CN105093195A - Method for on-line correcting low-angle radar electric wave refraction error - Google Patents
Method for on-line correcting low-angle radar electric wave refraction error Download PDFInfo
- Publication number
- CN105093195A CN105093195A CN201510426385.2A CN201510426385A CN105093195A CN 105093195 A CN105093195 A CN 105093195A CN 201510426385 A CN201510426385 A CN 201510426385A CN 105093195 A CN105093195 A CN 105093195A
- Authority
- CN
- China
- Prior art keywords
- atmospheric
- radar
- refraction
- data
- error
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 42
- 238000012937 correction Methods 0.000 claims abstract description 38
- 238000005259 measurement Methods 0.000 claims abstract description 37
- 238000001514 detection method Methods 0.000 claims description 28
- 239000013078 crystal Substances 0.000 claims description 12
- 238000012545 processing Methods 0.000 claims description 9
- 230000010355 oscillation Effects 0.000 claims description 4
- 230000003321 amplification Effects 0.000 claims 1
- 238000013461 design Methods 0.000 claims 1
- 230000007613 environmental effect Effects 0.000 claims 1
- 230000003203 everyday effect Effects 0.000 claims 1
- 238000001914 filtration Methods 0.000 claims 1
- 230000004807 localization Effects 0.000 claims 1
- 238000003199 nucleic acid amplification method Methods 0.000 claims 1
- 238000013316 zoning Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 230000011218 segmentation Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000005433 ionosphere Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 239000005436 troposphere Substances 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/40—Means for monitoring or calibrating
- G01S7/4004—Means for monitoring or calibrating of parts of a radar system
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了一种低角雷达电波折射误差在线修正方法,当雷达对目标进行测量时,将雷达测量参数距离和角度通过由GPS接收机、地面大气折射率测量仪、大气剖面数据库、控制与数据处理器和有关接口电路等组成的装置得到消除大气折射误差的雷达定位参数,用该参数进行目标的定位,提高雷达的定位精度。本发明的折射误差修正方法简单,运算量小,时间较短,精度较高,自动化程度高且易于实现,可实现雷达高精度定位的电波折射误差在线修正功能。
The invention discloses an online correction method for low-angle radar electric wave refraction error. When the radar measures the target, the distance and angle of the radar measurement parameters are passed through the GPS receiver, the ground atmospheric refractivity measuring instrument, the atmospheric profile database, the control and A device composed of a data processor and related interface circuits obtains radar positioning parameters that eliminate atmospheric refraction errors, uses the parameters to locate targets, and improves radar positioning accuracy. The refraction error correction method of the present invention is simple, has small calculation amount, short time, high precision, high degree of automation and is easy to implement, and can realize the online correction function of electric wave refraction error for radar high-precision positioning.
Description
技术领域technical field
本发明属于雷达测量误差修正方法技术领域,具体涉及一种低角雷达电波折射误差在线修正方法。The invention belongs to the technical field of radar measurement error correction methods, and in particular relates to an online correction method for low-angle radar electric wave refraction errors.
背景技术Background technique
提高雷达的测量定位精度是导航、卫星和测控等应用领域的必要条件。随着组成雷达系统的电子元器件本身精度的提高以及相关数据处理方法的优化,大气环境引起的电波折射误差已成为限制雷达测量精度进一步提高的主要因素。Improving the measurement and positioning accuracy of radar is a necessary condition for applications such as navigation, satellite and measurement and control. With the improvement of the accuracy of the electronic components that make up the radar system and the optimization of related data processing methods, the refraction error of radio waves caused by the atmospheric environment has become the main factor that limits the further improvement of radar measurement accuracy.
雷达探测空中目标时,电波要通过大气(包括对流层和电离层)环境。大气环境的不均匀性使得电波在大气中传播时产生折射效应,电波射线沿曲线而不是沿直线传播,且传播速度小于光速,使得雷达测量参数产生折射误差,进而影响雷达定位精度。要进一步提高雷达定位精度,必须进行电波折射误差修正。由于大气的水平不均匀性很小,因此折射误差只考虑距离误差和仰角误差,而不需要考虑方位角误差。目前,绝大多数学者利用实测大气环境参数,采用基于积分形式的射线描迹法进行电波折射误差的计算和修正,由于该方法需要测量大气环境参数和积分运算,需要的处理时间很长,因此它只适用于靶场和实验基地的雷达系统,而不适用于实际应用中需要在线(实时)进行电波折射误差修正的雷达系统。When radar detects air targets, radio waves must pass through the atmosphere (including the troposphere and ionosphere) environment. The inhomogeneity of the atmospheric environment causes refraction effects when radio waves propagate in the atmosphere. The radio wave rays propagate along curves instead of straight lines, and the propagation speed is less than the speed of light, which causes refraction errors in radar measurement parameters, which in turn affects radar positioning accuracy. In order to further improve the radar positioning accuracy, it is necessary to correct the electric wave refraction error. Because the horizontal inhomogeneity of the atmosphere is very small, the refraction error only considers the distance error and elevation angle error, but does not need to consider the azimuth angle error. At present, the vast majority of scholars use the measured atmospheric environment parameters to calculate and correct the radio wave refraction error using the ray tracing method based on the integral form. Since this method needs to measure the atmospheric environment parameters and integral calculation, the processing time required is very long, so It is only suitable for radar systems in shooting ranges and experimental bases, but not for radar systems that require online (real-time) correction of radio wave refraction errors in practical applications.
目前已有的电波折射误差实时修正方法主要有两类,一类是利用微波辐射计测量雷达电波射线经过大气环境的热噪声,利用马可(Marcor)技术得到热噪声与折射误差的关系,进而进行折射误差修正。但是这种方法一是只能进行距离折射误差修正,不能进行角度折射误差的修正,修正参数不完整;二是它得到的折射误差只是从雷达到无限远处的误差量,不是雷达到目标之间的误差量,修正范围大于实际电波通过区间,扩大了误差量。另一类是对某些参数进行理想化近似的简化修正法,它不仅需要进行大量的前期数据统计工作,而且修正精度较低,只能适用于参与统计的典型地区的雷达系统。At present, there are two main types of real-time correction methods for radio wave refraction errors. One is to use microwave radiometers to measure the thermal noise of radar radio waves passing through the atmospheric environment, and use Marcor technology to obtain the relationship between thermal noise and refraction errors. Perform refraction error correction. However, this method can only correct the distance refraction error, not the angle refraction error, and the correction parameters are incomplete; second, the refraction error obtained by it is only the error amount from the radar to infinity, not the distance from the radar to the target. The error amount between the two, the correction range is larger than the actual radio wave passing interval, which expands the error amount. The other is a simplified correction method for idealized approximation of some parameters. It not only requires a lot of preliminary data statistics, but also has low correction accuracy, and can only be applied to radar systems in typical areas participating in the statistics.
