CN105081524B - In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead - Google Patents

In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead Download PDF

Info

Publication number
CN105081524B
CN105081524B CN201510536227.2A CN201510536227A CN105081524B CN 105081524 B CN105081524 B CN 105081524B CN 201510536227 A CN201510536227 A CN 201510536227A CN 105081524 B CN105081524 B CN 105081524B
Authority
CN
China
Prior art keywords
welding
robot body
trajectory
coordinate system
xyz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510536227.2A
Other languages
Chinese (zh)
Other versions
CN105081524A (en
Inventor
洪宇翔
都东
潘际銮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510536227.2A priority Critical patent/CN105081524B/en
Publication of CN105081524A publication Critical patent/CN105081524A/en
Application granted granted Critical
Publication of CN105081524B publication Critical patent/CN105081524B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/095Monitoring or automatic control of welding parameters
    • B23K9/0956Monitoring or automatic control of welding parameters using sensing means, e.g. optical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/12Automatic feeding or moving of electrodes or work for spot or seam welding or cutting
    • B23K9/127Means for tracking lines during arc welding or cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

The invention provides the online dynamic programming of track in a kind of welding process and follow the tracks of collaborative control method with welding bead, belong to mobile welding robot technical field.The present invention abundant integrated structure light sensors region is ahead of electric arc and realizes the detection of front, weld zone seam welds groove and arc sensor obtains the advantage of welding torch pose in real time, realizes, based on welding bead Isometric Approximation thought, the collaborative uneoupled control that the online dynamic programming of robot body track is followed the tracks of with welding bead.The present invention can improve mobile welding robot speed of welding stability in large-scale component complicated track weld seam welding process and welding bead tracking accuracy, improve joint trajectory local deep camber and the quality of weld seam molding in knuckle region, can be applicable to, in the mobile robot welding process of the equipment manufacturing such as boats and ships, the energy and track traffic, be particularly suited for the welding occasion of large turn or deep camber curved welding seam.

Description

焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法Cooperative control method of trajectory online dynamic planning and weld bead tracking in welding process

技术领域technical field

本发明属于移动(式)焊接机器人技术领域。涉及一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,可广泛应用于移动机器人自动化焊接等方面。The invention belongs to the technical field of mobile (type) welding robots. The invention relates to a control method for the coordination of trajectory online dynamic planning and welding bead tracking in the welding process, and can be widely used in automatic welding of mobile robots and the like.

背景技术Background technique

在能源装备、重型机械、船舶制造等领域中的大型构件焊接场合,移动焊接机器人因其大范围运动能力等优势成为解决大尺度、复杂的空间曲线焊缝自动化焊接的有效方法。受安装于移动焊接机器人的机器人本体上机载执行机构装置(例如机械臂、直角坐标系式X-Y滑架等)的工作行程所限制,需要结合机器人本体实时调整其位置与姿态以保证焊炬对中焊缝中心,即在机器人本体与机载执行机构的协同控制下进行焊接作业。In the welding of large components in the fields of energy equipment, heavy machinery, and shipbuilding, mobile welding robots have become an effective method for automatic welding of large-scale and complex space curve welds due to their advantages in large-scale motion capabilities. Limited by the working stroke of the airborne actuator device (such as the mechanical arm, Cartesian coordinate system X-Y carriage, etc.) installed on the robot body of the mobile welding robot, it is necessary to adjust its position and posture in real time in combination with the robot body to ensure that the welding torch is aligned. In the center of the welding seam, the welding operation is performed under the coordinated control of the robot body and the onboard actuator.

现有的移动焊接机器人主要采用单一类型的焊缝跟踪传感器,包括电弧传感器、视觉传感器二类:采用电弧传感器的移动焊接机器人仅检测熔池区域并从中获取焊接偏差信息,机器人本体根据电弧传感器获取的实时焊接偏差信息或机载执行机构的实际纠偏行为调整位姿,要求机载执行机构具有较大的有效工作行程;而且,机器人本体对焊道的跟随运动易受移动焊接机器人系统的机电惯性影响导致控制滞后,特别是在曲线焊缝轨迹局部大曲率区域与折角区域等需要移动焊接机器人执行大角度转弯运动以跟踪焊缝轨迹的区域,因难以及时调整位姿,极易产生偏焊缺陷,或因焊接速度变化导致焊缝成形不良;采用视觉传感器的移动焊接机器人为了避免强烈弧光干扰,视觉传感器检测区域通常与电弧熔池区域存在一定距离,难以实时补偿因焊接母材受热变形导致焊缝位置与尺寸的变化。Existing mobile welding robots mainly use a single type of seam tracking sensor, including arc sensors and vision sensors. The mobile welding robot using arc sensors only detects the molten pool area and obtains welding deviation information from it. The real-time welding deviation information or the actual correction behavior of the airborne actuator to adjust the pose requires the airborne actuator to have a large effective working stroke; moreover, the following motion of the robot body to the welding bead is easily affected by the electromechanical inertia of the mobile welding robot system The impact leads to control lag, especially in areas with large curvature of the curved weld trajectory and knuckle areas where the mobile welding robot needs to perform large-angle turning motions to track the weld trajectory. Because it is difficult to adjust the pose in time, it is easy to produce partial welding defects , or the welding seam is poorly formed due to changes in welding speed; in order to avoid strong arc light interference, the mobile welding robot using visual sensors usually has a certain distance between the detection area of the visual sensor and the arc molten pool area, and it is difficult to compensate in real time. Seam position and size changes.

综上所述,现有技术均难以兼顾移动焊接机器人对大尺度的复杂轨迹焊缝焊接过程中的动态响应和静态精度,并且难以解决机器人本体运动与机载执行机构运动控制耦合的技术问题。To sum up, the existing technologies are difficult to take into account the dynamic response and static accuracy of the mobile welding robot in the welding process of large-scale complex trajectory welds, and it is difficult to solve the technical problem of coupling the motion control of the robot body and the airborne actuator.

发明内容Contents of the invention

本发明的目的在于克服现有技术的不足,提出了一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,以便实现大尺度复杂轨迹焊缝焊接中的焊道精确跟踪的同时保证焊缝成形质量。The purpose of the present invention is to overcome the deficiencies of the prior art, and propose a control method in which trajectory online dynamic planning and weld bead tracking are coordinated in order to realize accurate tracking of weld bead in large-scale complex trajectory weld welding while ensuring Weld form quality.

