CN105097052A - Surface resistive type broadband meta-material absorber - Google Patents
Surface resistive type broadband meta-material absorber Download PDFInfo
- Publication number
- CN105097052A CN105097052A CN201410235215.1A CN201410235215A CN105097052A CN 105097052 A CN105097052 A CN 105097052A CN 201410235215 A CN201410235215 A CN 201410235215A CN 105097052 A CN105097052 A CN 105097052A
- Authority
- CN
- China
- Prior art keywords
- absorber
- branches
- metamaterial
- surface resistance
- absorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 49
- 239000000463 material Substances 0.000 title description 4
- 238000010521 absorption reaction Methods 0.000 claims abstract description 31
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical group [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052802 copper Inorganic materials 0.000 claims abstract description 6
- 239000010949 copper Substances 0.000 claims abstract description 6
- 229920007790 polymethacrylimide foam Polymers 0.000 claims abstract description 6
- 210000001787 dendrite Anatomy 0.000 claims description 8
- 230000000737 periodic effect Effects 0.000 claims description 6
- 239000000758 substrate Substances 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 238000010329 laser etching Methods 0.000 description 4
- 230000010287 polarization Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- MRNHPUHPBOKKQT-UHFFFAOYSA-N indium;tin;hydrate Chemical compound O.[In].[Sn] MRNHPUHPBOKKQT-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
本发明涉及一种微波吸收器,特别涉及面电阻型宽带超材料吸收器。这种吸波器具有三层结构,底层为铜板,中间层为PMI泡沫(聚甲基丙烯酰亚胺)介质,上层是刻蚀各向同性树枝结构的ITO薄膜。整个全向树枝单元包括八个由一级和二级分支组成的四边形开口环以及八个由二级分支构成的V形,所有的开口环单元以准周期形式分布。一级、二级树枝长度分别为a、b,树枝宽度为w,树枝间夹角为θ=45°。当有一种树枝结构时在7.80-16.90GHz频段范围内能达到最低80%的吸收率,吸收相对带宽73.68%。当有两种树枝结构时在6.15-17.00GHz频段范围内能达到最低80%的吸收率,吸收相对带宽93.74%。本发明的吸波器可以实现各向同性和宽频带的高性能吸收,具有结构简单轻巧、成本低、制备方便等优点。
The invention relates to a microwave absorber, in particular to a surface resistance type broadband metamaterial absorber. This wave absorber has a three-layer structure, the bottom layer is a copper plate, the middle layer is a PMI foam (polymethacrylimide) medium, and the upper layer is an ITO film with an isotropic dendritic structure etched. The entire omnidirectional branch unit includes eight quadrilateral split rings composed of primary and secondary branches and eight V-shaped split rings composed of secondary branches, and all split ring units are distributed in a quasi-periodic form. The lengths of the primary and secondary branches are a and b respectively, the width of the branches is w, and the angle between the branches is θ=45°. When there is a branch structure, the absorption rate can reach the lowest 80% in the frequency range of 7.80-16.90GHz, and the absorption relative bandwidth is 73.68%. When there are two kinds of dendritic structures, the lowest absorption rate can reach 80% in the frequency range of 6.15-17.00GHz, and the absorption relative bandwidth is 93.74%. The wave absorber of the invention can realize isotropic and broadband high-performance absorption, and has the advantages of simple and light structure, low cost, convenient preparation and the like.
Description
技术领域本发明涉及一种微波吸波器,特别涉及面电阻型宽带超材料吸收器,利用面电阻型树枝状超材料结构使吸收频带达到宽频。 Technical Field The present invention relates to a microwave absorber, in particular to a surface resistance type broadband metamaterial absorber, which uses a surface resistance type dendritic metamaterial structure to make the absorption frequency band reach a wide frequency.
背景技术随着军事高新技术的飞速发展,吸波器因其能够有效降低目标雷达散射截面RCS而在未来隐身技术领域的作用越来越大,传统的吸波器不符合雷达吸波体“薄、轻、宽、强”的要求,而超材料吸波器因其在隐身领域的巨大潜力而受到更广泛的关注和应用。 Background technology With the rapid development of military high-tech, absorbers will play an increasingly important role in the field of stealth technology in the future because they can effectively reduce the RCS of the target radar cross section. , light, wide, and strong” requirements, and metamaterial wave absorbers have received more attention and applications because of their great potential in the field of stealth.