为了满足实际应用中的雷达系统的电波折射误差在线修正,进一步提高雷达定位精度,有必要研发一种低角雷达电波折射误差在线修正方法。In order to satisfy the online correction of the radio wave refraction error of the radar system in practical applications and further improve the radar positioning accuracy, it is necessary to develop an online correction method of the low-angle radar radio wave refraction error.
发明内容Contents of the invention
本发明解决的技术问题是提供了一种低角雷达电波折射误差在线修正方法,当雷达对目标进行测量时,将雷达测量参数(距离和角度)通过由GPS接收机、地面大气折射率测量仪、大气剖面数据库、控制与数据处理器和有关接口电路等组成的装置得到消除大气折射误差的雷达定位参数,用该参数进行目标的定位,提高雷达的定位精度。The technical problem solved by the present invention is to provide an online correction method for low-angle radar electric wave refraction error. The device composed of the atmospheric profile database, the control and data processor and the relevant interface circuit obtains the radar positioning parameters for eliminating the atmospheric refraction error, uses the parameters to locate the target, and improves the positioning accuracy of the radar.
本发明为解决上述技术问题采用如下技术方案,一种低角雷达电波折射误差在线修正方法,其特征在于包括以下步骤:(1)由雷达天线处的GPS接收机得到雷达天线的地理位置和工作月份,并通过数据接口输送到控制与数据处理器中;(2)控制与数据处理器根据雷达的地理位置和工作月份,在大气剖面数据库中找寻和确定所需要的大气模型;(3)大气折射率测量仪对雷达处的地面大气折射率进行测量,并将地面大气折射率测量值通过数据接口输送到控制与数据处理器中;(4)控制与数据处理器根据大气折射率测量值对步骤(2)中确定的大气模型进行参数确定,得到只含未知数高度h的实用大气剖面;(5)雷达测量参数通过数据接口输送到控制与数据处理器中;(6)在控制与数据处理器中,根据确定的大气剖面和雷达测量参数,利用差分电波折射误差修正方法计算电波折射误差,并将雷达测量参数进行误差修正,得到修正结果;(7)将修正后的雷达测量参数再输送到雷达的定位处理单元进行目标精确定位;(8)将雷达折射误差进行显示和存储。The present invention adopts following technical scheme for solving the above-mentioned technical problem, a kind of low-angle radar electric wave refraction error online correction method, it is characterized in that comprising the following steps: (1) obtain the geographic location and working position of radar antenna by the GPS receiver at radar antenna place month, and send it to the control and data processor through the data interface; (2) the control and data processor searches and determines the required atmospheric model in the atmospheric profile database according to the geographic location and working month of the radar; (3) the atmospheric model The refractometer measures the ground atmospheric refractivity at the radar, and transmits the measured value of the ground atmospheric refractivity to the control and data processor through the data interface; The parameters of the atmospheric model determined in step (2) are determined to obtain a practical atmospheric profile containing only the unknown height h; (5) the radar measurement parameters are sent to the control and data processor through the data interface; (6) in the control and data processing In the device, according to the determined atmospheric profile and radar measurement parameters, the differential radio wave refraction error correction method is used to calculate the radio wave refraction error, and the radar measurement parameters are corrected to obtain the correction result; (7) The corrected radar measurement parameters are sent to (8) display and store the radar refraction error.
进一步限定,所述的大气剖面数据库的建立方法具体包括以下步骤:Further limit, the establishment method of described atmospheric profile database specifically comprises the following steps:
(1)根据我国常用雷达所处地理位置和无线电气象环境变化特点,采用栅格技术划分区域,在东经700到1350范围内按10间隔进行划分,在北纬150到550范围内按0.10间隔进行划分,划分后建立的栅格数为26000个;(1) According to the geographical location of commonly used radars in my country and the changing characteristics of the radio meteorological environment, the grid technology is used to divide the area by 10 intervals in the range of 700 to 1350 east longitude, and in the range of 0.10 intervals in the range of north latitude 150 to 550 , the number of grids established after division is 26000;
(2)确定每个栅格内的大气实测剖面,根据目前我国现有大气剖面探测站的位置,从全国大气探测站的探测数据中找出对应栅格20年内的大气实测剖面数据,每天两组数据,每个站共有14600组,如果栅格内有实测数据,则该栅格内的数据即为实测大气剖面数据,如果栅格内没有实测大气剖面数据,根据相邻四个栅格内的实测大气剖面数据,利用拉格朗日插值公式求得该栅格内的大气剖面,最后使得每个栅格内都有20年的大气剖面实测数据;(2) Determine the measured atmospheric profile in each grid, and find out the measured atmospheric profile data of the corresponding grid within 20 years from the detection data of the national atmospheric detection stations according to the current positions of the existing atmospheric profile detection stations in my country, twice a day There are 14,600 sets of data in each station. If there is measured data in the grid, the data in the grid is the measured atmospheric profile data. The measured atmospheric profile data, using the Lagrangian interpolation formula to obtain the atmospheric profile in the grid, and finally make each grid have 20 years of measured data of the atmospheric profile;
(3)确定大气模式,通过对比各种大气模式,最后选用高精度的大气剖面分段模式,即(3) To determine the atmospheric model, by comparing various atmospheric models, finally select the high-precision atmospheric profile segmentation model, namely
式中,h0为地面海拔高度,km;N0为地面大气折射指数;G为地面到1km高度的折射指数梯度,1/km;N1为地面1km高度上的大气折射指数;其中N9为海拔9km高度上的大气折射指数;c为地面1km至海拔9km大气层的衰减系数,1/km;c9为海拔9km以上高度大气层的衰减系数,1/km;In the formula, h 0 is the ground altitude, km; N 0 is the ground atmospheric refraction index; G is the refraction index gradient from the ground to a height of 1 km, 1/km; N 1 is the atmospheric refraction index at a ground height of 1 km; where N 9 is the atmospheric refraction index at an altitude of 9km ; c is the attenuation coefficient of the atmosphere from 1km to 9km above sea level, 1/km; c9 is the attenuation coefficient of the atmosphere above 9km above sea level, 1/km;
(4)各栅格内大气模式系数计算,对各栅格中每一次探测数据利用(2)式计算出对应的系数G和C,即(4) Calculation of the atmospheric model coefficients in each grid, using formula (2) to calculate the corresponding coefficients G and C for each detection data in each grid, namely