为了实现上述目的,本发明采取以下技术方案:In order to achieve the above object, the present invention takes the following technical solutions:

一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,包括以下步骤:A control method for the coordination of trajectory online dynamic planning and weld bead tracking in the welding process, comprising the following steps:

1)建立移动焊接机器人系统坐标系,包括:基础笛卡尔坐标系Oxyz、机器人本体坐标系Mxyz、机载执行机构坐标系Uxyz和结构光传感器坐标系Lxyz,其中,机载执行机构坐标系Uxyz与结构光传感器坐标系Lxyz的x轴正向与机器人本体直行前进的方向一致,z轴正向与地面法线的方向一致,y轴正向由左手法则确定,机载执行机构坐标系Uxyz的原点位于机载执行机构与机器人本体的固定连接处;1) Establish the coordinate system of the mobile welding robot system, including: the basic Cartesian coordinate system O xyz , the robot body coordinate system M xyz , the airborne actuator coordinate system U xyz and the structured light sensor coordinate system L xyz , where the airborne actuator The positive direction of the x-axis of the coordinate system U xyz and the coordinate system L xyz of the structured light sensor is consistent with the direction of the robot body moving straight forward, the positive direction of the z-axis is consistent with the direction of the ground normal, and the positive direction of the y-axis is determined by the left-hand rule. The origin of the mechanism coordinate system U xyz is located at the fixed connection between the airborne actuator and the robot body;

2)当焊接电弧以摆动、旋转或摆动-旋转复合运动形式扫描坡口时,采用结构光传感器提取焊接区前方接缝焊接坡口特征点i的位置信息,包括焊接坡口特征点i与焊炬在结构光传感器坐标系Lxyz中y轴方向上的偏差距离Ei和焊接坡口特征点在结构光传感器坐标系Lxyz中的坐标,同时采用电弧传感器实时地采集电弧能量信号,采用积分差值法、特征谐波法或极值法提取经过信号滤波与放大处理后的电弧能量信号中的实时焊炬位姿信息,由机载执行机构根据所获取的实时焊炬位姿信息调整焊炬位姿,在机载执行机构调整焊炬位姿的同时电弧传感器开始下一周期的电弧能量信号采集,如此循环,即实现焊道跟踪;2) When the welding arc scans the groove in the form of swinging, rotating or swinging-rotating compound motion, the structured light sensor is used to extract the position information of the welding groove feature point i in the front of the welding zone, including the welding groove feature point i and the welding groove feature point i. The deviation distance E i of the torch in the y-axis direction in the structured light sensor coordinate system L xyz and the coordinates of the welding groove feature point in the structured light sensor coordinate system L xyz , and the arc sensor is used to collect the arc energy signal in real time, and the integral The difference method, the characteristic harmonic method or the extreme value method extract the real-time welding torch position and orientation information in the arc energy signal after signal filtering and amplification processing, and the airborne actuator adjusts the welding torch position and orientation information according to the obtained real-time welding torch position and orientation information. Torch position and posture, while the airborne actuator adjusts the welding torch position and posture, the arc sensor starts the next cycle of arc energy signal acquisition, and this cycle realizes welding bead tracking;

3)根据焊接坡口特征点在结构光传感器坐标系Lxyz中的坐标,进行坐标变换至基础笛卡尔坐标系Oxyz,获得焊接坡口特征点i的坐标Gi=(xi,yi);3) According to the coordinates of the welding groove feature points in the structured light sensor coordinate system L xyz , the coordinates are transformed to the basic Cartesian coordinate system O xyz to obtain the coordinates G i of the welding groove feature point i = ( xi , y i );

4)根据步骤2)和3)依次求解一系列焊接坡口特征点的坐标,获得一个焊接坡口特征点坐标序列{G1,G2,...,GN}与一个偏差距离数组{E1,E2,...,EN},其中4) According to steps 2) and 3), the coordinates of a series of welding groove feature points are solved sequentially, and a welding groove feature point coordinate sequence {G 1 ,G 2 ,...,G N } and a deviation distance array { E 1 ,E 2 ,...,E N }, where

NN == λλ vTvT oo pp ++ 11

式中:λ为结构光传感器前置于焊炬的距离,v为焊接速度,Top为焊接坡口特征点位置信息提取周期;In the formula: λ is the distance between the structured light sensor and the welding torch, v is the welding speed, and T op is the extraction cycle of the feature point position information of the welding groove;

5)采用样条曲线对焊接坡口特征点坐标序列进行拟合计算,得到待焊轨迹函数S(x)并进行求导,求解焊接坡口特征点坐标序列中各焊接坡口特征点在待焊轨迹函数S(x)上的切线斜率ki,i=1,2,...,N,得到包含N个焊接坡口特征点位姿矩阵Pi=[xi yi arctan(ki)],i=1,2,...,N的集合;5) Use spline curves to fit and calculate the coordinate sequence of welding groove feature points, obtain the trajectory function S(x) to be welded and perform derivation, and solve the welding groove feature point coordinate sequence for each welding groove feature point to be welded The tangent slope k i on the welding trajectory function S(x), i=1,2,...,N, obtains the pose matrix P i =[x i y i arctan(k i )], the set of i=1,2,...,N;

6)设定阈值σ与进行比较,并设定阈值ζ与ΔE进行比较,当或ΔE>ζ时,机器人本体执行连续路径运动轨迹规划;当或ΔE<-ζ时,机器人本体执行绕车体中心原地转弯轨迹规划;当且-ζ≤ΔE≤ζ时,机器人本体执行点到点直行轨迹规划,其中:6) Set the threshold σ and to compare and set the threshold ζ to compare with ΔE when Or when ΔE>ζ, the robot body executes continuous path motion trajectory planning; when Or when ΔE<-ζ, the robot body executes in-situ turning trajectory planning around the center of the car body; when And when -ζ≤ΔE≤ζ, the robot body executes point-to-point straight trajectory planning, where:

&Delta;&Delta; EE. == EE. NN -- EE. 11 &sigma;&sigma; == LL mm -- LL sthe s ++ 11 22 LL aa ,, 11 22 LL aa << LL mm << LL aa &zeta;&zeta; == 11 44 LL aa