超材料是一种人工制造的周期性电介质或者金属阵列,并且超材料的微结构远小于其工作波长,超材料吸波器本身具有的谐振吸收特征在微波吸收领域展现出广阔的应用前景,不同的几何结构需要特定的电磁波极化方式,而且谐振的频段非常窄,这在一定程度上限制了超材料吸收器的实际应用。2008年Landy等人设计的低剖面超材料完美吸波器,在一定微波频段范围内能够完全吸收电磁波,此后人们设计了各种不同工作频段的形状各异的超材料吸波器,但是这些吸收器普遍具有吸收频带窄、吸收效果差、剖面厚、对电磁波极化方式敏感等诸多缺点。针对超材料吸波器的诸多缺点,本发明通过一种面电阻型各向同性树枝结构超材料实现宽频带吸收的方法设计了一种单层的覆盖X波段和Ku波段各向同性的宽频带超材料吸波器,该吸收器具有结构简单轻便、吸收频带宽、吸收率高、剖面薄、对电磁波极化方式不敏感的优点。 Metamaterial is an artificially manufactured periodic dielectric or metal array, and the microstructure of metamaterial is much smaller than its working wavelength. The resonant absorption characteristic of metamaterial absorber itself shows broad application prospects in the field of microwave absorption. The geometric structure of the metamaterial requires a specific polarization of electromagnetic waves, and the resonant frequency band is very narrow, which limits the practical application of metamaterial absorbers to a certain extent. In 2008, the low-profile metamaterial perfect absorber designed by Landy et al. can completely absorb electromagnetic waves in a certain microwave frequency range. Since then, people have designed various metamaterial absorbers with different working frequency bands, but these absorbers Transducers generally have many shortcomings such as narrow absorption frequency band, poor absorption effect, thick section, and sensitivity to electromagnetic wave polarization. Aiming at the many shortcomings of metamaterial wave absorbers, the present invention designs a single-layer isotropic broadband covering X-band and Ku-band through a method of realizing broadband absorption by a surface resistance type isotropic dendritic structure metamaterial. The metamaterial wave absorber has the advantages of simple and light structure, wide absorption frequency band, high absorption rate, thin section, and insensitivity to electromagnetic wave polarization.
发明内容本发明的目的是提供一种各向同性宽频带超材料吸波器,通过面电阻型超材料结构使吸波器吸收频带达到宽频。该超材料吸收器底层为金属铜板,中间层为PMI泡沫(聚甲基丙烯酰亚胺)介质,上层是在ITO薄膜(掺锡氧化铟)上刻蚀一种或几种各向同性树枝结构,并且通过调控树枝结构的尺寸大小实现各级树枝结构的相互耦合,使吸波器的吸收率和宽吸收带宽达到最优。将设计的结构制作成各向同性宽频带超材料吸波器,在微波暗室中测试吸波器的吸波性能,当有一种树枝结构时在7.80-16.90GHz频段范围内能达到最低80%的吸收率,吸收相对带宽73.68%。当有两种树枝结构时在6.15-17.00GHz频段范围内能达到最低80%的吸收率,吸收相对带宽93.74%。本发明的吸波器仅用三层简单结构便可以实现各向同性和宽频带的高性能吸收,具有结构简单、低剖面、厚度薄、成本低、制备方便、不易损坏、吸波性能好等优点。 SUMMARY OF THE INVENTION The object of the present invention is to provide an isotropic broadband metamaterial absorber, which can achieve a broadband absorption frequency band through the sheet resistance metamaterial structure. The bottom layer of the metamaterial absorber is a metal copper plate, the middle layer is a PMI foam (polymethacrylimide) medium, and the upper layer is one or several isotropic dendritic structures etched on an ITO film (tin-doped indium oxide) , and by adjusting the size of the branch structure, the mutual coupling of the branch structures at all levels is realized, so that the absorption rate and wide absorption bandwidth of the absorber can be optimized. Make the designed structure into an isotropic broadband metamaterial absorber, and test the absorber’s absorbing performance in a microwave anechoic chamber. When there is a branch structure, it can reach a minimum of 80% in the frequency range of 7.80-16.90GHz Absorption rate, absorption relative bandwidth 73.68%. When there are two kinds of dendritic structures, the absorption rate can reach the lowest 80% in the frequency range of 6.15-17.00GHz, and the absorption relative bandwidth is 93.74%. The wave absorber of the present invention can realize isotropic and broadband high-performance absorption with only a three-layer simple structure, and has the advantages of simple structure, low profile, thin thickness, low cost, convenient preparation, not easy to damage, good wave absorbing performance, etc. advantage.