式中,N1由实测探测数据内插获得,Ni为地面1km到海拔9km范围内各高度hi上的大气折射指数,m为该范围内大气折射指数探测数据的个数,每一次探测数据中的N9也由实测探测数据内插获得,C9全国变化不大,因此采用全国年平均值0.1434,这样由各个栅格每一次实测大气剖面得到一组N0、N1、N9、G、C数据,将这些数据代入到(1)式就得到该次实际探测数据的大气剖面模型;In the formula, N 1 is obtained by interpolating the measured detection data, N i is the atmospheric refraction index at each height h i within the range of 1km from the ground to 9km above sea level, m is the number of atmospheric refraction index detection data in this range, each detection The N 9 in the data is also obtained by interpolation from the measured detection data. The national change of C 9 is not large, so the national annual average value of 0.1434 is adopted, so that a set of N 0 , N 1 , and N 9 can be obtained from each measured atmospheric profile of each grid , G, and C data, and these data are substituted into (1) formula to obtain the atmospheric profile model of the actual detection data;
(5)各栅格地面折射指数N0与大气剖面模型系数的关系统计,对每个栅格内各个月份的数据N0与N1、N9、G、C进行统计回归,得到各栅格每个月份N1、N9、G、C与N0的关系式,对于各栅格的每个月份N0再根据得到各栅格每个月份N1、N9、G、C与N0的关系式得出对应的N1、N9、G、C,从而得到实用的大气剖面N(h);(5) Statistical statistics of the relationship between the ground refraction index N 0 of each grid and the coefficient of the atmospheric profile model. Statistical regression is performed on the data N 0 and N 1 , N 9 , G, and C of each month in each grid to obtain the The relational expression of N 1 , N 9 , G, C and N 0 for each month, for each month N 0 of each grid, according to get N 1 , N 9 , G, C and N 0 for each month of each grid The corresponding N 1 , N 9 , G, C can be obtained from the relational formula, so as to obtain the practical atmospheric profile N(h);
(6)地面折射率与大气模式系数关系建库,利用步骤(5)的结果建立数据库,它由经度,纬度,海拔高度,月份,N0与N1关系式,N0与N9关系式,N0与G关系式,N0与C关系式组成,在实际应用中,根据地面大气折射指数N0得到大气剖面N(h)。(6) The relationship between the ground refractive index and the atmospheric model coefficient is built, and the result of step (5) is used to set up a database, which consists of longitude, latitude, altitude, month, N 0 and N 1 relational expression, N 0 and N 9 relational expression , the relationship between N 0 and G, and the relationship between N 0 and C. In practical applications, the atmospheric profile N(h) is obtained according to the ground atmospheric refractive index N 0 .
进一步限定,所述的大气折射率测量仪为11GHz大气折射率测量仪,是根据微波谐振腔的谐振频率随腔内大气介质变化而变化的原理而设计的,其工作频率为f0=11GHz,工作模式为TE011,谐振腔频率为:It is further defined that the atmospheric refractive index measuring instrument is an 11GHz atmospheric refractive index measuring instrument, which is designed according to the principle that the resonant frequency of the microwave resonant cavity changes with the change of the atmospheric medium in the cavity, and its working frequency is f 0 =11GHz, The working mode is TE 011 , and the resonant cavity frequency is:
式中,c为真空中的光速,n为腔内介质的折射率,l为腔体的长度,R为腔体的半径,当谐振腔内充满大气介质时,腔内的谐振频率不等于真空中的谐振频率,而是存在一定的频率差△f=f0-f,从而可得到谐振腔内大气的折射指数N为:In the formula, c is the speed of light in vacuum, n is the refractive index of the medium in the cavity, l is the length of the cavity, and R is the radius of the cavity. When the resonant cavity is filled with atmospheric medium, the resonant frequency in the cavity is not equal to the vacuum The resonant frequency in the resonant cavity, but there is a certain frequency difference △f=f 0 -f, so that the refractive index N of the atmosphere in the resonant cavity can be obtained as:
大气折射率n与大气折射指数N的关系为The relationship between the atmospheric refractive index n and the atmospheric refractive index N is
n=1+N×10-6(5)n=1+N×10 -6 (5)
实际上,大气折射指数或折射率的测量主要是测量谐振腔的谐振频率的变化量,其具体测量过程为:In fact, the measurement of the atmospheric refractive index or refractive index is mainly to measure the variation of the resonant frequency of the resonant cavity. The specific measurement process is:
(1)500KHz晶振提供两路信号,一路输入到鉴相器为其提供参考标准信号,另一路输入到100MHz压控振荡器VCO为其提供调制信号;(1) The 500KHz crystal oscillator provides two signals, one is input to the phase detector to provide a reference standard signal, and the other is input to a 100MHz voltage-controlled oscillator VCO to provide a modulation signal;
(2)100MHz压控振荡器VCO提供两路信号,一路输入到混频器,另一路经过倍频后在频率综合器中生成11GHz信号;(2) The 100MHz voltage-controlled oscillator VCO provides two signals, one is input to the mixer, and the other is multiplied to generate an 11GHz signal in the frequency synthesizer;
(3)11GHz频率综合器信号经衰减、滤波将信号送至环形器,环形器再经过支节调配器的阻抗调节后将信号送至微波谐振腔;(3) The 11GHz frequency synthesizer signal is attenuated and filtered to send the signal to the circulator, and the circulator sends the signal to the microwave resonator after the impedance adjustment of the branch adjuster;
(4)环形器将腔体反射回来的信号传送给检波器进行检波,检波器将腔体反射回的高频信号中带有折射率信息的中频信号取出;(4) The circulator transmits the signal reflected by the cavity to the detector for detection, and the detector takes out the intermediate frequency signal with refractive index information from the high frequency signal reflected by the cavity;
(5)鉴相器将带有折射率信息的中频信号与500KHz晶振产生的中频信号进行比相,比相结果是一个电压信号,用该电压信号控制100MHz压控振荡器VCO的振荡频率;(5) The phase detector compares the intermediate frequency signal with the refractive index information with the intermediate frequency signal generated by the 500KHz crystal oscillator, and the phase comparison result is a voltage signal, which is used to control the oscillation frequency of the 100MHz voltage-controlled oscillator VCO;
(6)混频器将100MHz压控振荡器VCO输出频率与100MHz晶振产生的频率进行混频和放大,得到的差频信号△f含有大气折射率信息,利用(4)式可计算处腔体内的代表大气折射指数N的电压信号;(6) The mixer mixes and amplifies the output frequency of the 100MHz voltage-controlled oscillator VCO and the frequency generated by the 100MHz crystal oscillator, and the obtained difference frequency signal △f contains atmospheric refractive index information, which can be calculated by using formula (4) The voltage signal representing the atmospheric refractive index N;
(7)将N的电压信号经A/D采集得到大气折射指数N数据,然后送至计算机进行存储和处理;(7) Gather the voltage signal of N to obtain atmospheric refractive index N data through A/D, and then send it to a computer for storage and processing;
其中,步骤(2)到(5)是一个锁相电路环式的主测量电路,它将腔体中大气折射指数变化引起的谐振腔谐振频率的变化锁定,然后与高精度的100MHz晶振信号进行差频后得到大气折射指数的量值。Among them, steps (2) to (5) are a main measurement circuit of a phase-locked circuit ring type, which locks the change of the resonant frequency of the resonant cavity caused by the change of the atmospheric refractive index in the cavity, and then performs a measurement with the high-precision 100MHz crystal oscillator signal After frequency difference, the magnitude of the atmospheric refractive index is obtained.