式中:E1和EN分别为第1个和第N个焊接坡口特征点与焊炬在结构光传感器坐标系Lxyz中y轴方向上的的偏差距离,Ls为焊炬在机载执行机构坐标系Uxyz中的y坐标,La为机载执行机构在机载执行机构坐标系Uxyz中y轴方向上的最大工作行程,Lm为机载执行机构在机载执行机构坐标系Uxyz中y轴方向上的预设工作行程;In the formula: E 1 and E N are the deviation distances between the first and Nth welding groove feature points and the welding torch in the y-axis direction in the structured light sensor coordinate system L xyz , and L s is the welding torch on-machine y coordinate in the coordinate system U xyz of the onboard actuator, L a is the maximum working stroke of the onboard actuator in the direction of the y axis in the coordinate system U xyz of the The preset working stroke in the direction of the y-axis in the coordinate system U xyz ;

7)机器人本体根据连续路径运动轨迹规划、绕车体中心原地转弯轨迹规划或点到点直行轨迹规划执行位姿调整,同时重复步骤2)~6),进行下一次的轨迹规划,即实现焊接过程中轨迹在线动态规划与焊道跟踪协同的控制。7) The robot body performs pose adjustment according to the continuous path motion trajectory planning, the in-situ turning trajectory planning around the center of the car body, or the point-to-point straight trajectory planning, and at the same time repeat steps 2) to 6) to perform the next trajectory planning, that is, to realize Coordinated control of trajectory online dynamic planning and weld bead tracking during welding.

上述技术方案中,步骤6)中所述连续路径运动轨迹规划,采用的方法是:In the above-mentioned technical scheme, step 6) described in the continuous path motion locus planning, the method that adopts is:

根据步骤5)中所述焊接坡口特征点位姿矩阵的集合,采用下式:According to the collection of welding groove feature point pose matrix described in step 5), adopt the following formula:

xx pp ii ythe y pp ii &theta;&theta; pp ii == xx ii ++ 11 22 LL aa sthe s ii nno (( aa rr cc tt aa nno (( dd SS (( xx ii )) dd xx )) )) ythe y ii -- 11 22 LL aa coscos (( aa rr cc tt aa nno (( dd SS (( xx ii )) dd xx )) )) arctanarctan (( dd SS (( xx ii )) dd xx )) ,, ii == 11 ,, 22 ,, ...... ,, NN

计算机器人本体在机器人本体运动轨迹上第i点的位姿矩阵:Upi:[xpi,ypipi],(i=1,2,...,N),其中:S(xi)为在待焊轨迹函数S(x)上第i点的函数值,xpi,ypi分别为机器人本体运动轨迹上第i点在基础笛卡尔坐标系Oxyz中的坐标,θpi为机器人本体在机器人本体运动轨迹上第i点的方位角,采用样条曲线对机器人本体运动轨迹上全部点的坐标(xpi,ypi),i=1,2,...,N进行插值计算,生成连续和平滑的机器人本体运动轨迹;Calculate the pose matrix of the i-th point of the robot body on the trajectory of the robot body: U pi :[x pi ,y pipi ],(i=1,2,...,N), where: S(x i ) is the function value of the i-th point on the track function S(x) to be welded, x pi and y pi are the coordinates of the i-th point on the robot body motion track in the basic Cartesian coordinate system O xyz respectively, and θ pi is The azimuth angle of the i-th point of the robot body on the robot body trajectory, using the spline curve to interpolate the coordinates (x pi , y pi ) of all points on the robot body trajectory, i=1,2,...,N Calculate and generate continuous and smooth robot body motion trajectory;

上述技术方案中,步骤6)中所述绕车体中心原地转弯轨迹规划,采用的方法是:In the above-mentioned technical scheme, in step 6) described in step 6), the method of turning track planning around the center of the car body in situ is:

控制机器人本体左右两侧驱动轮,使驱动轮速度大小相等,方向相反,实现机器人本体绕车体中心原地转弯,机器人本体转弯角度θR采用下式计算:Control the driving wheels on the left and right sides of the robot body so that the speeds of the driving wheels are equal and opposite, so that the robot body turns around the center of the car body in situ. The turning angle θ R of the robot body is calculated by the following formula:

&theta;&theta; RR == aa rr cc tt aa nno (( dd SS (( xx NN )) dd xx )) -- aa rr cc tt aa nno (( dd SS (( xx 11 )) dd xx ))

上述技术方案中,步骤6)中所述点到点直行轨迹规划,采用的方法是:In the above-mentioned technical scheme, point-to-point straight track planning described in step 6), the method that adopts is:

保持机器人本体左右两侧驱动轮速度稳定,使机器人本体沿当前方向移动距离长度为λ,移动速度大小保持不变。Keep the speed of the driving wheels on the left and right sides of the robot body stable, so that the robot body moves a distance of λ along the current direction, and the moving speed remains unchanged.

本发明所述焊炬采用磁控旋转式焊炬、机械旋转式焊炬、电控摆动式焊炬或机械摆动式焊炬的一种。The welding torch in the present invention adopts one of a magnetically controlled rotary welding torch, a mechanical rotary welding torch, an electronically controlled swing welding torch or a mechanical swing welding torch.

