锻烧、干燥和洗涤步骤。在一个特别的实施方案中,本发明的方法的步骤(c)包含至少一个过滤步骤,至少一个洗涤步骤,至少一个干燥步骤和至少一个锻烧步骤。
该一个或多个过滤步骤在真空中,特别地通过使用Büchner类型装置,其任选地具有过滤阈值(其根据最初使用的大孔性玻璃的尺寸进行选择)的纤维素膜,Teflon薄膜或者打褶皱纹纸过滤器,进行实施。这种过滤阈值可以是纳米等级或者微米等级。
该洗涤步骤(一个或多个)在极性溶剂中进行实施。当回收步骤使用数个洗涤时,对于数个甚至对于所有的洗涤使用同一种极性溶剂,或者对于每个洗涤使用数种不同的极性溶剂。“极性溶剂”在本发明中表示选自以下构成的组中的溶剂:水、去离子水、蒸馏水(它们为酸化的或者碱性的)、醋酸、羟基化溶剂(如甲醇和乙醇)、低分子量液体二醇(如乙二醇)、二甲亚砜(DMSO)、乙腈、丙酮、四氢呋喃(THF)和它们的混合物。有利地在该洗涤步骤(一个或多个)中使用的极性溶剂是丙酮。
该干燥步骤(一个或多个)可以在加热或者干燥烘箱中,在50℃至150℃,特别地60℃至130℃的温度下,特别地在约80℃(80℃±10℃)的温度下进行实施并且典型地持续30小时至15天,特别地3天至10天,更特别1周的时间段。
锻烧步骤(一个或多个)可以在空气或者臭氧中并在低于或等于500℃的温度下,特别地在300℃至480℃,更特别地350℃至450℃的温度下,进一步特别地在约400℃(即400℃±20℃)的温度下进行实施并且典型地持续1小时至10小时,特别地在2小时至7小时的时间段,更特别地约4小时(即4小时±30分钟)的时间段。
本发明还涉及通过使用依照以上描述的方法制备的具有双峰孔隙度的玻璃用于除去,保留,固定或者分离在流体中包含的化合物的方法。
更特别地,本发明涉及用于使在流体中可能包含的至少一种化合物固定的方法,这种方法包含以下步骤:
i)使用如先前定义的方法制备具有大孔性和中孔性双峰孔隙度的玻璃;
ii)任选地使在步骤(ii)制备的玻璃官能化;和
iii)使所述流体与具有大孔性和中孔性双峰孔隙度的任选地官能化的玻璃接触,由此使所述化合物,如果存在的话,固定在所述玻璃上和/或所述玻璃中。
在本发明中,“化合物”表示在流体中可为或包含的不希望的化合物(如污染物或者污垢物)和有用的化合物(药物化合物、化妆化合物或者工业化合物…)。
该化合物可以是有机或者无机化合物,可携带或者不携带一个或多个分子或者粒子负载。该化合物可以是生物来源的或者化学来源的。所述化合物可以以溶解形式、胶体形式、材料(特别地有机材料)的聚集体形式或者以络合物(特别地阴离子络合物或者阳离子络合物)形式存在于流体中。
因此,该化合物可以选自NO2,CO,苯酚,杀虫剂,农药,挥发性有机化合物,如醛,甲醛,乙醛,萘,伯胺特别地芳香族伯胺,吲哚,3-甲基吲哚,色氨酸,尿胆素原,吡咯,苯,乙苯,甲苯,二甲苯,苯乙烯,萘,卤代化合物,放射性核素,金属或者所述金属的放射性同位素,有用的生物分子,有用的药物分子,毒素,糖类,肽,蛋白,糖蛋白,酶,酶底物,激素,多克隆或者单克隆抗体,抗体碎片,核苷酸分子,有利地水或者空气的有机污染物,细菌和病毒。
该化合物可以以高度稀释的形式或者更加浓缩的形式存在于流体中。因此,在该流体中所述化合物的量为1微克-100克/升流体。
在本发明中,“流体”表示气体或者液体。更特别地,所述流体可以选自生物流体;来自培养基的样品或者在生物培养反应器中的样品,如高级真核生物的细胞培养物、酵母、真菌或者藻类;从一种或多种动物或者植物细胞获得的液体;从动物或者植物组织获得的液体;食物基质样品;来自化学反应器的样品;自来水、河水、池塘水、湖水、海水、养鱼缸水、来自空调系统或者冷却塔中的冷却水;产品,特别地液体产品、特别地来自集约农业或者在化学、药物、化妆品或者核领域中的工业或者装置的流出物或者废水;药物产品;化妆产品;香料或者它们的混合物之一。更一般地,本发明涉及可以适用于任何在其中能萃取出或者检测出至少一种化合物的气态或者液态流体的装置和方法。