进一步限定,所述的控制与数据处理器用于完成雷达地理位置和日期、地面大气折射率和雷达测量定位参数的输入,大气剖面数据库中的剖面模型的数据交换,电波折射误差修正后的雷达测量参数的输出,折射误差的显示和存储以及电波折射误差的计算和修正,其具体步骤为:It is further defined that the control and data processor is used to complete the input of radar geographic location and date, ground atmospheric refractivity and radar measurement positioning parameters, data exchange of profile models in the atmospheric profile database, radar measurement after correction of radio wave refraction error The output of parameters, the display and storage of refraction errors, and the calculation and correction of radio wave refraction errors, the specific steps are:
(1)采集和控制输入GPS接收机得到的地理位置和日期数据;(1) Collect and control the geographic location and date data input to the GPS receiver;
(2)采集和控制输入大气折射率仪得到的地面大气折射率数据n0;(2) collect and control the surface atmospheric refractivity data n 0 that is input into the atmospheric refractometer;
(3)采集和控制雷达测量数据距离和仰角;(3) Collect and control radar measurement data distance and elevation angle;
(4)根据步骤(1)的数据在大气剖面数据库中选择大气剖面模型;(4) select the atmospheric profile model in the atmospheric profile database according to the data of step (1);
(5)根据步骤(3)中的大气剖面模型和步骤(2)中的地面大气折射率获得大气剖面n(h);(5) obtain the atmospheric profile n(h) according to the atmospheric profile model in the step (3) and the ground atmospheric refractive index in the step (2);
(6)进行电波折射误差计算,根据雷达测量的初始仰角θ0,利用senell定理计算出电波射线任意高度处的射线折射仰角θ(h),即(6) Calculate the radio wave refraction error. According to the initial elevation angle θ 0 measured by the radar, use the Senell theorem to calculate the ray refraction elevation angle θ(h) at any height of the radio wave ray, namely
式中,θ(h)为任意高度的电波射线的折射仰角,rad;θ0为雷达测量到的仰角,rad;a为地球平均半径,a≈6370km;h0为雷达天线的海拔高度,km;n(h)为任意高度h处的大气折射率,In the formula, θ(h) is the refracted elevation angle of radio waves at any height, rad; θ0 is the elevation angle measured by the radar, rad; a is the average radius of the earth, a≈6370km; h0 is the altitude of the radar antenna, km ; n(h) is the atmospheric refractive index at any height h,
将电波射线分成m段,每一段对应的高度为△hi,i=1,2,3,......k,采用差分法得到每一段的距离误差△Ri、地心角即地心到目标与地心到雷达之间的夹角误差和电波射线上折射角误差△θi,即Divide the radio wave rays into m sections, each section corresponds to a height of △h i , i=1,2,3,...k, use the difference method to obtain the distance error △R i and the geocentric angle of each section, namely The angle error between the center of the earth to the target and the center of the earth to the radar and the refraction angle error △θ i on the radio wave ray, namely
式中,每段的折射率梯度由步骤(5)中的大气剖面n(h)获得,In the formula, the refractive index gradient of each segment Obtained from the atmospheric profile n(h) in step (5),
采用迭代法求得i+1段电波射线上的对应参数,迭代公式为Use the iterative method to obtain the corresponding parameters on the i+1 section of the radio wave ray, and the iterative formula is
根据雷达测量精度的要求假设距离误差的精度为δ,当|Ri+1-Re|<δ时迭代结束,Re为雷达测量的距离参数,km,According to the requirements of radar measurement accuracy, it is assumed that the accuracy of the distance error is δ, and when |R i+1 -R e |<δ, the iteration ends, and Re is the distance parameter measured by the radar, km,
为了减小迭代时间,△hi采用变步长,第一次迭代取当时,改变步长为下一次迭代距离从开始计算,以此类推,直到变换p次,步长小于δ,出现时迭代结束,从而得到有关参数为In order to reduce the iteration time, △h i adopts variable step size, and the first iteration takes when , change the step size to The next iteration distance from Start to calculate, and so on, until transform p times, the step size is less than δ, appear When the iteration ends, the relevant parameters are obtained as
折射误差的计算,距离折射误差△R和仰角折射误差ε分别为The calculation of refraction error, distance refraction error ΔR and elevation angle refraction error ε are respectively
式中,Re、θ0分别为雷达测量的视在距离和视在仰角,R0、α0分别为经过几何计算得到的雷达到目标的真实距离和真实仰角,In the formula, R e , θ 0 are the apparent distance and apparent elevation angle measured by the radar, respectively, R 0 , α 0 are the real distance and true elevation angle from the radar to the target obtained through geometric calculation, respectively,
(7)雷达电波折射误差修正,经步骤(6)后得到修正后的雷达定位参数为(7) Correction of radar wave refraction error, after step (6), the corrected radar positioning parameters are
(8)将步骤(7)的修正结果输送到雷达处理单元进行定位计算,得到目标的精确位置。(8) Send the correction result of step (7) to the radar processing unit for positioning calculation, and obtain the precise position of the target.
本发明的折射误差修正方法简单,运算量小,时间较短,精度较高,自动化程度高且易于实现,可实现雷达高精度定位的电波折射误差在线修正功能,本发明运行过程中仅将相关部件嵌入到雷达测量传输信号线中,而不改动雷达系统中的所有硬件结构和处理方法,通过对雷达测量参数的折射误差修正,消除了95%的大气折射误差,进而提高了雷达的定位精度。The refraction error correction method of the present invention is simple, with small amount of calculation, short time, high precision, high degree of automation and easy implementation, and can realize the online correction function of electric wave refraction error for radar high-precision positioning. During the operation of the present invention, only relevant The components are embedded in the radar measurement transmission signal line without changing all the hardware structures and processing methods in the radar system. By correcting the refraction error of the radar measurement parameters, 95% of the atmospheric refraction error is eliminated, thereby improving the positioning accuracy of the radar. .
附图说明Description of drawings
图1是大气剖面数据库建立流程图;Figure 1 is a flow chart of the establishment of the atmospheric profile database;
图2是11GHz大气折射率测量仪测量原理图;Figure 2 is a measurement schematic diagram of the 11GHz atmospheric refractometer;
图3是控制与数据处理器的模块组成图;Fig. 3 is a block diagram of the control and data processor;
图4是低角雷达电波折射误差在线修正装置的模块组成图。Fig. 4 is a module composition diagram of an online correction device for low-angle radar electric wave refraction error.
具体实施方式Detailed ways
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例。凡基于本发明上述内容实现的技术均属于本发明的范围。The above-mentioned content of the present invention will be further described in detail through the following examples, but it should not be understood that the scope of the above-mentioned subject of the present invention is limited to the following examples. All technologies realized based on the above content of the present invention belong to the scope of the present invention.
