CN105082161B - 双目立体摄像机机器人视觉伺服控制装置及其使用方法 - Google Patents

双目立体摄像机机器人视觉伺服控制装置及其使用方法 Download PDF

Info

Publication number
CN105082161B
CN105082161B CN201510568915.7A CN201510568915A CN105082161B CN 105082161 B CN105082161 B CN 105082161B CN 201510568915 A CN201510568915 A CN 201510568915A CN 105082161 B CN105082161 B CN 105082161B
Authority
CN
China
Prior art keywords
robot
target
end effector
stereo camera
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510568915.7A
Other languages
English (en)
Other versions
CN105082161A (zh
Inventor
曹力
胡磊
阿斯哈尔江·买买提依明
沈晨
张晓岗
李国庆
杨德盛
胥伯勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First Affiliated Hospital of Xinjiang Medical University
Original Assignee
First Affiliated Hospital of Xinjiang Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by First Affiliated Hospital of Xinjiang Medical University filed Critical First Affiliated Hospital of Xinjiang Medical University
Priority to CN201510568915.7A priority Critical patent/CN105082161B/zh
Publication of CN105082161A publication Critical patent/CN105082161A/zh
Application granted granted Critical
Publication of CN105082161B publication Critical patent/CN105082161B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manipulator (AREA)

Abstract

本发明涉及医疗机器人技术领域,是一种双目立体摄像机机器人视觉伺服控制装置及其使用方法,其包括机器人子系统和视觉控制子系统,所述的机器人子系统包括机器人控制器和关节型六自由度机器人,所述的视觉控制子系统包括双目立体摄像机和视觉控制器;机器人控制器的输出端与关节型六自由度机器人的输入端之间电连接,机器人控制器与视觉控制器之间双向通信连接,双目立体摄像机的输出端与视觉控制器的输入端之间电连接。本发明通过采用固定式双目立体摄像机实时检测机器人与目标的相对位置,计算位置误差,保证机器人随动的快速与准确,避免发生碰撞,有效提高了在医疗手术中机器人跟踪目标的准确性,确保手术的安全性,降低了手术风险系数。