该生物流体有利地是由植物或者人体或者动物体自然分泌或者排泄的任何流体,或者使用本领域技术人员已知的任何技术如萃取,抽样或者洗涤从植物或者人或者动物体收集的任何流体。在实施本发明的方法之前实施这些来自人体或者动物体的不同流体的收集和分离步骤。
在用于制备根据本发明的大孔性和中孔性双峰孔隙度玻璃的方法中所描述的所有实施方案和变型还适用于本发明的方法的步骤(i)。
步骤(ii)是任选的并且可以进行实施以提高该具有双峰孔隙度的玻璃对该待固定化合物的亲合力(与该具有双峰孔隙度而无官能化的玻璃的亲合力相比较而言)。“使具有双峰孔隙度的玻璃官能化”因此表示应用化学操作方法以在该具有大孔性和中孔性双峰孔隙度的玻璃的表面上,特别地在该玻璃的孔隙内部的表面上直接或者间接共价接枝反应物。
用于使在本发明中使用的双峰孔隙度玻璃官能化的反应物可以形成与待固定化合物的键合对,这种反应物和该化合物对应于这种键合对的两个组成体。在化合物-反应物键合中涉及的键是低能的非共价键(如氢键或者范德华键)或者共价键类型的高能键。因此,在本发明的方法的步骤(iii),使该化合物结合或者固定在该玻璃中和/或在该玻璃上,特别地在双峰孔隙度玻璃的孔隙内部,涉及的键可以是低能的非共价键和/或高能键。
使用的反应物因此取决于待固定的化合物。关于这种被分析物,本领域的技术人员不需任何创造性劳动能够选择最好的适合的反应物。这种反应物可以选自能与该化合物形成键合对的化学基团或者携带至少一种能与该化合物形成键合对的化学基团的分子。携带至少一种能与该化合物形成键合对的化学基团的分子可以是聚合物类型的络合物。更特别地,这种反应物选自羟基、硫醇、叠氮化物、环氧化物、氮丙啶、胺、膦、膦酸酯、氧化膦、肟酰胺、氨基甲酸酯、腈、异氰酸酯、硫氰酸酯、硝基、酰胺、卤化物特别地烷基卤、羧酸和酯官能团;分子探针;糖类;肽;蛋白;糖蛋白;酶;酶底物;毒素;多克隆或者单克隆抗体;抗体碎片;核苷酸分子;肽核酸和适配体如DNA适配体或者RNA适配体和亚铁氰化物的(纳米)颗粒。
该反应物可以被共价地连接或者接枝(无论直接地或者间接地)在具有大孔性和中孔性双峰孔隙度的玻璃的表面上,特别地在这种玻璃的孔隙的内部的表面上。当该连接是直接的时候,共价键使该反应物的一个原子与该玻璃的一个原子连接。相反地,在它是间接的时候,该连接使用通常为有机的连接臂(或者间隔臂或者接合试剂或者连接试剂),该臂具有在与玻璃原子的共价键中涉及的第一原子和不同于第一原子的在与反应物原子的共价键中涉及的第二原子。作为连接臂的实例,可以提到–(PEG)n-和-(CH2)n-,其中n是1-20的整数和PEG是聚乙二醇重复单元。
在本发明的方法的步骤(ii)的官能化受益于该具有双峰孔隙度的玻璃的表面上的硅烷醇基的存在,和可以使用烷氧基硅烷的硅烷化反应。以下实验部分给出了两个特别地借鉴于文件[9-10]的官能化的实施例。其它不同的可用于使具有双峰孔隙度的玻璃的表面,特别地这种玻璃存在的孔隙内部的表面官能化的操作方法是本领域的技术人员已知的。
在步骤(iii)的接触可以根据在其中可以包含该待固定化合物的流体的气态或者液态性质以不同的方式进行实施。不同的变型可以用于在本发明的方法的步骤(iii)的接触。例如,可以使本发明的玻璃浸入在该液态流体中,在所述玻璃上沉积一定体积的液态流体,在气态流体存在时放置所述玻璃(静态暴露)或者使该流体,特别地气态流体在所述玻璃上方流通(动态暴露)。