大气剖面数据库建立流程如图1所示。我国复杂的地理环境引起了大气环境的复杂多变,因此大气折射率模式中的参数各地差别较大,需要建立各区域的大气剖面。根据大气变化特点可建立各区域大气模式中系数与地面大气折射率的关系。在实际应用中各区域可由地面折射率得到大气模式中的系数,从而得到实用的大气剖面。具体建立方法包括如下步骤:The process of establishing the atmospheric profile database is shown in Figure 1. my country's complex geographical environment has caused complex and changeable atmospheric environments, so the parameters in the atmospheric refractivity model vary greatly from place to place, and it is necessary to establish atmospheric profiles for each region. According to the characteristics of atmospheric changes, the relationship between the coefficients in each regional atmospheric model and the surface atmospheric refractivity can be established. In practical applications, the coefficients in the atmospheric model can be obtained from the ground refractive index in each area, so as to obtain a practical atmospheric profile. The specific establishment method includes the following steps:
(1)根据我国常用雷达所处地理位置和无线电气象环境变化特点,采用栅格技术划分区域。在东经700到1350范围内按10间隔进行划分,在北纬150到550范围内按0.10间隔进行划分,划分后建立的栅格数为26000个。(1) According to the geographic location of commonly used radars in my country and the changing characteristics of the radio meteorological environment, the grid technology is used to divide the area. In the range of 700 to 1350 east longitude, it is divided by 10 intervals, and in the range of north latitude 150 to 550, it is divided by 0.10 intervals, and the number of grids established after division is 26,000.
(2)确定每个栅格内的大气实测剖面。根据目前我国现有大气剖面探测站的位置,从全国大气探测站的探测数据中找出对应栅格20年内的大气实测剖面数据(每天两组数据,每个站共有14600组)。如果栅格内有实测数据,则该栅格内的数据即为实测大气剖面数据;如果栅格内没有实测大气剖面数据,根据相邻四个栅格内的实测大气剖面数据,利用拉格朗日插值公式求得该栅格内的大气剖面,最后使得每个栅格内都有20年的大气剖面实测数据。(2) Determine the measured atmospheric profile in each grid. According to the current location of the existing atmospheric profile detection stations in my country, the atmospheric measured profile data of the corresponding grid within 20 years are found from the detection data of the national atmospheric detection stations (two sets of data per day, each station has a total of 14600 sets). If there is measured data in the grid, the data in the grid is the measured atmospheric profile data; if there is no measured atmospheric profile data in the grid, according to the measured atmospheric profile data in the adjacent four grids, the Lagrang The daily interpolation formula obtains the atmospheric profile in the grid, and finally makes each grid have 20 years of measured data of the atmospheric profile.
(3)确定大气模式。通过对比各种大气模式,最后选用高精度的大气剖面分段模式,即(3) Determine the atmospheric model. By comparing various atmospheric models, the high-precision atmospheric profile segmentation model is finally selected, namely
式中,h0为地面海拔高度,km;N0为地面大气折射指数;G为地面到1km高度的折射指数梯度,1/km;N1为地面1km高度上的大气折射指数;N9为海拔9km高度上的大气折射指数;c为地面1km至海拔9km大气层的衰减系数,1/km;c9为海拔9km以上高度大气层的衰减系数,1/km。In the formula, h 0 is the ground altitude, km; N 0 is the ground atmospheric refraction index; G is the refraction index gradient from the ground to a height of 1 km, 1/km; N 1 is the atmospheric refraction index at a ground height of 1 km; N 9 is Atmospheric refraction index at an altitude of 9km ; c is the attenuation coefficient of the atmosphere from 1km to 9km above sea level, 1/km; c9 is the attenuation coefficient of the atmosphere above 9km above sea level, 1/km.
(4)各栅格内大气模式系数计算。对各栅格中每一次探测数据利用(2)式计算出对应的系数G和C,即(4) Calculation of atmospheric model coefficients in each grid. Use formula (2) to calculate the corresponding coefficients G and C for each detection data in each grid, namely
式中,N1由实测探测数据内插获得,Ni为地面1km到海拔9km范围内各高度hi上的大气折射指数,m为该范围内大气折射指数探测数据的个数。In the formula, N 1 is obtained by interpolating the measured detection data, N i is the atmospheric refraction index at each height h i within the range of 1 km from the ground to 9 km above sea level, and m is the number of atmospheric refraction index detection data in this range.
每一次探测数据中的N9也由实测探测数据内插获得,C9全国变化不大,因此采用全国年平均值0.1434。这样由各个栅格每一次实测大气剖面就可以得到一组N0、N1、N9、G、C数据,将这些数据代入到(1)式就得到该次实际探测数据的大气剖面模型。The N 9 in each detection data is also obtained by interpolation from the actual detection data, and the C 9 has little change across the country, so the national annual average value of 0.1434 is adopted. In this way, a set of N 0 , N 1 , N 9 , G, and C data can be obtained from each actual measurement of the atmospheric profile of each grid, and these data are substituted into (1) to obtain the atmospheric profile model of the actual detection data.
(5)各栅格地面折射指数N0与大气剖面模型系数的关系统计。对每个栅格内各个月份的数据N0与N1、N9、G、C进行统计回归,得到各栅格每个月份N1、N9、G、C与N0的关系式。这样对各栅格的每个月份只要有N0就可以根据此关系式得到对应的N1、N9、G、C,从而得到实用的大气剖面N(h)。(5) Statistics of the relationship between the ground refraction index N 0 of each grid and the coefficient of the atmospheric profile model. Perform statistical regression on the data N 0 and N 1 , N 9 , G, and C of each month in each grid to obtain the relationship between N 1 , N 9 , G, C and N 0 in each month of each grid. In this way, as long as there is N 0 for each month of each grid, the corresponding N 1 , N 9 , G, and C can be obtained according to this relational formula, so as to obtain the practical atmospheric profile N(h).
(6)地面折射率与大气模式系数关系建库。利用步骤(5)的结果建立数据库,它由经度,纬度,海拔高度,月份,N0与N1关系式,N0与N9关系式,N0与G关系式,N0与C关系式组成。在实际应用中,只要给出地面大气折射指数N0,就可得到大气剖面N(h)。(6) Build a database for the relationship between ground refractivity and atmospheric model coefficients. Utilize the result of step (5) to set up database, it is by longitude, latitude, altitude, month, N 0 and N 1 relational expression, N 0 and N 9 relational expression, N 0 and G relational expression, N 0 and C relational expression composition. In practical application, as long as the surface atmospheric refractive index N 0 is given, the atmospheric profile N(h) can be obtained.