附图说明 Description of drawings
图1树枝结构示意图 Figure 1 Schematic diagram of tree branch structure
图2树枝结构单元示意图 Figure 2 Schematic diagram of dendritic structure unit
图3实施例一超材料吸波器样品示意图 Figure 3 Example 1 Metamaterial Absorber Sample Schematic Diagram
图4实施例一超材料吸波器吸收性能测试结果 Fig. 4 embodiment one metamaterial wave absorber absorption performance test result
图5实施例二超材料吸波器最小周期结构示意图 Figure 5 Schematic diagram of the minimum period structure of the metamaterial wave absorber in Embodiment 2
图6实施例二超材料吸波器样品示意图 Fig. 6 Example 2 metamaterial wave absorber sample schematic diagram
图7实施例二超材料吸收器吸收性能测试结果 Fig. 7 embodiment two metamaterial absorber absorption performance test result
具体实施方式采用ITO激光刻蚀技术制作覆盖X波段和Ku波段各向同性宽带超材料吸波器,首先设计一种面电阻型树枝结构单元,结构模型图如图1和图2所示,上层刻蚀的整个全向树枝单元包括八个由一级和二级分支组成的四边形开口环以及八个由二级分支构成的V形,所有的开口环单元以准周期形式分布。一级、二级树枝长度分别为a、b,树枝宽度为w,树枝间夹角为θ=45°,而且结构单元是以中心轴线方向按45°旋转对称的。将基本的结构单元组合排列成周期性结构并且通过加工成为矩形的吸波器,采用激光刻蚀技术制备完全吸收器,在面电阻值为40Ω的ITO薄膜上刻蚀出设计好的树枝结构2,中间介质基板为介电常数为1.2的PMI泡沫(聚甲基丙烯酰亚胺),其底面为铜接地板,其几何大小与泡沫介质基板的大小相同,最终设计加工为覆盖X波段和Ku波段各向同性宽带超材料吸波器。本发明实施例中使用了两种宽频带的超材料吸波器。 Specific implementation mode ITO laser etching technology is used to manufacture an isotropic broadband metamaterial absorber covering the X-band and Ku-band. First, a surface resistance dendritic structure unit is designed. The structural model diagrams are shown in Figures 1 and 2. The upper layer The etched omnidirectional dendritic unit includes eight quadrilateral split rings composed of primary and secondary branches and eight V-shaped split rings composed of secondary branches, and all the split ring units are distributed in a quasi-periodic form. The lengths of the primary and secondary branches are a and b respectively, the width of the branches is w, the angle between the branches is θ=45°, and the structural unit is rotationally symmetrical at 45° in the direction of the central axis. The basic structural units are combined and arranged into a periodic structure and processed into a rectangular absorber. The complete absorber is prepared by laser etching technology, and the designed dendritic structure is etched on the ITO film with a surface resistance value of 40Ω2 , the intermediate dielectric substrate is PMI foam (polymethacrylimide) with a dielectric constant of 1.2, and its bottom surface is a copper ground plane, whose geometric size is the same as that of the foam dielectric substrate, and the final design is processed to cover the X-band and Ku Band isotropic broadband metamaterial absorber. In the embodiment of the present invention, two kinds of broadband metamaterial wave absorbers are used.