本发明具有以下优点及突出性的技术效果:充分结合结构光传感器检测区域超前于电弧实现焊接区前方接缝焊接坡口检测且电弧传感器实时获取焊炬位姿的优势通过对机器人本体与机载执行机构的协同解耦控制,能够有效解决移动焊接机器人对大尺度的复杂空间曲线焊缝焊接过程中因机电惯性导致跟踪控制滞后、难以兼顾动态响应与静态精度等技术问题;提高了移动焊接机器人的焊接速度稳定性和焊接轨迹平滑度,特别是能够改善曲线焊缝轨迹局部大曲率区域与折线焊缝折角区域的焊缝成形质量。该方法在对大型构件复杂轨迹焊缝自动焊中较传统方法具有明显优势,具有重要的实际应用价值,可广泛应用于船舶、重型机械、能源和轨道交通等装备制造的移动机器人焊接过程中,尤其适用于大型筒体环焊缝、龙门起重机大梁侧边焊缝、斗轮堆取料机斗轮焊缝、机车中梁与侧构弦梁焊缝等大转折或大曲率曲线焊缝的焊接场合。The present invention has the following advantages and outstanding technical effects: fully combining the detection area of the structured light sensor ahead of the arc to realize the detection of the seam welding groove in front of the welding zone and the advantages of the arc sensor obtaining the position and posture of the welding torch in real time through the robot body and the airborne The cooperative decoupling control of the actuator can effectively solve the technical problems of tracking control lag caused by electromechanical inertia and difficulty in taking into account dynamic response and static accuracy during the welding process of large-scale complex space curve welds by mobile welding robots; The welding speed stability and the smoothness of the welding trajectory can be improved, especially the weld forming quality in the local large curvature area of the curved welding seam trajectory and the knuckle area of the broken line welding seam can be improved. This method has obvious advantages over traditional methods in the automatic welding of large components with complex trajectory welds, and has important practical application value. It can be widely used in the welding process of mobile robots in the manufacture of ships, heavy machinery, energy and rail transit equipment. It is especially suitable for the welding of large-scale cylinder girder welds, gantry crane girder side welds, bucket wheel stacker reclaimer bucket wheel welds, locomotive center beam and side chord beam welds and other large turning or large curvature curve welding seams occasion.

附图说明Description of drawings

图1是焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法流程框图。Fig. 1 is a flow chart of a control method for the coordination of trajectory online dynamic planning and weld bead tracking in the welding process.

图2是本发明机器人本体运动学模型示意图。Fig. 2 is a schematic diagram of the kinematics model of the robot body of the present invention.

图3是本发明连续路径运动轨迹规划示意图。Fig. 3 is a schematic diagram of continuous path motion trajectory planning in the present invention.

图3-图5中:a、b分别为焊缝轨迹的两端。In Fig. 3-Fig. 5: a and b are the two ends of the weld track respectively.

图4是本发明绕车体中心原地转弯轨迹规划示意图。Fig. 4 is a schematic diagram of planning the in-situ turning trajectory around the center of the car body according to the present invention.

图5是本发明点到点直行轨迹规划示意图。Fig. 5 is a schematic diagram of point-to-point straight track planning in the present invention.

图6是实现本发明所述方法的移动焊接机器人系统结构原理示意图。Fig. 6 is a schematic diagram of the structural principle of the mobile welding robot system for realizing the method of the present invention.

图中:1—移动机器人;2—结构光传感器;3—图像采集卡;4—焊炬;5—霍尔传感器或信号变送器;6—信号采集处理模块;7—工控机;8—运动控制卡;9—机载执行机构;10—移动机器人控制器;11—焊接电源;12—工件。In the figure: 1—mobile robot; 2—structured light sensor; 3—image acquisition card; 4—welding torch; 5—Hall sensor or signal transmitter; 6—signal acquisition and processing module; 7—industrial computer; 8— Motion control card; 9—airborne actuator; 10—mobile robot controller; 11—welding power supply; 12—workpiece.

具体实施方式detailed description

下面结合附图和实施例对本发明原理和工作过程做进一步详细说明。The principle and working process of the present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

图1所示为本发明的焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法流程框图,包括以下几个步骤:Fig. 1 shows the flow chart of the control method of trajectory online dynamic planning and weld bead tracking coordination in the welding process of the present invention, including the following steps:

1)建立移动焊接机器人系统坐标系,包括:基础笛卡尔坐标系Oxyz、机器人本体坐标系Mxyz、机载执行机构坐标系Uxyz和结构光传感器坐标系Lxyz,其中,机载执行机构坐标系Uxyz与结构光传感器坐标系Lxyz的x轴正向与机器人本体直行前进的方向一致,z轴正向与地面法线的方向一致,y轴正向由左手法则确定,机载执行机构坐标系Uxyz的原点位于机载执行机构与机器人本体的固定连接处,本发明机器人本体在基础笛卡尔坐标系中有在XOY平面的位移和绕Z轴旋转的角度两个自由度;1) Establish the coordinate system of the mobile welding robot system, including: the basic Cartesian coordinate system O xyz , the robot body coordinate system M xyz , the airborne actuator coordinate system U xyz and the structured light sensor coordinate system L xyz , where the airborne actuator The positive direction of the x-axis of the coordinate system U xyz and the coordinate system L xyz of the structured light sensor is consistent with the direction of the robot body moving straight forward, the positive direction of the z-axis is consistent with the direction of the ground normal, and the positive direction of the y-axis is determined by the left-hand rule. The origin of the mechanism coordinate system U xyz is located at the fixed connection between the airborne actuator and the robot body. The robot body of the present invention has two degrees of freedom of displacement on the XOY plane and an angle of rotation around the Z axis in the basic Cartesian coordinate system;

建立本发明所述机器人本体的运动学模型,采用的方法是:由于本发明所述机器人本体采用同侧轮并联驱动,在进行二维平面运动位姿计算时将机器人本体模型简化为两轮模型,并忽略轮胎变形以及车体纵向滑动。如图2所示,机器人本体从p点移动至p′处,R为转弯半径,b为左右轮间距,θ、θ′、Δθ分别为机器人本体初始方位角、转向后方位角及转过的角度,(k+1)时刻下机器人本体中心在基础笛卡尔坐标系Oxyz中的位姿(xk+1,yk+1k+1)由下式(1)或下式(2)计算得到,To set up the kinematics model of the robot body of the present invention, the method adopted is: since the robot body of the present invention is driven in parallel with the same side wheels, the robot body model is simplified to a two-wheel model when calculating the two-dimensional plane motion pose , and ignore tire deformation and longitudinal sliding of the car body. As shown in Figure 2, the robot body moves from point p to p′, R is the turning radius, b is the distance between the left and right wheels, θ, θ′, and Δθ are the initial azimuth angle of the robot body, the azimuth angle after steering, and the turning distance. Angle, the pose (x k+1 , y k+1 , θ k+1 ) of the center of the robot body in the basic Cartesian coordinate system O xyz at the moment (k+1) is given by the following formula (1) or the following formula ( 2) calculated,