Description

双目立体摄像机机器人视觉伺服控制装置及其使用方法
技术领域
本发明涉及医疗机器人技术领域,是一种双目立体摄像机机器人视觉伺服控制装置及其使用方法。
背景技术
在现阶段,视觉传感器是机器人系统中最重要的传感器之一,它的引入改变了机器人对操作对象及环境必须精确建模的要求。依靠视觉信息的反馈,机器人可实现在动态下的操作。
在医疗领域,视觉伺服技术通过获取手术器械与患者的相对位置关系,辅助医生进行复杂的外科手术。例如在进行胸腔手术和脑手术时,借助于机器视觉的特点,可利用射线透视图,核磁共振图像对病灶位置做详细分析和定位,并控制机器人末端手术刀具精确地进行手术,完成以前单纯靠人力无法完成的高难度手术。在机器人辅助骨科钻孔手术过程中如果患者的肢体没有被固定或固定不牢,可能在钻孔操作时产生突然运动,碰到刀具,伤及健康部位,造成医疗事故,因此需要检测手术器械与患者肢体的相对位置关系,来控制机器人运动。
由于受视觉处理的速度及精度等瓶颈的限制,早期的机器视觉系统多采用静态控制结构,即“先看后动”,难以实现对运动目标的跟踪,直到计算机及图像处理技术发展成熟后,才使视觉信息可用于连续反馈,于是人们提出了基于视觉的伺服控制形式,相对于对静止目标的操作,视觉伺服系统强调运动目标跟踪的实时性。
根据控制系统中视觉传感器数目差异,分为单目、双目和多目视觉。根据视觉传感器安装的位置,分为手眼系统(Eye in Hand)和固定摄像机系统(Eye to Hand)。根据视觉反馈信号是3维笛卡尔空间坐标值还是2维图像特征,分为基于位置(Position-Based)的视觉控制系统和基于图像(Imaged-Based)的视觉控制系统。采用Eye in Hand的单目视觉系统结构简单,视野范围较大,这种形式在工业机器人中应用比较广泛。但由于视野处在变化之中,不能保证目标一直在视场内,有时会存在丢失目标现象,而且摄像机的成像深度随机器人运动不断变化,增加了图像处理的计算量。
发明内容
本发明提供了一种双目立体摄像机机器人视觉伺服控制装置和使用方法,克服了上述现有技术之不足,其能有效解决现有技术采用手眼系统采集目标图像视野范围大易造成目标丢失的现象,更有效解决了由于摄像机成像深度需不断随机器人运动采集变化的目标,造成图像处理计算量大的问题。
本发明的技术方案之一是通过以下措施来实现的:一种双目立体摄像机机器人视觉伺服控制装置,包括机器人子系统和视觉控制子系统,所述的机器人子系统包括机器人控制器和关节型六自由度机器人,所述的视觉控制子系统包括双目立体摄像机和视觉控制器;机器人控制器的输出端与关节型六自由度机器人的输入端之间电连接,机器人控制器与视觉控制器之间双向通信连接,双目立体摄像机的输出端与视觉控制器的输入端之间电连接。
下面是对上述发明技术方案的进一步优化或/和改进:
上述视觉控制子系统还可包括末端执行器光学靶标和目标运动体光学靶标,所述的末端执行器光学靶标固定安装在关节型六自由度机器人的末端执行器上,所述的目标运动体光学靶标安装在目标期望位置,末端执行器光学靶标和目标运动体光学靶标分别记载有期望位置和当前位置的位置坐标信息。
上述视觉控制器为视觉PID控制器。
上述机器人控制器可为嵌入式控制器,其包括功率放大器和关节角度传感器。
本发明的技术方案之二是通过以下措施来实现的:一种使用双目立体摄像机机器人视觉伺服控制装置的方法,包括以下步骤:
步骤1:启动机器人子系统和视觉控制子系统,调整双目立体摄像机的位置以确定末端执行器光学靶标和目标运动体光学靶标均在双目立体摄像机的视野范围内,之后进入步骤2;
步骤2:通过双目立体摄像机采集初始化状态下末端执行器光学靶标和目标运动体光学靶标的位置信息图像,根据摄像机模型计算出末端执行器光学靶标在摄像机坐标系下的位姿齐次矩阵表达式和目标运动体光学靶标在摄像机坐标系下的位姿齐次矩阵表达式,之后进入步骤3;