本发明的实现过程和材料性能由实施例和附图说明: Realization process and material performance of the present invention are explained by embodiment and accompanying drawing:
实施例一: Embodiment one:
采用激光刻蚀技术,在ITO薄膜上刻蚀出大小相同且呈周期性排列的树枝结构单元,每种树枝结构均由二级树枝对称旋转组成,树枝间夹角θ=45°,树枝线宽w=1.2mm,每个周期内介质基板的边长1=10mm。超材料吸收器的单元排列如图2所示,树枝结构材料为薄膜表面一层导电层材料掺锡氧化铟,其一级树枝长度为1.8mm,二级树枝长度为2.6mm,中间PMI泡沫介质(聚甲基丙烯酰亚胺)基板厚度为3mm,底层铜板厚度为2mm。最后周期性树枝结构超材料吸收器大小为440mm×480mm。最终制作的超材料吸波器如图3所示。对于这种几何参数的吸收器,其80%以上吸收率工作频带为7.80GHz-16.90GHz(吸收带宽为9.10GHz)。图4为本发明实施例超材料吸波器对微波的吸收性能。 Using laser etching technology, the same size and periodically arranged dendrite structure units are etched on the ITO film. Each dendrite structure is composed of two-stage branches symmetrically rotated, the angle between the branches is θ=45°, and the line width of the branches w=1.2mm, and the side length 1 of the dielectric substrate in each cycle=10mm. The unit arrangement of the metamaterial absorber is shown in Figure 2. The branch structure material is a layer of conductive layer material on the surface of the film doped with tin indium oxide. The length of the primary branch is 1.8mm, and the length of the secondary branch is 2.6mm. (Polymethacrylimide) substrate thickness is 3mm, bottom copper plate thickness is 2mm. The size of the periodic dendritic metamaterial absorber is 440mm×480mm. The final fabricated metamaterial absorber is shown in Figure 3. For the absorber with this geometric parameter, the working frequency band of its absorption rate above 80% is 7.80GHz-16.90GHz (the absorption bandwidth is 9.10GHz). Fig. 4 is the microwave absorption performance of the metamaterial absorber according to the embodiment of the present invention.
实施例二: Embodiment two:
采用激光刻蚀技术,在ITO薄膜上刻蚀出两种不同尺寸且呈周期性排列的树枝结构单元,每种树枝结构均由二级树枝对称旋转组成,树枝间夹角θ=45°。第一种树枝结构T1的一级、二级树枝长度分别a1=5.0mm,b=6.5mm,树枝线宽w=2.0mm,第二种树枝结构T2的一级、二级树枝长度分别a1=10mm,b=12mm,树枝线宽w=7mm,最小周期单元排列如图5所示。其中PMI泡沫(聚甲基丙烯酰亚胺)介质基板的厚度为3mm,其底面完全覆盖厚度为2mm的金属铜板,通过三层结构组合制作成为超材料吸波器,其结构尺寸为440mm×480mm,最终制作的超材料吸波器如图6所示。对于这种几何参数的吸收器,其80%以上吸收率工作频带为6.15-17.00GHz(吸收带宽为10.85GHz)。图7为本发明实施例超材料吸波器对微波的吸收性能。 Using laser etching technology, two types of dendrite structure units with different sizes and arranged periodically are etched on the ITO film. Each dendrite structure is composed of two-level dendritic branches symmetrically rotated, and the angle between the dendrites is θ=45°. The primary and secondary branch lengths of the first branch structure T1 are respectively a1=5.0mm, b=6.5mm, and the branch line width w=2.0mm, and the primary and secondary branch lengths of the second branch structure T2 are respectively a1= 10mm, b=12mm, branch line width w=7mm, the minimum periodic unit arrangement is shown in Figure 5. Among them, the thickness of the PMI foam (polymethacrylimide) dielectric substrate is 3mm, and its bottom surface is completely covered with a metal copper plate with a thickness of 2mm. It is made into a metamaterial absorber through the combination of three layers, and its structural size is 440mm×480mm. , the final fabricated metamaterial absorber is shown in Fig. 6. For the absorber with this geometric parameter, the working frequency band of its absorption rate above 80% is 6.15-17.00 GHz (the absorption bandwidth is 10.85 GHz). Fig. 7 is the microwave absorption performance of the metamaterial absorber according to the embodiment of the present invention.