在这些变型中的一些中,可以有利的是,使本发明的具有双峰孔隙度的玻璃填充为特别地塔的形式,其中本发明的玻璃对应于流化床,其液态或者气态流体确保流化作用。
如果使玻璃浸入液态流体中,可以有利的是,搅拌该如此获得的混合物然后在一定接触时间之后使用任一种先前设想的回收方法回收该玻璃。
在流体和本发明的具有双峰孔隙度的玻璃之间的接触时间是可变的并且可以为1分钟至3天,特别地5分钟至24小时,更特别地10分钟至12小时。
本发明还涉及能使用如先前定义的制备方法进行制备的具有大孔性和中孔性双峰孔隙度的玻璃,以及在如先前定义的固定方法的步骤(ii)之后能获得的具有大孔性和中孔性双峰孔隙度的官能化玻璃。
如先前解释地,本发明的玻璃具有其平均直径大于50纳米,特别地大于70纳米的大孔隙,和其平均直径为2至50纳米,特别地2至20纳米的中孔隙。有利地,本发明的玻璃的中孔隙位于该大孔隙的表面上(即在壁上)的层中。本发明的官能化玻璃另外具有如先前定义的反应物,该反应物直接地或者间接地共价键合在该玻璃的表面上,特别地在这种玻璃的中孔隙和/或大孔隙的内部表面上。
根据本发明的具有双峰孔隙度的玻璃在孔隙方面与原材料(即大孔性玻璃)不同。这种差异导致在比表面积方面的差异,其中本发明的双峰孔隙度玻璃的比表面积是起始大孔性玻璃的比表面积的至少两倍大,特别地至少五倍大,更特别至少十倍大。
因此,如在[7]中解释的那样,由于本发明的具有双峰孔隙度的玻璃具有高比表面积、大的孔隙体积和中孔隙的事实,它改善了保留容量,层析柱的渗透性和在分离方法中的分子选择性。
最后,本发明涉及这种玻璃的不同用途,其可用于非常不同的领域中,如净化领域、微生物学领域、诊断或者医疗领域、核领域、质量控制领域、农业食物领域、非法物质的检出、防护和/或生物防护领域、兽医、环境和/或健康检查领域和/或在香料、化妆品和/或调味料领域中。
作为更特别的实例,特别地可以提到本发明的玻璃在催化领域、化学探测器领域和色谱分析法领域中的用途。
在催化领域中,通过实施如先前定义的固定方法使分子催化剂,如含有铂、钌、铱或者金属氧化物的分子催化剂固定在本发明的具有双峰孔隙度的玻璃上,该玻璃是官能化的或非官能化的。
根据本发明的具有双峰孔隙度的玻璃,官能化的或非官能化的,还用作为色谱分析法的固定相,特别地用于气相色谱法、薄层层析法、亲合色谱法、毛细管柱气相色谱法、尺寸排阻色谱法、高效液相色谱法(HPLC)、手性HPLC、反相HPLC(RP-HPLC)和通过RP-HPLC的蛋白分离的固定相。
在化学探测器领域中,根据本发明的具有双峰孔隙度的玻璃,官能化的或非官能化的,用作为检测器,并为此,可以有利的是,使用适合于待检测的化合物的反应物使这种玻璃官能化。
作为变型,本发明的玻璃可用于净化领域中,特别地用于核净化或者放射性净化。为此目的,根据本发明的具有双峰孔隙度的玻璃,官能化的或非官能化的,用于本发明的固定方法以固定在待净化的流体中,特别地在来自核工业或者核装置或者来自工业、实验室、医院、诊所或者使用放射性核素的装置的流体或者流出物中包含的污染物和污垢物。在这种情况下,待固定在本发明的玻璃上的化合物是放射性核素,如铯、锶、钴、银、钌、铁或者铊的放射性同位素。
根据本发明的官能化的或非官能化的具有双峰孔隙度的玻璃的最后一种用途,属于治疗领域或者化妆领域。对于这种用途,使保湿性、减肥性、抗UV等类型的具有预防性或者治病性治疗作用或者化妆效果作用的化合物固定在本发明的官能化的或非官能化的具有双峰孔隙度的玻璃上。后者应用于皮肤时,根据它的尺寸,保持在皮肤的表面上或者渗入真皮中,并且在两种情况中,可以获得具有治疗作用或者化妆作用的化合物的释放(relarguage)。因此,本发明涉及用于医学领域中的根据本发明的具有双峰孔隙度的玻璃,官能化的或非官能化的。