步骤3:通过测量工具测出末端执行器光学靶标在机器人末端执行器坐标系下的位姿齐次矩阵表达式;通过关节角度传感器获取机器人的六个关节角确定机器人末端执行器在初始位置上的位姿齐次矩阵,再经机器人运动学正解得到;根据坐标变换关系,计算出末端执行器光学靶标在机器人基座标系B下的齐次矩阵为,之后进入步骤4;
步骤4:确定机器人基座标系的转换矩阵,根据机器人末端执行器光学靶标在摄像机坐标系下和机器人基座标系下的齐次矩阵计算出从摄像机坐标系变换到机器人基座标系的转换矩阵,之后进入步骤5;
步骤5:计算目标物体和机器人末端执行器的位置关系,关节型六自由度机器人在进行目标跟踪的过程中机器人末端执行器与目标运动体之间始终保持一个固定的偏置关系,根据步骤2中双目立体摄像机获取到末端执行器光学靶标齐次矩阵和目标运动体光学靶标齐次矩阵后计算出偏置关系:,之后进入步骤6;
步骤6:计算末端执行器光学靶标和目标运动体光学靶标在摄像机坐标系V下的位置误差,双目立体摄像机以一定的频率不断地计算出新的,通过计算得到在摄像机视觉坐标系V下的位置误差;再通过公式计算出在机器人基坐标B下的位置误差,之后进入步骤7;
步骤7:判定误差值,齐次矩阵中包含了三维空间中机器人末端执行器和目标运动体在X、Y、Z方向上的位置误差,如果误差值在容许的范围内,则进入步骤2,否则进入步骤8;
步骤8:根据PID算法利用误差值计算出在机器人末端执行器坐标系T下的速度控制量,并发送给机器人控制器让机器人末端执行器按照给定速度运动,之后进入步骤2,实现在一定的空间范围内关节型六自由度机器人快速而准确的跟踪运动的目标。
本发明通过采用固定式双目立体摄像机实时采集机器人末端执行器上的手术器械与目标运动体的相对位置信息,直接在笛卡尔空间内计算出位置误差作为视觉PID控制器的输入,机器人控制器检测到目标运动后立即发出控制指令使机器人末端执行器跟随其运动,保证机器人随动的快速与准确,避免发生碰撞,从而实现对运动目标快速、准确的跟踪。本发明有效提高了在医疗手术中机器人跟踪目标的准确性,确保手术的安全性,降低了手术风险系数。
附图说明
图1为本发明的系统结构示意图。
图2为本发明的视觉伺服控制装置原理框图。
图3为本发明的视觉伺服控制装置的工作流程图。
附图中的编码分别为:1为机器人控制器,2为关节型六自由度机器人,3为双目立体摄像机,4为视觉控制器,5为末端执行器光学靶标,6为目标运动体光学靶标,7为机器人末端执行器。
具体实施方式
本发明不受下述实施例的限制,可根据本发明的技术方案与实际情况来确定具体的实施方式。
在本发明中,为了便于描述,各部件的相对位置关系的描述均是根据说明书附图1的布图方式来进行描述的,如:前、后、上、下、左、右等的位置关系是依据说明书附图的布图方向来确定的。
下面结合实施例及附图对本发明作进一步描述:
实施例一:如附图1、2所示,该双目立体摄像机机器人视觉伺服控制装置,包括机器人子系统和视觉控制子系统,所述的机器人子系统包括机器人控制器1和关节型六自由度机器人2,所述的视觉控制子系统包括双目立体摄像机3和视觉控制器4;机器人控制器1的输出端与关节型六自由度机器人2的输入端之间电连接,机器人控制器1与视觉控制器4之间双向通信连接,双目立体摄像机3的输出端与视觉控制器4的输入端之间电连接。在实际应用中,关节型六自由度机器人2可以是丹麦Universal Robots公司生产的UR5型机器人,其结构紧凑、重量轻、安全性高;机器人控制器1基于Linux系统开发,能通过以太网接口接收外部计算机传来的运动控制指令并发送给机器人去执行。双目立体摄像机3与视觉控制器4之间通过1394线相连接。本发明的视觉控制器4采用Dell Precision M4700移动工作站,是关节型六自由度机器人视觉伺服控制装置的核心,它根据三维空间中的位置误差,采用PID控制算法计算出控制量,实现机器人对运动目标的跟踪与随动。