以上所述仅为本发明的优选实施例而已,当不能以此限定本发明实施的范围,即大凡依本发明权利要求及发明说明书内容所作的简单的等效变化与修饰,皆应仍属本发明专利覆盖的范围内。 The above description is only a preferred embodiment of the present invention, when the scope of implementation of the present invention cannot be limited with this, that is, all simple equivalent changes and modifications made according to the claims of the present invention and the content of the description of the invention should still belong to this invention. within the scope of invention patents.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410235215.1A CN105097052A (en) | 2014-05-22 | 2014-05-22 | Surface resistive type broadband meta-material absorber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410235215.1A CN105097052A (en) | 2014-05-22 | 2014-05-22 | Surface resistive type broadband meta-material absorber |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105097052A true CN105097052A (en) | 2015-11-25 |
Family
ID=54577300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410235215.1A Pending CN105097052A (en) | 2014-05-22 | 2014-05-22 | Surface resistive type broadband meta-material absorber |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105097052A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106058482A (en) * | 2016-06-12 | 2016-10-26 | 西安电子科技大学 | Double-layer conductive thin film-based transparent broadband electromagnetic wave absorber |
CN106572622A (en) * | 2016-11-02 | 2017-04-19 | 国家纳米科学中心 | Broadband wave absorber and preparation method |
CN109888506A (en) * | 2019-01-04 | 2019-06-14 | 西安理工大学 | A frequency-tunable terahertz multiband absorber |
CN109921192A (en) * | 2019-03-06 | 2019-06-21 | 西安电子科技大学 | A frequency selection device for low frequency transmission and high frequency broadband absorption |
CN112542768A (en) * | 2019-09-23 | 2021-03-23 | 三星电子株式会社 | Optical modulator, beam steering apparatus, and electronic apparatus |
CN112838377A (en) * | 2020-12-31 | 2021-05-25 | 南京航空航天大学 | A superstructure-based multi-band THz absorber |
CN113381200A (en) * | 2021-05-13 | 2021-09-10 | 宁波大学 | Electromagnetic absorption structure with wide incident angle |
CN115117638A (en) * | 2022-05-31 | 2022-09-27 | 中国人民解放军火箭军工程大学 | A kind of wave absorbing metamaterial based on dendritic fractal structure and preparation method |
CN117559141A (en) * | 2023-11-01 | 2024-02-13 | 广东技术师范大学 | Transparent broadband metamaterial wave absorber based on topological optimization and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2569536Y (en) * | 2002-09-16 | 2003-08-27 | 侯邦为 | Electromagnetic wave barrier film |
CN101840735A (en) * | 2009-03-17 | 2010-09-22 | 西北工业大学 | Meta-material microwave absorber based on dendritic structure |
CN101888022A (en) * | 2009-05-13 | 2010-11-17 | 西北工业大学 | An X-band Microstrip Antenna Based on Completely Absorbing Material |
CN102724857A (en) * | 2012-06-06 | 2012-10-10 | 电子科技大学 | Electromagnetic wave absorbing structure |
CN102868021A (en) * | 2012-09-27 | 2013-01-09 | 中国科学院长春光学精密机械与物理研究所 | High-performance frequency selection radar cover |
CN103682672A (en) * | 2013-11-25 | 2014-03-26 | 中国科学院长春光学精密机械与物理研究所 | Frequency selective surface based ultrathin broadband wave-absorbing material |
-
2014
- 2014-05-22 CN CN201410235215.1A patent/CN105097052A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2569536Y (en) * | 2002-09-16 | 2003-08-27 | 侯邦为 | Electromagnetic wave barrier film |
CN101840735A (en) * | 2009-03-17 | 2010-09-22 | 西北工业大学 | Meta-material microwave absorber based on dendritic structure |
CN101888022A (en) * | 2009-05-13 | 2010-11-17 | 西北工业大学 | An X-band Microstrip Antenna Based on Completely Absorbing Material |
CN102724857A (en) * | 2012-06-06 | 2012-10-10 | 电子科技大学 | Electromagnetic wave absorbing structure |
CN102868021A (en) * | 2012-09-27 | 2013-01-09 | 中国科学院长春光学精密机械与物理研究所 | High-performance frequency selection radar cover |
CN103682672A (en) * | 2013-11-25 | 2014-03-26 | 中国科学院长春光学精密机械与物理研究所 | Frequency selective surface based ultrathin broadband wave-absorbing material |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106058482A (en) * | 2016-06-12 | 2016-10-26 | 西安电子科技大学 | Double-layer conductive thin film-based transparent broadband electromagnetic wave absorber |