xx kk ++ 11 == xx kk ++ rr 22 &Integral;&Integral; TT kk TT kk ++ 11 (( &omega;&omega; rr kk ++ &omega;&omega; ll kk )) cos&theta;cos&theta; kk dd tt ythe y kk ++ 11 == ythe y kk ++ rr 22 &Integral;&Integral; TT kk TT kk ++ 11 (( &omega;&omega; rr kk ++ &omega;&omega; ll kk )) sin&theta;sin&theta; kk dd tt &theta;&theta; kk ++ 11 == &theta;&theta; kk ++ rr bb &Integral;&Integral; TT kk TT kk ++ 11 || &omega;&omega; rr kk -- &omega;&omega; ll kk || dd tt -- -- -- (( 11 ))

xx kk ++ 11 == xx kk ++ &pi;rcos&theta;&pi;rcos&theta; kk &Integral;&Integral; TT kk TT kk ++ 11 (( nno ll kk ++ nno rr kk )) dd tt ythe y kk ++ 11 == ythe y kk ++ &pi;rsin&theta;&pi;rsin&theta; kk &Integral;&Integral; TT kk TT kk ++ 11 (( nno ll kk ++ nno rr kk )) dd tt &theta;&theta; kk ++ 11 == &theta;&theta; kk ++ 22 &pi;&pi; rr bb &Integral;&Integral; TT kk TT kk ++ 11 || nno rr kk -- nno ll kk || dd tt -- -- -- (( 22 ))

式中:T为运动周期,r为车轮半径,ωl和ωr分别为左右轮角速度,nl和nr分别为左右轮转速;In the formula: T is the motion period, r is the radius of the wheel, ω l and ω r are the angular velocities of the left and right wheels respectively, n l and n r are the speeds of the left and right wheels respectively;

2)本实施例中,采用结构光传感器将结构光倾斜投射在接缝焊接坡口上,当焊接电弧在外加横向旋转磁场控制下以旋转运动形式扫描坡口时,采集包含坡口几何结构特征的结构光条纹图像,依次采用自适应阈值分割、中值滤波、细化与计算斜率的步骤对图像进行处理与特征提取,获取焊接坡口特征点i的位置信息,包括焊接坡口特征点i与焊炬在结构光传感器坐标系Lxyz中y轴方向上的偏差距离Ei和焊接坡口特征点在结构光传感器坐标系Lxyz中的坐标;当焊接电弧在外加横向旋转磁场控制下以旋转运动形式扫描坡口时,电弧传感器开始采用霍尔传感器采集焊接电流信号,采用巴特沃斯低通滤波与小波滤波对焊接电流信号进行预处理实现干扰信号的滤除,并进行信号放大,采用积分差值法、特征谐波法或极值法提取经处理后的焊接电流信号进行实时焊炬位姿信息,机载执行机构根据所获取的实时焊炬位姿信息调整焊炬位姿,使其对准焊缝中心并且维持恒定的焊炬高度,在机载执行机构调整焊炬位姿的同时电弧传感器开始下一周期的电弧能量信号采集,如此循环,即实现焊道自动跟踪;2) In this embodiment, the structured light sensor is used to obliquely project the structured light on the seam welding groove, and when the welding arc scans the groove in the form of a rotating motion under the control of an externally applied transverse rotating magnetic field, the data including the geometric structure features of the groove are collected. For the structured light fringe image, the steps of adaptive threshold segmentation, median filtering, thinning and slope calculation are used to process the image and extract features in order to obtain the position information of the welding groove feature point i, including the welding groove feature point i and The deviation distance E i of the welding torch in the y-axis direction in the structured light sensor coordinate system L xyz and the coordinates of the welding groove feature point in the structured light sensor coordinate system L xyz ; when the welding arc is controlled by an externally applied transverse rotating magnetic field to rotate When scanning the groove in the motion form, the arc sensor starts to use the Hall sensor to collect the welding current signal, and uses the Butterworth low-pass filter and wavelet filter to preprocess the welding current signal to filter out the interference signal and perform signal amplification. The difference method, characteristic harmonic method or extreme value method extracts the processed welding current signal to obtain real-time welding torch pose information, and the airborne actuator adjusts the welding torch pose according to the obtained real-time welding torch pose information, so that Align the center of the welding seam and maintain a constant welding torch height. When the onboard actuator adjusts the welding torch position and posture, the arc sensor starts the next cycle of arc energy signal collection, and this cycle realizes automatic tracking of the welding bead;

3)根据焊接坡口特征点在结构光传感器坐标系Lxyz中的坐标,进行坐标变换至基础笛卡尔坐标系Oxyz,获得焊接坡口特征点i的坐标Gi=(xi,yi);3) According to the coordinates of the welding groove feature points in the structured light sensor coordinate system L xyz , the coordinates are transformed to the basic Cartesian coordinate system O xyz to obtain the coordinates G i of the welding groove feature point i = ( xi , y i );

4)根据步骤2)和3)依次求解一系列焊接坡口特征点的坐标,获得一个焊接坡口特征点坐标序列{G1,G2,...,GN}与一个偏差距离数组{E1,E2,...,EN},其中4) According to steps 2) and 3), the coordinates of a series of welding groove feature points are solved sequentially, and a welding groove feature point coordinate sequence {G 1 ,G 2 ,...,G N } and a deviation distance array { E 1 ,E 2 ,...,E N }, where

NN == &lambda;&lambda; vTvT oo pp ++ 11 -- -- -- (( 33 ))

式中:λ为结构光传感器前置于焊炬的距离,根据焊道轨迹几何结构特征与焊接工艺要求确定,设定λ为30mm至50mm之间的值,v为焊接速度,Top为焊接坡口特征点位置信息提取周期;In the formula: λ is the distance between the structured light sensor and the welding torch, which is determined according to the geometric structure characteristics of the weld bead track and the welding process requirements, and λ is set as a value between 30mm and 50mm, v is the welding speed, T op is the welding Groove feature point position information extraction cycle;

5)采用样条曲线(Catmull-Rom曲线)对焊接坡口特征点坐标序列进行拟合计算,得到待焊轨迹函数S(x)并进行求导,求解焊接坡口特征点坐标序列中各焊接坡口特征点在待焊轨迹函数S(x)上的切线斜率ki,i=1,2,...,N,得到包含N个焊接坡口特征点位姿矩阵Pi=[xi yi arctan(ki)],i=1,2,...,N的集合;5) Use the spline curve (Catmull-Rom curve) to fit and calculate the coordinate sequence of the welding groove feature points, obtain the trajectory function S(x) to be welded and perform derivation, and solve each weld in the welding groove feature point coordinate sequence The tangent slope k i of the groove feature points on the track function S(x) to be welded, i=1,2,...,N, and the pose matrix P i =[ xi y i arctan(k i )], the set of i=1,2,...,N;