本发明的其它特征和优点对于本领域的技术人员在阅读在下面给出的用于说明目的(参考附图)的非限制性实施例时将变得进一步明显。
附图说明
图1显示了作为P/P0的函数的被吸附的氮气的体积V0(用cm3/g表示),其中当使用BET装置测量孔隙度时,P是氮气分压和P0是最大吸附压力。
图2显示了初始大孔性玻璃(图2A)和通过假同晶合成获得的具有双峰孔隙度的材料(仅仅其大孔隙可以通过SEM看见)(图2B)的扫描电子显微镜图像(SEM)。
具体实施方案
I.在 类型玻璃上的假同晶合成
由VitraBioTrisopor供应的类型玻璃具有105纳米的孔径和16m2.g-1的比表面积。
假同晶玻璃的合成借鉴于出版物[6]。
典型地,将1.2g的鲸蜡基-三甲基-溴化铵(CTAB)溶于11.9ml的水中,振荡30分钟,然后将0.33g的NaOH加入到该混合物并振荡直至该混合物是均匀的。在高压锅中,将2g具有105纳米的孔径的多孔玻璃加入到前述溶液中并且将整体放置在100℃保持3小时。
然后使产物在Büchner装置上过滤,用丙酮洗涤,在80℃干燥过夜并且最后在400℃锻烧4小时。获得的固体具有200m2.g-1的比表面积(与起始玻璃的16m2.g-1相比较)。
该材料的孔隙度被分成两种孔隙种类。一种是由以4纳米为中心的中孔隙构成,如由氮吸附测量所示(图1)。另一种是由以100纳米为中心的大孔隙构成,如扫描电子显微镜图像所示(图2B)。该第二种类孔隙对应于已经存在于原材料中的孔隙(图2A)。
II.对金的应用
通过硅烷化反应使在项目I合成的假同晶玻璃接枝。二氧化硅上的传统接枝方法在于使与硅氧烷基团连接的配位分子在该玻璃的硅烷醇基上起反应。
被接枝的分子的选择受目标应用所影响,在这里为从水溶液中萃取金。由于硫醇对于重金属具有优良的亲合力[9],本发明人选择接枝(3-巯基丙基)三甲氧基硅烷。在接枝之后,获得的固体表现出0.5毫当量/克的理论交换容量。
制备2mM浓度的金溶液。发明人使约200mg的经接枝的假同晶玻璃与50mL的该金溶液在振荡下接触过夜。
为了分析获得的结果,在对金应用的情况下,本发明人使用UV-可见光分析以确定保持在水中的金的浓度,该浓度低于0.05mM。使用这种经接枝的假同晶玻璃,因此获得高于99%的金萃取。
III.对铯的应用
最近,接枝于类型多孔玻璃载体上的亚铁氰化物纳米颗粒的使用已描述用于在溶液中铯的萃取[10]。这种相同的合成已用来使这种纳米颗粒接枝到在项目I中合成的具有双峰孔隙度的玻璃上。
对获得的具有双峰孔隙度并且接枝了亚铁氰化物纳米颗粒的玻璃实施了间歇铯吸收测试。为此目的,使10mg玻璃与20ml硝酸铯(CsNO3)溶液接触24小时。过滤该溶液并且在铯吸收之前和之后通过离子色谱法进行分析。对于接枝亚铁氰化物纳米颗粒的假同晶玻璃获得的初始和最终浓度分别地是14.9ppm和5.7ppm。每克接枝亚铁氰化物纳米颗粒的假同晶玻璃所萃取的铯的量是0.14mmol/g。
对该接枝亚铁氰化物纳米颗粒的假同晶玻璃的母体玻璃(即具有16m2.g-1比表面积和105纳米孔径的大孔性玻璃)实施了相同的测试。在该样品上实施了相同的接枝操作方法(接枝六氰合铁酸钴的纳米颗粒)和以每10mg固体使用20mL溶液中的CsNO3实施相同的铯萃取试验。该测量的初始和最终浓度分别地为以下:14.9ppm和10.5ppm,其对应于0.07mmol/g的萃取容量,即是通过假同晶转化的相同玻璃的效率的一半。
参考文献
[1]Calmon,C.,1980,《Explosionhazardsofusingnitricacidinion-exchangeequipment》,ChemicalEngineering,vol.87,pages271-274.