CN106058482B (en) * | 2016-06-12 | 2018-11-16 | 西安电子科技大学 | Transparent wideband electromagnetic wave absorbing device based on bilayer conductive film |
CN106572622A (en) * | 2016-11-02 | 2017-04-19 | 国家纳米科学中心 | Broadband wave absorber and preparation method |
CN109888506A (en) * | 2019-01-04 | 2019-06-14 | 西安理工大学 | A frequency-tunable terahertz multiband absorber |
CN109888506B (en) * | 2019-01-04 | 2020-12-22 | 西安理工大学 | A frequency-tunable terahertz multiband absorber |
CN109921192A (en) * | 2019-03-06 | 2019-06-21 | 西安电子科技大学 | A frequency selection device for low frequency transmission and high frequency broadband absorption |
CN112542768A (en) * | 2019-09-23 | 2021-03-23 | 三星电子株式会社 | Optical modulator, beam steering apparatus, and electronic apparatus |
CN112838377A (en) * | 2020-12-31 | 2021-05-25 | 南京航空航天大学 | A superstructure-based multi-band THz absorber |
CN112838377B (en) * | 2020-12-31 | 2022-05-03 | 南京航空航天大学 | A superstructure-based multi-band THz absorber |
CN113381200A (en) * | 2021-05-13 | 2021-09-10 | 宁波大学 | Electromagnetic absorption structure with wide incident angle |
CN113381200B (en) * | 2021-05-13 | 2022-07-15 | 宁波大学 | Electromagnetic absorption structure with wide incident angle |
CN115117638A (en) * | 2022-05-31 | 2022-09-27 | 中国人民解放军火箭军工程大学 | A kind of wave absorbing metamaterial based on dendritic fractal structure and preparation method |
CN115117638B (en) * | 2022-05-31 | 2025-01-14 | 中国人民解放军火箭军工程大学 | A wave-absorbing metamaterial based on tree-branch fractal structure and preparation method thereof |
CN117559141A (en) * | 2023-11-01 | 2024-02-13 | 广东技术师范大学 | Transparent broadband metamaterial wave absorber based on topological optimization and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105097052A (en) | Surface resistive type broadband meta-material absorber | |
CN103700951B (en) | Complex media double-deck FSS structure SRR metal level ultra-thin absorbing material | |
CN110247196A (en) | The frequency that a kind of intermediate frequency broadband wave transparent, high and low frequency inhale wave selects wave-absorber | |
CN107508017B (en) | A Suction Broadband Frequency Selective Structure and Its Application | |
CN110265780A (en) | A Stealth Radome with Mid-Frequency Broadband Wave-Permeability and High-Frequency and Low-Frequency Polarization Conversion | |
CN107579352B (en) | An ultra-broadband frequency selective surface suitable for radome | |
CN104682013A (en) | A wide-angle polarization-insensitive metamaterial absorber with low RCS | |
CN104411153B (en) | Polarized insensitive sub-wavelength three-dimensional wave absorption structure | |
CN108365306B (en) | A Novel Dual-Polarized Low-pass Band Suction Frequency Selective Structure | |
CN103490169B (en) | Individual layer broadband random surface | |
CN107402383B (en) | A kind of bi-phase modulated plate and method for implementing radar frequency spectrum shift | |
CN105914462A (en) | Ultra broadband mobile communication radome based on antenna-filter-antenna array | |
CN103249290A (en) | Single-layered composite element wideband periodic wave-absorbing structure | |
CN102255140A (en) | Beam controllable lens and Vivaldi antenna | |
CN107565223A (en) | A kind of stealthy random surface of ultra wide band complete polarization and its design method | |
CN104852153A (en) | Broadband reduction RCS composite material based on crossed bow-tie-shaped AMC | |
CN206098624U (en) | A Y-like double-layer rotating complementary metamaterial microcell structure | |
CN110783714A (en) | Graphene-based transmission dynamically tunable flexible frequency-selective absorber | |
CN104638382A (en) | Dual-frequency metamaterial wave absorber | |
CN109742554B (en) | Double-frequency Ku waveband circularly polarized sensitive wave absorber | |
Hamid et al. | Frequency selective radome with enhanced transmissive and absorptive response | |
CN115149272A (en) | Flexible transparent ultra-wideband wave absorber | |
CN204011735U (en) | Individual layer broadband random surface | |
Dalkılıç et al. | Analysis of conformal frequency selective surface radome | |
CN106785476B (en) | Metamaterial wave absorber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151125 |