6)设定阈值σ与进行比较,并设定阈值ζ与ΔE进行比较,当或ΔE>ζ时,机器人本体执行焊炬所在侧的转弯运动规划,即连续路径运动轨迹规划;当或ΔE<-ζ时,机器人本体执行非焊炬所在侧的转弯运动规划,即绕车体中心原地转弯轨迹规划;当且-ζ≤ΔE≤ζ时,机器人本体执行点到点直行轨迹规划;其中6) Set the threshold σ and to compare and set the threshold ζ to compare with ΔE when Or when ΔE>ζ, the robot body executes the turning motion planning on the side where the welding torch is located, that is, the continuous path motion trajectory planning; when Or when ΔE<-ζ, the robot body executes the turning motion planning of the side where the welding torch is not located, that is, the turning trajectory planning around the center of the car body; when And when -ζ≤ΔE≤ζ, the robot body executes point-to-point straight trajectory planning; where

&Delta;&Delta; EE. == EE. NN -- EE. 11 &sigma;&sigma; == LL mm -- LL sthe s ++ 11 22 LL aa ,, 11 22 LL aa << LL mm << LL aa &zeta;&zeta; == 11 44 LL aa -- -- -- (( 44 ))

式中:E1和EN分别为第1个和第N个焊接坡口特征点与焊炬在结构光传感器坐标系Lxyz中y轴方向上的的偏差距离,Ls为焊炬在机载执行机构坐标系Uxyz中的y坐标,La为机载执行机构在机载执行机构坐标系Uxyz中y轴方向上的最大工作行程,Lm为机载执行机构在机载执行机构坐标系Uxyz中y轴方向上的预设工作行程,根据实际焊接结构和机载执行机构尺寸设定;In the formula: E 1 and E N are the deviation distances between the first and Nth welding groove feature points and the welding torch in the y-axis direction in the structured light sensor coordinate system L xyz , and L s is the welding torch on-machine y coordinate in the coordinate system U xyz of the onboard actuator, L a is the maximum working stroke of the onboard actuator in the direction of the y axis in the coordinate system U xyz of the The preset working stroke in the y-axis direction in the coordinate system U xyz is set according to the actual welding structure and the size of the airborne actuator;

7)机器人本体根据连续路径运动轨迹规划、绕车体中心原地转弯轨迹规划或点到点直行轨迹规划执行位姿调整,同时重复步骤2)~6),进行下一次的轨迹规划,即实现焊接过程中轨迹在线动态规划与焊道跟踪协同的控制。7) The robot body performs pose adjustment according to the continuous path motion trajectory planning, the in-situ turning trajectory planning around the center of the car body, or the point-to-point straight trajectory planning, and at the same time repeat steps 2) to 6) for the next trajectory planning, that is, to realize Coordinated control of trajectory online dynamic planning and weld bead tracking during welding.

步骤6)中所述连续路径运动轨迹规划,采用的方法是:Step 6) described in continuous path motion locus planning, the method that adopts is:

根据步骤5)中所述焊接坡口特征点位姿矩阵的集合,采用下式:According to the collection of welding groove feature point pose matrix described in step 5), adopt the following formula:

xx pp ii ythe y pp ii &theta;&theta; pp ii == xx ii ++ 11 22 LL aa sthe s ii nno (( aa rr cc tt aa nno (( dd SS (( xx ii )) dd xx )) )) ythe y ii -- 11 22 LL aa coscos (( aa rr cc tt aa nno (( dd SS (( xx ii )) dd xx )) )) arctanarctan (( dd SS (( xx ii )) dd xx )) ,, ii == 11 ,, 22 ,, ...... ,, NN -- -- -- (( 55 ))

计算机器人本体在机器人本体运动轨迹上第i点的位姿矩阵Upi:[xpi,ypipi],(i=1,2,...,N),其中:S(xi)为在待焊轨迹函数S(x)上第i点的函数值,xpi,ypi分别为机器人本体运动轨迹上第i点在基础笛卡尔坐标系Oxyz中的坐标,θpi为机器人本体在机器人本体运动轨迹上第i点的方位角,采用样条曲线(Catmull-Rom曲线)对机器人本体运动轨迹上全部点的坐标(xpi,ypi),i=1,2,...,N进行插值计算,生成连续和平滑的机器人本体运动轨迹;采用差速控制方法控制机器人左右轮,使其沿路径节点完成连续路径运动,如图3所示,Calculate the pose matrix U pi of the i-th point of the robot body on the trajectory of the robot body: [x pi ,y pipi ],(i=1,2,...,N), where: S( xi ) is the function value of the i-th point on the track function S(x) to be welded, x pi and y pi are the coordinates of the i-th point on the robot body motion track in the basic Cartesian coordinate system O xyz , and θ pi is the robot The azimuth of the i-th point of the body on the trajectory of the robot body, using the spline curve (Catmull-Rom curve) to coordinate (x pi , y pi ) of all points on the trajectory of the robot body, i=1,2,.. ., N performs interpolation calculations to generate a continuous and smooth trajectory of the robot body; uses the differential speed control method to control the left and right wheels of the robot to complete the continuous path movement along the path nodes, as shown in Figure 3.