[2]Pillay,K.K.S,1986,《Areviewoftheradiationstabilityofionexchangematerials》,JournalofRadioanalyticalandNuclearChemistry,vol.102,n°1,pages247-268.
[3]NakanishiK.,1991,《Phaseseparationingellingsilica-organicpolymersolution:systemscontainingpoly(sodiumstyrenesulfonate)》,JournaloftheAmericanCeramicSociety,vol.74,pages2518-2530.
[4]PatentapplicationUS2007/065356byCabreraandKnoellpublishedon22March2007.
[5]PatentapplicationUS2010/055000byAgilentTechnologiesInc.publishedon4March2010.
[6]Martinetal.,2002,《MorphologicalcontrolofMCM-41bypseudomorphicsynthesis》,AngewandteChemieInternationalEdition,vol.41,n°14,2590-2592.
[7]Galarneauetal.,2006,《ControllingtheMorphologyofMesostructuredSilicasbyPseudomorphicTransformation:aRouteTowardsApplications》,AdvancedFunctionalMaterials,vol.16,n°13,1657-1667.
[8]Ph.D.thesisbyFrédéricGoettmann,《Matériauxhybridesmésoporeuxencatalyse:dumatériausupportausystèmecatalytique》,presentedon21September2005,pages129-133.
[9]Liuetal.,2000,《Anewclassofhybridmaterialswithfunctionalizedorganicmonolayersforselectiveadsorptionofheavymetalions》,ChemicalCommunications,vol.15,n°13,pages1145-1146.
[10]InternationalapplicationWO2010/133689byCEA,CNRSandUniversitédeMontpellier,publishedon25November2010.

Claims (17)

1.用于制备具有大孔性和中孔性双峰孔隙度的玻璃的方法,其在于,使大孔性玻璃经受假同晶转化。
2.根据权利要求1的方法,特征在于,所述方法包含如下步骤:
a)制备包含至少一种表面活性剂和所述大孔性玻璃的碱性溶液;
b)使在步骤(a)制备的溶液经受允许使所述大孔性材料假同晶转化的热处理;
c)回收该在步骤(b)获得的经处理的玻璃并且使得可获得所述玻璃的中孔性和大孔性双峰孔隙度。
3.根据权利要求2的方法,特征在于,所述碱性溶液具有高于10,特别地高于11,更特别地高于12的pH。
4.根据权利要求2或3的方法,特征在于,在所述碱性溶液中,碱/SiO2摩尔比低于4,特别地低于1,更特别低于0.5。
5.根据权利要求2-4任一项的方法,特征在于,所述表面活性剂选自阴离子表面活性剂,阳离子表面活性剂,两性离子表面活性剂,两性表面活性剂和非离子型表面活性剂。
6.根据权利要求2-5任一项的方法,特征在于,所述步骤(a)在于预先制备包含至少一种表面活性剂的第一溶液,改变这种第一溶液的pH以使得它是碱性的,然后向其中加入大孔性玻璃。
7.根据权利要求2-6任一项的方法,特征在于,在步骤(b),在多于15分钟,特别地30分钟至10小时,尤其1小时至5小时,进一步特别地约3小时(即3小时±1小时,特别地3小时±30分钟)的时间段期间,使在步骤(a)制备的碱性溶液经受在高于或等于60℃的温度,特别地在70℃至160℃的温度,更特别地在80℃至130℃温度,进一步特别地在约100℃(即100℃±15℃)的温度下的热处理。
8.根据权利要求2-7任一项的方法,特征在于,所述步骤(c)使用一个或多个相同的或者不同的步骤,其选自过滤、离心、沉降、锻烧、干燥和洗涤步骤。
9.用于使在流体中任选地包含的至少一种化合物固定的方法,这种方法包含如下步骤:
i)制备如权利要求1-8任一项定义的具有大孔性和中孔性双峰孔隙度的玻璃;
ii)任选地使在步骤(ii)制备的玻璃官能化;和
iii)使所述流体与具有大孔性和中孔性双峰孔隙度的任选地官能化的玻璃接触,由此使所述至少一种化合物,如果存在的话,固定在所述玻璃上和/或所述玻璃中。