可根据实际需要,对上述双目立体摄像机机器人视觉伺服控制装置作进一步优化或/和改进:
如附图1所示,视觉控制子系统还包括末端执行器光学靶标5和目标运动体光学靶标6,所述的末端执行器光学靶标5固定安装在关节型六自由度机器人2的末端执行器上,所述的目标运动体光学靶标6安装在目标期望位置,末端执行器光学靶标5和目标运动体光学靶标6分别记载有期望位置和当前位置的位置坐标信息。在实际使用时,该光学靶标是以一定模式设计的高对比度黑白图像且光学靶标设置在关节型六自由度机器人周围。双目立体摄像机3固定在工作空间的预定位置,使机器人末端执行器7上固连的光学靶标和目标运动体上的光学靶标都在其视野范围内。双目立体摄像机3以一定的频率连续采集左右两幅图像,并根据立体摄像机模型及投影变换关系确定末端执行器光学靶标5和目标运动体光学靶标6的三维空间位置。
如附图1所示,视觉控制器4为视觉PID控制器。采用视觉PID控制器,可根据光学靶标的位置和姿态误差,计算出其速度控制量,然后将速度指令传给机器人控制器,控制机器人的运动。
如附图1所示,机器人控制器1为嵌入式控制器,其包括功率放大器和关节角度传感器。所述的功率放大器用于在机器人运动时提供动力,所述的关节角度传感器用于检测机器人的各个关节转角,向视觉控制器4提供闭环反馈。
实施例二:如图1、2、3所示,一种使用上述双目立体摄像机机器人视觉伺服控制装置的方法,包括以下步骤:
步骤1:启动机器人子系统和视觉控制子系统,调整双目立体摄像机3的位置以确定末端执行器光学靶标5和目标运动体光学靶标6均在双目立体摄像机3的视野范围内,之后进入步骤2;
步骤2:通过双目立体摄像机3采集初始化状态下末端执行器光学靶标5和目标运动体光学靶标6的位置信息图像,根据摄像机模型计算出末端执行器光学靶标5在摄像机坐标系V下的位姿齐次矩阵表达式和目标运动体光学靶标6在摄像机坐标系V下的位姿齐次矩阵表达式,之后进入步骤3;
步骤3:通过测量工具测出末端执行器光学靶标5在机器人末端执行器坐标系T下的位姿齐次矩阵表达式;通过关节角度传感器获取机器人的六个关节角确定机器人末端执行器7在初始位置上的位姿齐次矩阵,再经机器人运动学正解得到;根据坐标变换关系,计算出末端执行器光学靶标5在机器人基座标系B下的齐次矩阵为,之后进入步骤4;
步骤4:确定机器人基座标系的转换矩阵,根据机器人末端执行器光学靶标5在摄像机坐标系V下和机器人基座标系B下的齐次矩阵计算出从摄像机坐标系变换到机器人基座标系的转换矩阵,之后进入步骤5;
步骤5:计算目标运动体和机器人末端执行器7的位置关系,关节型六自由度机器人2在进行目标跟踪的过程中机器人末端执行器7与目标运动体之间始终保持一个固定的偏置关系,根据步骤2中双目立体摄像机3获取到末端执行器光学靶标5齐次矩阵和目标运动体光学靶标6齐次矩阵后计算出偏置关系:,之后进入步骤6;
步骤6:计算末端执行器光学靶标5和目标运动体光学靶标6在摄像机坐标系V下的位置误差,双目立体摄像机3以一定的频率不断地计算出新的,通过计算得到在摄像机视觉坐标系V下的位置误差;再通过公式计算出在机器人基坐标B下的位置误差,之后进入步骤7;
步骤7:判定误差值,齐次矩阵中包含了三维空间中机器人末端执行器7和目标运动体在X、Y、Z方向上的位置误差,如果误差值在容许的范围内,则进入步骤2,否则进入步骤8;
步骤8:根据PID算法利用误差值计算出在机器人末端执行器7坐标系T下的速度控制量,并发送给机器人控制器1,让机器人末端执行器7按照给定速度运动,之后进入步骤2,实现在一定的空间范围内关节型六自由度机器人快速而准确的跟踪运动的目标。
以上技术特征构成了本发明的实施例,其具有较强的适应性和实施效果,可根据实际需要增减非必要的技术特征,来满足不同情况的需求。