Up1:[xp1,yp1p1]为机器人本体在机器人本体运动轨迹上的起始点位姿矩阵,U p1 :[x p1 ,y p1p1 ] is the pose matrix of the starting point of the robot body on the trajectory of the robot body,

UpN:[xpN,ypNpN]为机器人本体在机器人本体运动轨迹上的终止点位姿矩阵,U pN :[x pN ,y pNpN ] is the end point pose matrix of the robot body on the trajectory of the robot body,

Upi:[xpi,ypipi],(i=2,3,...,N-1)为机器人本体在机器人本体运动轨迹上的路径节点位姿矩阵;U pi :[x pi ,y pipi ], (i=2,3,...,N-1) is the path node pose matrix of the robot body on the robot body trajectory;

步骤6)中所述绕车体中心原地转弯轨迹规划,采用的方法是:Step 6) described in the in-situ turning track planning around the center of the car body, the method adopted is:

如图4所示,控制机器人本体左右两侧驱动轮,使驱动轮速度大小相等,方向相反,实现机器人本体绕车体中心原地转弯,并使机器人本体中心速度方向在转弯开始与结束时分别与所拟合焊缝轨迹切线方向一致,机器人本体转弯角度θR采用下式计算:As shown in Figure 4, control the driving wheels on the left and right sides of the robot body so that the speeds of the driving wheels are equal and opposite in direction, so that the robot body turns in situ around the center of the car body, and the center speed directions of the robot body are separated at the beginning and end of the turn. Consistent with the tangent direction of the fitted weld trajectory, the turning angle θ R of the robot body is calculated by the following formula:

&theta;&theta; RR == aa rr cc tt aa nno (( dd SS (( xx NN )) dd xx )) -- aa rr cc tt aa nno (( dd SS (( xx 11 )) dd xx )) -- -- -- (( 66 ))

步骤6)中所述点到点直行轨迹规划,采用的方法是:Point-to-point straight track planning described in step 6), the method that adopts is:

如图5所示,Up1为所述机器人本体初始位姿,UpN为所述机器人本体目标位姿,保持机器人本体左右两侧驱动轮速度稳定,使机器人本体沿当前方向移动距离长度为λ,移动速度大小保持不变。As shown in Figure 5, U p1 is the initial pose of the robot body, U pN is the target pose of the robot body, keep the speed of the driving wheels on the left and right sides of the robot body stable, and make the robot body move along the current direction with a distance of λ , the movement speed remains unchanged.

实现本实施例所述方法的移动焊接机器人系统,如图6所示,其特征在于:它包括一移动机器人(即所述机器人本体)1、一结构光传感器2(包括光源、摄像机、滤镜,图中均未画出)、一图像采集卡3、一电弧传感器(包括一焊炬4、一霍尔传感器或信号变送器5)、一信号采集处理模块6、一工控机7、一运动控制卡8、一套机载执行机构9(包括滑架、滑块、电机、电机驱动器)、一移动机器人控制器10、一焊接电源11。所述机载执行机构固定设置在所述移动机器人1上。所述机载执行机构9一侧的末端与所述焊炬4固定连接。所述焊接电源11的一接口经所述霍尔传感器或信号变送器5与工件12相连接。所述焊接电源11的另一接口与所述焊炬4相连接,形成焊接电流回路。所述霍尔传感器或信号变送器5的输出端连接所述信号采集处理模块6的输入端,所述信号采集处理模块6的输出端连接所述工控机7的另一输入端。所述结构光传感器2经一支架固定设置在所述焊炬4的一侧,所述结构光传感器2的输出端连接所述图像采集卡3的输入端,所述图像采集卡3的输出端连接所述工控机7的一输入端。所述工控机7的一输出端连接所述运动控制卡8的输入端控制其进行工作,所述运动控制卡8的输出端连接所述机载执行机构9。所述工控机7的另一输出端连接所述移动机器人控制器10的输入端控制其进行工作,所述移动机器人控制器10的输出端连接所述移动机器人1。Realize the mobile welding robot system of the method described in this embodiment, as shown in Figure 6, it is characterized in that: it comprises a mobile robot (namely said robot body) 1, a structured light sensor 2 (comprising light source, video camera, filter filter , not shown in the figure), an image acquisition card 3, an arc sensor (including a welding torch 4, a Hall sensor or signal transmitter 5), a signal acquisition and processing module 6, an industrial computer 7, an A motion control card 8, a set of onboard actuators 9 (including a carriage, a slider, a motor, and a motor driver), a mobile robot controller 10, and a welding power source 11. The on-board actuator is fixedly arranged on the mobile robot 1 . The end on one side of the onboard actuator 9 is fixedly connected with the welding torch 4 . An interface of the welding power source 11 is connected to the workpiece 12 through the Hall sensor or the signal transmitter 5 . Another interface of the welding power source 11 is connected with the welding torch 4 to form a welding current loop. The output end of the Hall sensor or signal transmitter 5 is connected to the input end of the signal acquisition and processing module 6 , and the output end of the signal acquisition and processing module 6 is connected to the other input end of the industrial computer 7 . The structured light sensor 2 is fixedly arranged on one side of the welding torch 4 via a bracket, the output end of the structured light sensor 2 is connected to the input end of the image acquisition card 3, and the output end of the image acquisition card 3 Connect to an input terminal of the industrial computer 7 . An output end of the industrial computer 7 is connected to an input end of the motion control card 8 to control its operation, and an output end of the motion control card 8 is connected to the onboard actuator 9 . The other output end of the industrial computer 7 is connected to the input end of the mobile robot controller 10 to control its work, and the output end of the mobile robot controller 10 is connected to the mobile robot 1 .

所述移动机器人采用轮式移动机器人、移动平台或移动式小车的一种,其特征在于:能够实现转弯半径为零的原地转弯,本实施例中采用ActivMedia公司与斯坦福大学SIR实验室联合开发的Pioneer3-AT机器人小车。Described mobile robot adopts a kind of wheeled mobile robot, mobile platform or mobile dolly, is characterized in that: can realize turning radius to be zero turning in situ, adopt ActivMedia company and Stanford University SIR laboratory to jointly develop in the present embodiment The Pioneer3-AT robot car.

所述焊炬采用磁控旋转式焊炬、机械旋转式焊炬、电控摆动式焊炬或机械摆动式焊炬的一种,本实施例中采用磁控旋转式焊炬。The welding torch is one of magnetron rotary torch, mechanical rotary torch, electric control swing torch or mechanical swing torch. In this embodiment, magnetron rotary torch is used.

所述工控机根据实际需要可由单片机、DSP、PLC、ARM、FPGA或计算机中的一种代替。The industrial computer can be replaced by one of single-chip microcomputer, DSP, PLC, ARM, FPGA or computer according to actual needs.