10.根据权利要求9的方法,特征在于,所述化合物选自NO2,CO,苯酚,杀虫剂,农药,挥发性有机化合物,如醛,甲醛,乙醛,萘,伯胺,特别地芳香族伯胺,吲哚,3-甲基吲哚,色氨酸,尿胆素原,吡咯,苯,乙苯,甲苯,二甲苯,苯乙烯,萘,卤代化合物,放射性核素,金属或者所述金属的放射性同位素,有用的生物分子,有用的药物分子,毒素,糖类,肽,蛋白,糖蛋白,酶,酶底物,激素,多克隆或者单克隆抗体,抗体碎片,核苷酸分子,有利地水或者空气的有机污染物,细菌和病毒。
11.根据权利要求9或10的方法,特征在于,所述流体选自生物流体;来自培养基的样品或者来自生物培养反应器的样品,如高级真核生物的细胞培养物、酵母、真菌或者藻类;从一种或多种动物或者植物细胞获得的液体;从动物或者植物组织获得的液体;食物基质样品;来自化学反应器的样品;自来水、河水、池塘水、湖水、海水、养鱼缸水、来自空调系统或者冷却塔中的冷却水;产品,特别地液体产品、特别地来自集约农业的或者在化学、药物、化妆品或者核领域中的工业或者装置的流出物或者废水;药物产品;化妆产品;香料或者它们的混合物之一。
12.根据权利要求9-11任一项的方法,特征在于,所述步骤(ii)在于将反应物以共价方式直接或者间接地接枝在具有大孔性和中孔性双峰孔隙度的玻璃的表面上,特别地在这种玻璃的孔隙的内部的表面上。
13.根据权利要求12的方法,特征在于,所述反应物选自羟基、硫醇、叠氮化物、环氧化物、氮丙啶、胺、膦、膦酸酯、氧化膦、肟酰胺、氨基甲酸酯、腈、异氰酸酯、硝基、酰胺、卤化物特别地烷基卤、羧酸和酯;分子探针;糖类;肽;蛋白;糖蛋白;酶;酶底物;毒素;多克隆或者单克隆抗体;抗体碎片;核苷酸分子;肽核酸和适配体如DNA适配体或者RNA适配体和亚铁氰化物的(纳米)颗粒。
14.能够通过如权利要求1-8任一项定义的方法进行制备的具有大孔性和中孔性双峰孔隙度的玻璃。
15.能够在权利要求9的步骤(ii)进行制备的具有大孔性和中孔性双峰孔隙度的官能化玻璃。
16.根据权利要求14或15的玻璃在催化领域、化学探测器领域、色谱分析法领域,净化领域中,特别地在核净化或者放射性净化领域中或在化妆领域中的用途。
17.根据权利要求14或15的玻璃,其在医学领域中的用途。
CN201380071420.2A 2012-11-30 2013-11-29 用于制备任选官能化的具有双峰孔隙度的玻璃的方法和所述玻璃 Pending CN105102116A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1261479 2012-11-30
FR1261479A FR2998891B1 (fr) 2012-11-30 2012-11-30 Procede pour preparer un verre a porosite bimodale, eventuellement fonctionnalise et ledit verre
PCT/EP2013/075105 WO2014083162A2 (fr) 2012-11-30 2013-11-29 Procédé pour préparer un verre à porosité bimodale, eventuellement fonctionnalisé et ledit verre

Publications (1)

Publication Number Publication Date
CN105102116A true CN105102116A (zh) 2015-11-25

Family

ID=47902123

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380071420.2A Pending CN105102116A (zh) 2012-11-30 2013-11-29 用于制备任选官能化的具有双峰孔隙度的玻璃的方法和所述玻璃

Country Status (7)

Country Link
US (1) US20150307393A1 (zh)
EP (1) EP2925431B1 (zh)
JP (1) JP2016505485A (zh)
KR (1) KR20160097120A (zh)
CN (1) CN105102116A (zh)
FR (1) FR2998891B1 (zh)
WO (1) WO2014083162A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629999A (zh) * 2017-11-27 2020-09-04 圣特尼克光测量系统有限公司 官能化双峰周期性介孔有机硅酸盐(pmo)及使用赝晶转变制造其的方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
FR3014336B1 (fr) 2013-12-05 2016-01-22 Commissariat Energie Atomique Utilisation d'un gel alcalin oxydant pour eliminer un biofilm sur une surface d'un substrat solide.