11GHz大气折射率测量仪原理图如图2所示。大气折射率测量仪是根据微波谐振腔的谐振频率随腔内大气介质变化而变化的原理而设计。其工作频率为f0=11GHz,工作模式为TE011。谐振腔频率为:The schematic diagram of the 11GHz atmospheric refractivity measuring instrument is shown in Figure 2. The Atmospheric Refractive Index Measuring Instrument is designed according to the principle that the resonant frequency of the microwave cavity changes with the change of the atmospheric medium in the cavity. Its working frequency is f 0 =11GHz, and its working mode is TE 011 . The resonator frequency is:
式中,c为真空中的光速,n为腔内介质的折射率,l为腔体的长度,R为腔体的半径。In the formula, c is the speed of light in vacuum, n is the refractive index of the medium in the cavity, l is the length of the cavity, and R is the radius of the cavity.
当谐振腔内充满大气介质时,腔内的谐振频率不等于真空中的谐振频率,而是存在一定的频率差△f=f0-f,从而可得到谐振腔内大气的折射指数N为When the resonant cavity is filled with atmospheric medium, the resonant frequency in the cavity is not equal to the resonant frequency in vacuum, but there is a certain frequency difference △f=f 0 -f, so the refractive index N of the atmosphere in the resonant cavity can be obtained as
这里,大气折射率n与大气折射指数N的关系为Here, the relationship between the atmospheric refractive index n and the atmospheric refractive index N is
n=1+N×10-6(5)实际上,大气折射指数或折射率的测量主要是测量谐振腔的谐振频率的变化量。n=1+N×10 −6 (5) Actually, the measurement of the atmospheric refractive index or refractive index is mainly to measure the variation of the resonant frequency of the resonant cavity.
在图2中,大气折射率测量仪的具体工作过程为:In Figure 2, the specific working process of the atmospheric refractometer is as follows:
(1)500KHz晶振提供两路信号,一路输入到鉴相器为其提供参考标准信号,另一路输入到100MHzVCO(压控振荡器)为其提供调制信号;(1) The 500KHz crystal oscillator provides two signals, one is input to the phase detector to provide a reference standard signal, and the other is input to a 100MHz VCO (voltage controlled oscillator) to provide a modulation signal;
(2)100MHzVCO提供两路信号,一路输入到混频器,另一路经过倍频后在频率综合器中生成11GHz信号;(2) The 100MHz VCO provides two signals, one is input to the mixer, and the other is multiplied to generate an 11GHz signal in the frequency synthesizer;
(3)11GHz频率综合器信号经衰减、滤波将信号送至环形器,环形器再经过支节调配器的阻抗调节后将信号送至微波谐振腔;(3) The 11GHz frequency synthesizer signal is attenuated and filtered to send the signal to the circulator, and the circulator sends the signal to the microwave resonator after the impedance adjustment of the branch adjuster;
(4)环形器将腔体反射回来的信号传送给检波器进行检波,检波器将腔体反射回的高频信号中带有折射率信息的中频信号取出;(4) The circulator transmits the signal reflected by the cavity to the detector for detection, and the detector takes out the intermediate frequency signal with refractive index information from the high frequency signal reflected by the cavity;
(5)鉴相器将带有折射率信息的中频信号与500KHz晶振产生的中频信号进行比相,比相结果是一个电压信号,用该电压信号控制100MHzVCO的振荡频率;(5) The phase detector compares the intermediate frequency signal with the refractive index information with the intermediate frequency signal generated by the 500KHz crystal oscillator, and the phase comparison result is a voltage signal, which is used to control the oscillation frequency of the 100MHz VCO;
(6)混频器将100MHzVCO输出频率与100MHz晶振产生的频率进行混频和放大,得到的差频信号△f含有大气折射率信息,利用(4)式可计算处腔体内的代表大气折射指数N的电压信号;(6) The mixer mixes and amplifies the 100MHz VCO output frequency and the frequency generated by the 100MHz crystal oscillator, and the obtained difference frequency signal △f contains atmospheric refractive index information, and the representative atmospheric refractive index in the cavity can be calculated using formula (4) N voltage signal;
(7)将N的电压信号经A/D采集得到大气折射指数N数据,然后送至计算机进行存储和处理。(7) The voltage signal of N is collected by A/D to obtain the atmospheric refractive index N data, and then sent to the computer for storage and processing.
作为进一步的说明,步骤(2)到(5)是一个锁相电路环式的主测量电路,它将腔体中大气折射指数变化引起的谐振腔谐振频率的变化锁定,然后与高精度的100MHz晶振信号进行差频后得到大气折射指数的量值。As a further illustration, steps (2) to (5) are a phase-locked circuit ring-type main measurement circuit, which locks the change in the resonant frequency of the resonant cavity caused by the change in the refractive index of the atmosphere in the cavity, and then compares it with the high-precision 100MHz The value of the atmospheric refraction index is obtained after the crystal oscillator signal is frequency-differenced.
控制与数据处理器组成如图3所示。控制与数据处理器主要完成雷达地理位置和日期、地面大气折射率和雷达测量定位参数的输入,大气剖面数据库中的剖面模型的数据交换,电波折射误差修正后的雷达测量参数、折射误差的显示、存储的输出控制,以及电波折射误差的计算和修正。其具体步骤为:The composition of the control and data processor is shown in Figure 3. The control and data processor mainly complete the input of radar geographic location and date, surface atmospheric refractivity and radar measurement positioning parameters, data exchange of profile models in the atmospheric profile database, display of radar measurement parameters and refraction errors after correction of radio wave refraction errors , stored output control, and the calculation and correction of radio wave refraction errors. The specific steps are:
(1)采集和控制输入GPS接收机得到的地理位置和日期数据;(1) Collect and control the geographic location and date data input to the GPS receiver;
(2)采集和控制输入大气折射率仪得到的地面大气折射率数据n0;(2) collect and control the surface atmospheric refractivity data n 0 that is input into the atmospheric refractometer;
(3)采集和控制雷达测量数据(距离和仰角);(3) Acquisition and control of radar measurement data (distance and elevation);
(4)根据步骤(1)的数据在大气剖面数据库中选择大气剖面模型;(4) select the atmospheric profile model in the atmospheric profile database according to the data of step (1);
(5)根据步骤(3)中的大气剖面模型和步骤(2)中的地面大气折射率获得大气剖面n(h);(5) obtain the atmospheric profile n(h) according to the atmospheric profile model in the step (3) and the ground atmospheric refractive index in the step (2);
(6)进行电波折射误差计算。(6) Calculate the radio wave refraction error.
根据雷达测量的初始仰角θ0,利用senell定理计算出电波射线任意高度处的射线折射仰角θ(h),即According to the initial elevation angle θ 0 measured by the radar, the ray refraction elevation angle θ(h) at any height of the radio wave ray is calculated by using the Senell theorem, namely
式中,θ(h)为任意高度的电波射线的折射仰角,rad;θ0为雷达测量到的仰角,rad;a为地球平均半径,a≈6370km;h0为雷达天线的海拔高度,km;n(h)为任意高度h处的大气折射率。In the formula, θ(h) is the refracted elevation angle of radio waves at any height, rad; θ0 is the elevation angle measured by the radar, rad; a is the average radius of the earth, a≈6370km; h0 is the altitude of the radar antenna, km ; n(h) is the atmospheric refractive index at any height h.