Claims (1)

1.一种双目立体摄像机机器人视觉伺服控制装置的使用方法,其特征在于包括以下步骤:
步骤1:启动机器人子系统和视觉控制子系统,调整双目立体摄像机的位置以确定末端执行器光学靶标和目标运动体光学靶标均在双目立体摄像机的视野范围内,之后进入步骤2;
步骤2:通过双目立体摄像机采集初始化状态下末端执行器光学靶标和目标运动体光学靶标的位置信息图像,根据摄像机模型计算出末端执行器光学靶标在摄像机坐标系下的位姿齐次矩阵表达式M2V和目标运动体光学靶标在摄像机坐标系下的位姿齐次矩阵表达式M1V,之后进入步骤3;
步骤3:通过测量工具测出末端执行器光学靶标在机器人末端执行器坐标系下的位姿齐次矩阵表达式M2T;通过关节角度传感器获取机器人的六个关节角确定机器人末端执行器在初始位置上的位姿齐次矩阵,再经机器人运动学正解得到MTB;根据坐标变换关系,计算出末端执行器光学靶标在机器人基座标系B下的齐次矩阵为M2B=MTB·M2T,之后进入步骤4;
步骤4:确定机器人基座标系的转换矩阵,根据机器人末端执行器光学靶标在摄像机坐标系下和机器人基座标系下的齐次矩阵计算出从摄像机坐标系变换到机器人基座标系的转换矩阵Mmap=M2B·M2V -1,之后进入步骤5;
步骤5:计算目标运动体和机器人末端执行器的位置关系Mbind,关节型六自由度机器人在进行目标跟踪的过程中机器人末端执行器与目标运动体之间始终保持一个固定的偏置关系,根据步骤2中双目立体摄像机获取到末端执行器光学靶标齐次矩阵M2V和目标运动体光学靶标齐次矩阵M1V后计算出偏置关系:Mbind=M2V -1·M1V,之后进入步骤6;
步骤6:计算末端执行器光学靶标和目标运动体光学靶标在摄像机坐标系V下的位置误差,双目立体摄像机以一定的频率不断地计算出新的M1V和M2V,通过MerrV=M1V-M2V·Mbind计算得到在摄像机视觉坐标系V下的位置误差MerrV;再通过公式MerrB=Mmap·MerrV计算出在机器人基坐标B下的位置误差MerrB,之后进入步骤7;
步骤7:判定误差值,齐次矩阵MerrB中包含了三维空间中机器人末端执行器和目标运动体在X、Y、Z方向上的位置误差ΔX、ΔY、ΔZ,如果误差值在容许的范围ε内,则进入步骤2,否则进入步骤8;
步骤8:根据PID算法利用误差值计算出在机器人末端执行器坐标系T下的速度控制量VX、VY、VZ,并发送给机器人控制器让机器人末端执行器按照给定速度运动,之后进入步骤2,实现在一定的空间范围内关节型六自由度机器人快速而准确的跟踪运动的目标;其中:
该双目立体摄像机机器人视觉伺服控制装置包括机器人子系统和视觉控制子系统,所述的机器人子系统包括机器人控制器和关节型六自由度机器人,所述的视觉控制子系统包括双目立体摄像机和视觉控制器;机器人控制器的输出端与关节型六自由度机器人的输入端之间电连接,机器人控制器与视觉控制器之间双向通信连接,双目立体摄像机的输出端与视觉控制器的输入端之间电连接;其中:视觉控制子系统还包括末端执行器光学靶标和目标运动体光学靶标,所述的末端执行器光学靶标固定安装在关节型六自由度机器人的末端执行器上,所述的目标运动体光学靶标安装在目标期望位置,末端执行器光学靶标和目标运动体光学靶标分别记载有期望位置和当前位置的位置坐标信息;视觉控制器为视觉PID控制器;机器人控制器为嵌入式控制器,其包括功率放大器和关节角度传感器。
CN201510568915.7A 2015-09-09 2015-09-09 双目立体摄像机机器人视觉伺服控制装置及其使用方法 Expired - Fee Related CN105082161B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510568915.7A CN105082161B (zh) 2015-09-09 2015-09-09 双目立体摄像机机器人视觉伺服控制装置及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510568915.7A CN105082161B (zh) 2015-09-09 2015-09-09 双目立体摄像机机器人视觉伺服控制装置及其使用方法