US9725710B2 (en) 2014-01-08 2017-08-08 Flodesign Sonics, Inc. Acoustophoresis device with dual acoustophoretic chamber
FR3025115B1 (fr) 2014-09-03 2018-12-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede d'extraction selectif de platinoides, a partir d'un support les contenant, avec un milieu d'extraction comprenant un fluide supercritique et un ligand organique.
FR3025799B1 (fr) 2014-09-12 2016-10-14 Commissariat Energie Atomique Procede de preparation d'un materiau solide nanocomposite a base d'hexa- et octacyanometallates de metaux alcalins.
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
FR3055558B1 (fr) * 2016-09-08 2022-01-14 Commissariat Energie Atomique Materiau solide nanocomposite a base d'hexa- ou octacyanometallates de metaux alcalins, son procede de preparation, et procede d'extraction de cations metalliques.
TWI613167B (zh) * 2016-11-18 2018-02-01 宏益玻璃科技股份有限公司 一種抗眩光強化抗菌及抗指紋之玻璃面板製作方法
WO2019118921A1 (en) 2017-12-14 2019-06-20 Flodesign Sonics, Inc. Acoustic transducer drive and controller
WO2019202151A1 (en) 2018-04-20 2019-10-24 Mermet Composite yarn, manufacturing process and textile surface comprising such a yarn
FR3080387B1 (fr) 2018-04-20 2020-11-13 Mermet Fil composite renforce, procede de preparation et textile comprenant un tel fil
CN109772275B (zh) * 2019-01-07 2021-12-07 中科京投环境科技江苏有限公司 汞吸附剂及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0710219B1 (en) * 1993-07-19 1997-12-10 MERCK PATENT GmbH Inorganic porous material and process for making same
US6686035B2 (en) * 1999-02-05 2004-02-03 Waters Investments Limited Porous inorganic/organic hybrid particles for chromatographic separations and process for their preparation
US8357628B2 (en) * 2008-08-29 2013-01-22 Agilent Technologies, Inc. Inorganic/organic hybrid totally porous metal oxide particles, methods for making them and separation devices using them
FR2945756B1 (fr) * 2009-05-20 2011-08-05 Commissariat Energie Atomique Materiau solide nanocomposite a base d'hexa-et octacyanometallates, son procede de preparation et procede de fixation de polluants mineraux le mettant en oeuvre.