将电波射线分成m段,每一段对应的高度为△hi,i=1,2,3,......k,采用差分法得到每一段的距离误差△Ri、地心角(地心到目标与地心到雷达之间的夹角)误差和电波射线上折射角误差△θi,即Divide the radio wave rays into m sections, each section corresponds to a height of △h i , i=1,2,3,...k, use the difference method to obtain the distance error △R i and the geocentric angle ( The angle between the center of the earth to the target and the center of the earth to the radar) error and the refraction angle error △θ i on the radio wave ray, namely
式中,每段的折射率梯度由步骤(5)中的大气剖面n(h)获得。In the formula, the refractive index gradient of each segment Obtained from the atmospheric profile n(h) in step (5).
采用迭代法求得i+1段电波射线上的对应参数,迭代公式为Use the iterative method to obtain the corresponding parameters on the i+1 section of the radio wave ray, and the iterative formula is
根据雷达测量精度的要求(假设距离误差的精度为δ),当|Ri+1-Re|<δ时迭代结束,Re为雷达测量的距离参数(视在距离),km。According to the requirements of radar measurement accuracy (assuming that the accuracy of distance error is δ), the iteration ends when |R i+1 -R e |<δ, and Re is the distance parameter measured by radar (apparent distance), km.
为了减小迭代时间,△hi采用变步长,第一次迭代取当时,改变步长为下一次迭代距离从开始计算,以此类推,直到变换p次,步长小于δ,出现时迭代结束,从而得到有关参数为In order to reduce the iteration time, △h i adopts variable step size, and the first iteration takes when , change the step size to The next iteration distance from Start to calculate, and so on, until transform p times, the step size is less than δ, appear When the iteration ends, the relevant parameters are obtained as
折射误差的计算。距离折射误差△R和仰角折射误差ε分别为Calculation of refraction error. The distance refraction error △R and the elevation angle refraction error ε are respectively
式中,Re、θ0分别为雷达测量的视在距离和视在仰角,R0、α0分别为经过几何计算得到的雷达到目标的真实距离和真实仰角。In the formula, R e , θ 0 are the apparent distance and apparent elevation angle measured by the radar, respectively, and R 0 , α 0 are the real distance and true elevation angle from the radar to the target obtained through geometric calculation, respectively.
(7)雷达电波折射误差修正。经步骤(6)后得到修正后的雷达定位参数为(7) Correction of radar wave refraction error. After step (6), the corrected radar positioning parameters are
(8)将步骤(7)的修正结果输送到雷达处理单元进行定位计算,得到目标的精确位置。(8) Send the correction result of step (7) to the radar processing unit for positioning calculation, and obtain the precise position of the target.
通过比较验证,采用差分迭代方法进行雷达电波折射误差修正,运行时间是常用积分方法的6%以下,精度略小于积分方法。Through comparison and verification, the differential iterative method is used to correct the radar wave refraction error, the running time is less than 6% of the commonly used integral method, and the accuracy is slightly lower than the integral method.
雷达电波折射误差在线修正装置原理图如图4所示。图1中,GPS接收机可得到雷达天线所处的地理位置(经度、纬度和海拔高低)和工作日期(月份),由这些参数从大气剖面数据库中确定雷达工作时所在区域和月份的大气折射指数模式。通过11GHz大气折射率测量仪测量得到雷达处的地面折射率,利用大气剖面数据库中大气折射率模型中相关参数与地面大气折射率的关系得到只含未知数h(高度)的实用大气剖面,以供进行电波折射误差计算时使用。控制与数据处理器根据已知的大气剖面和输入的雷达测量数据进行折射误差计算,然后对雷达测量参数进行折射误差修正,最后将修正后的雷达参数送入到雷达处理单元进行定位。由于定位时采用了消除折射误差的参数,因此实现了提高雷达定位精度的功能。The schematic diagram of the radar wave refraction error online correction device is shown in Figure 4. In Figure 1, the GPS receiver can obtain the geographic location (longitude, latitude, and altitude) and the working date (month) of the radar antenna, and these parameters can determine the atmospheric refraction of the area and month where the radar is working from the atmospheric profile database. Exponential mode. The ground refractivity at the radar is measured by the 11GHz atmospheric refractivity measuring instrument, and the practical atmospheric profile containing only the unknown h (height) is obtained by using the relationship between the relevant parameters in the atmospheric refractivity model in the atmospheric profile database and the ground atmospheric refractivity. It is used when calculating the radio wave refraction error. The control and data processor calculates the refraction error based on the known atmospheric profile and the input radar measurement data, then corrects the refraction error of the radar measurement parameters, and finally sends the corrected radar parameters to the radar processing unit for positioning. The function of improving the positioning accuracy of the radar is realized because the parameters to eliminate the refraction error are adopted in the positioning.
综上所述,与电波射线描迹的积分方法和一般的在线折射误差修正方法相比,本发明的修正方法和装置不仅可以自动大气折射指数测量和进行电波折射误差修正,而且需要的运算时间很小,能够修正掉95%的大气折射误差,满足雷达在线折射误差修正的功能,进一步提高雷达的定位精度。In summary, compared with the integration method of radio wave ray tracing and the general online refraction error correction method, the correction method and device of the present invention can not only automatically measure the atmospheric refractive index and perform radio wave refraction error correction, but also require less computing time It is very small and can correct 95% of the atmospheric refraction error, which satisfies the function of radar online refraction error correction and further improves the positioning accuracy of the radar.