Publications (2)

Publication Number Publication Date
CN105082161A CN105082161A (zh) 2015-11-25
CN105082161B true CN105082161B (zh) 2017-09-29

Family

ID=54563931

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510568915.7A Expired - Fee Related CN105082161B (zh) 2015-09-09 2015-09-09 双目立体摄像机机器人视觉伺服控制装置及其使用方法

Country Status (1)

Country Link
CN (1) CN105082161B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047531A1 (en) * 2022-08-30 2024-03-07 Alcon Inc. Contact management mode for robotic imaging system using multiple sensors

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106600641B (zh) * 2016-12-07 2020-02-11 常州工学院 基于多特征融合的嵌入式视觉伺服控制方法
CN107443369A (zh) * 2017-06-25 2017-12-08 重庆市计量质量检测研究院 一种基于视觉测量模型逆辨识的机器臂无标定伺服控制方法
CN107685330B (zh) * 2017-10-18 2018-12-18 佛山华数机器人有限公司 一种六自由度手腕偏置串联机器人的运动学逆解求解方法
CN109291051B (zh) * 2018-03-30 2022-07-08 上海大学 一种基于角度传感器的串并联机器人末端姿态闭环控制方法
DE102018109329B4 (de) * 2018-04-19 2019-12-05 Gottfried Wilhelm Leibniz Universität Hannover Mehrgliedrige aktuierte Kinematik, vorzugsweise Roboter, besonders vorzugsweise Knickarmroboter
CN108705536A (zh) * 2018-06-05 2018-10-26 雅客智慧(北京)科技有限公司 一种基于视觉导航的牙科机器人路径规划系统及方法
CN108742897B (zh) * 2018-06-11 2020-10-02 雅客智慧(北京)科技有限公司 牙科钻孔路径纠正方法及系统
CN108942929B (zh) * 2018-07-10 2020-11-27 广东电网有限责任公司广州供电局 基于双目立体视觉的机械臂定位抓取的方法及装置
CN109079777B (zh) * 2018-08-01 2021-09-10 北京科技大学 一种机械臂手眼协调作业系统
CN109615662A (zh) * 2018-12-04 2019-04-12 中冶赛迪工程技术股份有限公司 一种坐标系标定方法、系统、计算机可读存储介质及设备
CN109848987B (zh) * 2019-01-22 2022-02-01 天津大学 一种并联机器人视觉伺服控制方法
CN110253574B (zh) * 2019-06-05 2020-11-17 浙江大学 一种多任务机械臂位姿检测和误差补偿方法
CN110355464A (zh) * 2019-07-05 2019-10-22 上海交通大学 激光加工的视觉匹配方法、系统及介质
CN111216109A (zh) * 2019-10-22 2020-06-02 东北大学 一种用于临床治疗与检测的视觉跟随装置及其方法
CN111015675A (zh) * 2019-12-10 2020-04-17 紫光云(南京)数字技术有限公司 一种典型机器人视觉示教系统
CN111496782B (zh) * 2020-03-17 2022-03-08 吉利汽车研究院(宁波)有限公司 机器人工具点的测量系统、方法、处理设备及存储介质
CN111590594B (zh) * 2020-06-22 2021-12-07 南京航空航天大学 基于视觉引导的机器人轨迹跟踪控制方法
CN112157284A (zh) * 2020-09-29 2021-01-01 蒙美兰 一种工业机器人自动化钻孔系统及使用方法
CN113103228B (zh) * 2021-03-29 2023-08-15 航天时代电子技术股份有限公司 遥操作机器人
CN113175872A (zh) * 2021-05-13 2021-07-27 中车长春轨道客车股份有限公司 基于视觉跟踪的车体自动化测量装置及其测量方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101396829A (zh) * 2007-09-29 2009-04-01 株式会社Ihi 机器人装置的控制方法以及机器人装置
CN102927908B (zh) * 2012-11-06 2015-04-22 中国科学院自动化研究所 机器人手眼系统结构光平面参数标定装置及方法
JP2014128840A (ja) * 2012-12-28 2014-07-10 Kanto Seiki Kk ロボット制御システム
CN103706568B (zh) * 2013-11-26 2015-11-18 中国船舶重工集团公司第七一六研究所 基于机器视觉的机器人分拣方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024047531A1 (en) * 2022-08-30 2024-03-07 Alcon Inc. Contact management mode for robotic imaging system using multiple sensors

Also Published As

Publication number Publication date
CN105082161A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
CN105082161B (zh) 双目立体摄像机机器人视觉伺服控制装置及其使用方法
CN109859275B (zh) 一种基于s-r-s结构的康复机械臂的单目视觉手眼标定方法
CN110051436B (zh) 自动化协同工作组件及其在手术器械中的应用
EP3011362B1 (en) Systems and methods for tracking location of movable target object
CN104400279B (zh) 基于ccd的管道空间焊缝自动识别与轨迹规划的方法
EP1985416B1 (en) Mobile robot
US9341704B2 (en) Methods and systems for object tracking
CN104864807B (zh) 一种基于主动双目视觉的机械手手眼标定方法
CN109848983A (zh) 一种高顺应性人引导机器人协同作业的方法
WO2018043525A1 (ja) ロボットシステム、ロボットシステム制御装置、およびロボットシステム制御方法
CN110613511B (zh) 手术机器人避障方法
WO2024027647A1 (zh) 机器人控制方法、系统和计算机程序产品
CN103817699A (zh) 一种快速的工业机器人手眼协调方法
Gratal et al. Visual servoing on unknown objects
CN109048846A (zh) 一种烟雾巡检机器人及其控制方法
CN113305851A (zh) 一种机器人微装配用在线检测装置
Xin et al. 3D augmented reality teleoperated robot system based on dual vision
US20230028689A1 (en) System and method for inter-arm registration
JP2010131751A (ja) 移動型ロボット
CN114027985A (zh) 一种用于骨关节置换手术的机器人
Sun et al. Adaptive fusion-based autonomous laparoscope control for semi-autonomous surgery
WO2019153985A1 (zh) 一种基于陀螺仪的机械手臂热源追踪辅助系统及其方法
WO2022162668A1 (en) Multi-arm robotic systems for identifying a target
Wu et al. Design of robot visual servo controller based on neural network
CN107443369A (zh) 一种基于视觉测量模型逆辨识的机器臂无标定伺服控制方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170929

Termination date: 20210909

CF01 Termination of patent right due to non-payment of annual fee