US20150306587A1 (en) * 2012-11-21 2015-10-29 Agilent Technologies, Inc. Superficially Porous Hybrid Monoliths with Ordered Pores and Methods of Making and using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
C. CHARNAY ET AL.: ""Inclusion of ibuprofen in mesoporous templated silica: drug loading and release property"", 《EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS》 *
JEROME BABIN ET AL.: ""MCM-41 silica monoliths with independent control of meso- and macroporosity"", 《NEW JOURNAL OF CHEMISTRY》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111629999A (zh) * 2017-11-27 2020-09-04 圣特尼克光测量系统有限公司 官能化双峰周期性介孔有机硅酸盐(pmo)及使用赝晶转变制造其的方法
US11261126B2 (en) 2017-11-27 2022-03-01 Sentronic GmbH Gesellschaft für optische Meßsysteme Functionalised bimodal periodic mesoporous organosilicates (PMOs) and method for producing same using pseudomorphic transformation
US11739022B2 (en) 2017-11-27 2023-08-29 Sentronic GmbH Gesellschaft für optische Meßsysteme Functionalised bimodal periodic mesoporous organosilicates (PMOS) and method for producing same using pseudomorphic transformation
CN111629999B (zh) * 2017-11-27 2024-09-20 圣特尼克光测量系统有限公司 官能化双峰周期性介孔有机硅酸盐(pmo)及使用赝晶转变制造其的方法

Also Published As

Publication number Publication date
WO2014083162A2 (fr) 2014-06-05
FR2998891B1 (fr) 2015-04-10
US20150307393A1 (en) 2015-10-29
JP2016505485A (ja) 2016-02-25
FR2998891A1 (fr) 2014-06-06
WO2014083162A3 (fr) 2014-09-18
EP2925431B1 (fr) 2019-02-27
EP2925431A2 (fr) 2015-10-07
KR20160097120A (ko) 2016-08-17

Similar Documents

Publication Publication Date Title
CN105102116A (zh) 用于制备任选官能化的具有双峰孔隙度的玻璃的方法和所述玻璃
Li et al. A nanocomposite consisting of an amorphous seed and a molecularly imprinted covalent organic framework shell for extraction and HPLC determination of nonsteroidal anti-inflammatory drugs
Luo et al. Adsorptive removal of Lead from water by the effective and reusable magnetic cellulose nanocomposite beads entrapping activated bentonite
Liu et al. A versatile strategy to fabricate dual-imprinted porous adsorbent for efficient treatment co-contamination of λ-cyhalothrin and copper (II)
Kong et al. Facile preparation of ion-imprinted chitosan microspheres enwrapping Fe3O4 and graphene oxide by inverse suspension cross-linking for highly selective removal of copper (II)
Li et al. Synthesis of ion-imprinted chitosan-TiO2 adsorbent and its multi-functional performances
Liu et al. A novel smart microsphere with magnetic core and ion-recognizable shell for Pb2+ adsorption and separation
Wu et al. Synthesis of teicoplanin-modified hybrid magnetic mesoporous silica nanoparticles and their application in chiral separation of racemic compounds
Seida et al. Hydrogel adsorbents for the removal of hazardous pollutants—Requirements and available functions as adsorbent
Duran et al. Functionalization of gum arabic including glycoprotein and polysaccharides for the removal of boron
Zhang et al. Dependence of dye molecules adsorption behaviors on pore characteristics of mesostructured MOFs fabricated by surfactant template
Alguacil et al. Organic dyes versus adsorption processing
Jiang et al. Fabrication of porous polyethyleneimine-functionalized chitosan/Span 80 microspheres for adsorption of diclofenac sodium from aqueous solutions
Maya et al. Emerging materials for sample preparation
Ngo et al. New chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole antibiotics in water
Zhang et al. Preparation of molecularly imprinted ordered mesoporous silica for rapid and selective separation of trace bisphenol A from water samples
Li et al. Macro-microporous zeolitic imidazole framework-8/cellulose aerogel for semi-automated pipette tip solid phase extraction of fluoroquinolones in water
Tian et al. Development of a novel core–shell magnetic Fe3O4@ CMC@ ZIF-8-OH composite with outstanding rubidium-ion capacity
Lu et al. Tunable superporous magnetic adsorbent prepared via eco-friendly Pickering MIPEs for high-efficiency adsorption of Rb+ and Sr2+
CN106390933B (zh) 选择性吸附全氟辛基磺酸盐的磁性氟化吸附剂及其制备方法和应用
Liu et al. Tentacle-type poly (hydroxamic acid)-modified macroporous cellulose beads: Synthesis, characterization, and application for heavy metal ions adsorption
Yu et al. Combined granulation–alkali activation–direct foaming process: A novel route to porous geopolymer granules with enhanced adsorption properties
Kosheleva et al. New trends in molecular imprinting techniques
Soares et al. Towards efficient ciprofloxacin adsorption using magnetic hybrid nanoparticles prepared with κ-, ι-, and λ-carrageenan
Fan et al. Removal of dimethylarsinate from water by robust NU-1000 aerogels: Impact of the aerogel materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151125

RJ01 Rejection of invention patent application after publication