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。The above embodiments have described the basic principles, main features and advantages of the present invention. Those skilled in the art should understand that the present invention is not limited by the above embodiments. What are described in the above embodiments and description are only to illustrate the principles of the present invention. Without departing from the scope of the principle of the present invention, there will be various changes and improvements in the present invention, and these changes and improvements all fall within the protection scope of the present invention.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510426385.2A CN105093195A (en) | 2015-07-20 | 2015-07-20 | Method for on-line correcting low-angle radar electric wave refraction error |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510426385.2A CN105093195A (en) | 2015-07-20 | 2015-07-20 | Method for on-line correcting low-angle radar electric wave refraction error |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105093195A true CN105093195A (en) | 2015-11-25 |
Family
ID=54574059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510426385.2A Pending CN105093195A (en) | 2015-07-20 | 2015-07-20 | Method for on-line correcting low-angle radar electric wave refraction error |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105093195A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106052717A (en) * | 2016-07-15 | 2016-10-26 | 中国西安卫星测控中心 | Method for calibrating radio wave refraction correction effects by virtue of precision trajectory |
CN106524922A (en) * | 2016-10-28 | 2017-03-22 | 深圳地平线机器人科技有限公司 | Distance measurement calibration method, device and electronic equipment |
CN108898252A (en) * | 2018-07-02 | 2018-11-27 | 河南师范大学 | A kind of prediction technique of whole nation troposphere Atmosphere Refractivity Profile |
CN109164439A (en) * | 2018-08-29 | 2019-01-08 | 河南师范大学 | Air index calculation method on a kind of electric wave ray |
CN109212516A (en) * | 2018-08-29 | 2019-01-15 | 河南师范大学 | A kind of high-precision air index error calculation method |
CN109782271A (en) * | 2018-12-26 | 2019-05-21 | 中国电子科技集团公司第二十研究所 | Radionavigation range measurement refraction error of radio (light) wave modification method |
CN109932711A (en) * | 2019-04-09 | 2019-06-25 | 中国人民解放军63921部队 | A kind of refraction correction method of radar surveying |
CN114413841A (en) * | 2022-01-21 | 2022-04-29 | 中国科学院西北生态环境资源研究院 | Frozen soil zonal mapping method and device, electronic equipment and storage medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103217177A (en) * | 2013-05-09 | 2013-07-24 | 中国电子科技集团公司第二十二研究所 | Method, device and system for radio wave refraction correction |
CN104375206A (en) * | 2014-11-11 | 2015-02-25 | 王海员 | Onboard cruising low-altitude atmospheric profile measuring instrument |
-
2015
- 2015-07-20 CN CN201510426385.2A patent/CN105093195A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103217177A (en) * | 2013-05-09 | 2013-07-24 | 中国电子科技集团公司第二十二研究所 | Method, device and system for radio wave refraction correction |
CN104375206A (en) * | 2014-11-11 | 2015-02-25 | 王海员 | Onboard cruising low-altitude atmospheric profile measuring instrument |
Non-Patent Citations (4)
Title |
---|
史水娥 等: "电波折射误差快速修正方法", 《河南师范大学学报(自然科学版)》 * |
张瑜 等: "全国大气折射率剖面预测方法", 《电光与控制》 * |
张磊昂: "大气波导测量系统的电路设计与实现", 《中国优秀硕士学位论文全文数据库 基础科学辑》 * |
胡笑君: "雷达精度增高仪研制方法研究", 《中国学位论文全文数据库》 * |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106052717A (en) * | 2016-07-15 | 2016-10-26 | 中国西安卫星测控中心 | Method for calibrating radio wave refraction correction effects by virtue of precision trajectory |
CN106052717B (en) * | 2016-07-15 | 2018-12-11 | 中国西安卫星测控中心 | A kind of radio wave refractive correction effect scaling method using accurate trajectory |
CN106524922A (en) * | 2016-10-28 | 2017-03-22 | 深圳地平线机器人科技有限公司 | Distance measurement calibration method, device and electronic equipment |
CN106524922B (en) * | 2016-10-28 | 2019-01-15 | 深圳地平线机器人科技有限公司 | Ranging calibration method, device and electronic equipment |
CN108898252A (en) * | 2018-07-02 | 2018-11-27 | 河南师范大学 | A kind of prediction technique of whole nation troposphere Atmosphere Refractivity Profile |
CN109164439A (en) * | 2018-08-29 | 2019-01-08 | 河南师范大学 | Air index calculation method on a kind of electric wave ray |
CN109212516A (en) * | 2018-08-29 | 2019-01-15 | 河南师范大学 | A kind of high-precision air index error calculation method |
CN109782271A (en) * | 2018-12-26 | 2019-05-21 | 中国电子科技集团公司第二十研究所 | Radionavigation range measurement refraction error of radio (light) wave modification method |
CN109932711A (en) * | 2019-04-09 | 2019-06-25 | 中国人民解放军63921部队 | A kind of refraction correction method of radar surveying |
CN109932711B (en) * | 2019-04-09 | 2021-02-02 | 中国人民解放军63921部队 | Atmospheric refraction correction method for radar measurement |
CN114413841A (en) * | 2022-01-21 | 2022-04-29 | 中国科学院西北生态环境资源研究院 | Frozen soil zonal mapping method and device, electronic equipment and storage medium |
CN114413841B (en) * | 2022-01-21 | 2024-02-27 | 中国科学院西北生态环境资源研究院 | Frozen soil zoning drawing method and device, electronic equipment and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105093195A (en) | Method for on-line correcting low-angle radar electric wave refraction error | |
CN104777488B (en) | Zenith tropospheric delay modeling method, device and measuring method, device | |
Dodson et al. | Wet tropospheric effects on precise relative GPS height determination | |
CN102565814B (en) | Method for evaluating signal accuracy and positioning service availability of satellite navigation system | |
CN104965207B (en) | A kind of acquisition methods of zone convection layer zenith delay | |
CN110275185A (en) | Ionospheric projection function modeling method based on GNSS and GEO satellites | |
CN103076616B (en) | Integrated real-time correction device for atmosphere convection layer and ionized layer radio wave refraction error | |
CN103217177A (en) | Method, device and system for radio wave refraction correction | |
CN101358850B (en) | A Matching Area Selection Method Based on Geomagnetic Entropy | |
CN107222271B (en) | A long-wave ground wave delay prediction method based on dual-frequency/multi-frequency delay difference measurement | |
CN102520417A (en) | Forecasting method and device of ionospheric delay of satellite navigation | |
CN110286395A (en) | A calculation method of Beidou system positioning accuracy | |
CN106886039A (en) | Ground digital television broadcast based on city three-dimensional map filters localization method with aeronautical satellite stuff and other stuff | |
CN104180781A (en) | Deformation monitoring data processing method for single frequency and double frequency GPS hybrid network | |
CN111123345B (en) | GNSS measurement-based empirical ionosphere model data driving method | |
CN113009531A (en) | Small-scale high-precision low-altitude troposphere atmosphere refractive index model | |
CN109657191A (en) | A kind of Ionospheric Tomography method and device | |
CN109212516A (en) | A kind of high-precision air index error calculation method | |
CN107132423A (en) | A kind of method and device of ionization detection layer electron density sum | |
CN116340710B (en) | Neutral atmospheric skew delay calculation method based on layered rapid three-dimensional ray tracing | |
CN115980317B (en) | Soil moisture estimation method based on ground-based GNSS-R data based on corrected phase | |
CN103869326B (en) | Pseudorange fingerprint matching-based quick area positioning method | |
CN107272024B (en) | A kind of base station distribution method of aircraft under high dynamic environment | |
CN112925033B (en) | Differential measurement and calculation method for long-wave time service equivalent earth conductivity data | |
CN109164439A (en) | Air index calculation method on a kind of electric wave ray |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151125 |
|
WD01 | Invention patent application deemed withdrawn after publication |