Claims (5)

1.一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,其特征在于所述方法包括如下步骤:1. a control method for trajectory online dynamic programming and weld bead tracking coordination in a welding process, characterized in that said method comprises the steps: 1)建立移动焊接机器人系统坐标系,包括:基础笛卡尔坐标系Oxyz、机器人本体坐标系Mxyz、机载执行机构坐标系Uxyz和结构光传感器坐标系Lxyz,其中,机载执行机构坐标系Uxyz与结构光传感器坐标系Lxyz的x轴正向与机器人本体直行前进的方向一致,z轴正向与地面法线的方向一致,y轴正向由左手法则确定,机载执行机构坐标系Uxyz的原点位于机载执行机构与机器人本体的固定连接处;1) Establish the coordinate system of the mobile welding robot system, including: the basic Cartesian coordinate system O xyz , the robot body coordinate system M xyz , the airborne actuator coordinate system U xyz and the structured light sensor coordinate system L xyz , where the airborne actuator The positive direction of the x-axis of the coordinate system U xyz and the coordinate system L xyz of the structured light sensor is consistent with the direction of the robot body moving straight forward, the positive direction of the z-axis is consistent with the direction of the ground normal, and the positive direction of the y-axis is determined by the left-hand rule. The origin of the mechanism coordinate system U xyz is located at the fixed connection between the airborne actuator and the robot body; 2)当焊接电弧以摆动、旋转或摆动-旋转复合运动形式扫描坡口时,采用结构光传感器提取焊接区前方接缝焊接坡口特征点i的位置信息,包括焊接坡口特征点i与焊炬在结构光传感器坐标系Lxyz中y轴方向上的偏差距离Ei和焊接坡口特征点在结构光传感器坐标系Lxyz中的坐标,同时采用电弧传感器实时地采集电弧能量信号,采用积分差值法、特征谐波法或极值法提取经过信号滤波与放大处理后的电弧能量信号中的实时焊炬位姿信息,由机载执行机构根据所获取的实时焊炬位姿信息调整焊炬位姿,在机载执行机构调整焊炬位姿的同时电弧传感器开始下一周期的电弧能量信号采集,如此循环,即实现焊道跟踪;2) When the welding arc scans the groove in the form of swinging, rotating or swinging-rotating compound motion, the structured light sensor is used to extract the position information of the welding groove feature point i in the front of the welding zone, including the welding groove feature point i and the welding groove feature point i. The deviation distance E i of the torch in the y-axis direction in the structured light sensor coordinate system L xyz and the coordinates of the welding groove feature point in the structured light sensor coordinate system L xyz , and the arc sensor is used to collect the arc energy signal in real time, and the integral The difference method, the characteristic harmonic method or the extreme value method extract the real-time welding torch position and orientation information in the arc energy signal after signal filtering and amplification processing, and the airborne actuator adjusts the welding torch position and orientation information according to the obtained real-time welding torch position and orientation information. Torch position and posture, while the airborne actuator adjusts the welding torch position and posture, the arc sensor starts the next cycle of arc energy signal acquisition, and this cycle realizes welding bead tracking; 3)根据焊接坡口特征点在结构光传感器坐标系Lxyz中的坐标,进行坐标变换至基础笛卡尔坐标系Oxyz,获得焊接坡口特征点i的坐标Gi=(xi,yi);3) According to the coordinates of the welding groove feature points in the structured light sensor coordinate system L xyz , the coordinates are transformed to the basic Cartesian coordinate system O xyz to obtain the coordinates G i of the welding groove feature point i = ( xi , y i ); 4)根据步骤2)和3)依次求解一系列焊接坡口特征点的坐标,获得一个焊接坡口特征点坐标序列{G1,G2,...,GN}与一个偏差距离数组{E1,E2,...,EN},其中4) According to steps 2) and 3), the coordinates of a series of welding groove feature points are solved sequentially, and a welding groove feature point coordinate sequence {G 1 ,G 2 ,...,G N } and a deviation distance array { E 1 ,E 2 ,...,E N }, where NN == &lambda;&lambda; vTvT oo pp ++ 11 式中:λ为结构光传感器前置于焊炬的距离,v为焊接速度,Top为焊接坡口特征点位置信息提取周期;In the formula: λ is the distance between the structured light sensor and the welding torch, v is the welding speed, and T op is the extraction cycle of the feature point position information of the welding groove; 5)采用样条曲线对焊接坡口特征点坐标序列进行拟合计算,得到待焊轨迹函数S(x)并进行求导,求解焊接坡口特征点坐标序列中各焊接坡口特征点在待焊轨迹函数S(x)上的切线斜率ki,i=1,2,...,N,得到包含N个焊接坡口特征点位姿矩阵Pi=[xi yi arctan(ki)],i=1,2,...,N的集合;5) Use spline curves to fit and calculate the coordinate sequence of welding groove feature points, obtain the trajectory function S(x) to be welded and perform derivation, and solve the welding groove feature point coordinate sequence of each welding groove feature point The tangent slope k i on the welding trajectory function S(x), i=1,2,...,N, obtains the pose matrix P i =[x i y i arctan(k i )], the set of i=1,2,...,N; 6)设定阈值σ与进行比较,并设定阈值ζ与ΔE进行比较,当或ΔE>ζ时,机器人本体执行连续路径运动轨迹规划;当或ΔE<-ζ时,机器人本体执行绕车体中心原地转弯轨迹规划;当且-ζ≤ΔE≤ζ时,机器人本体执行点到点直行轨迹规划;其中6) Set the threshold σ and to compare and set the threshold ζ to compare with ΔE when Or when ΔE>ζ, the robot body executes continuous path motion trajectory planning; when Or when ΔE<-ζ, the robot body executes in-situ turning trajectory planning around the center of the car body; when And when -ζ≤ΔE≤ζ, the robot body executes point-to-point straight trajectory planning; where &Delta;&Delta; EE. == EE. NN -- EE. 11 &sigma;&sigma; == LL mm -- LL sthe s ++ 11 22 LL aa ,, 11 22 LL aa << LL mm << LL aa &zeta;&zeta; == 11 44 LL aa 式中:E1和EN分别为第1个和第N个焊接坡口特征点与焊炬在结构光传感器坐标系Lxyz中y轴方向上的的偏差距离,Ls为焊炬在机载执行机构坐标系Uxyz中的y坐标,La为机载执行机构在机载执行机构坐标系Uxyz中y轴方向上的最大工作行程,Lm为机载执行机构在机载执行机构坐标系Uxyz中y轴方向上的预设工作行程;In the formula: E 1 and E N are the deviation distances between the first and Nth welding groove feature points and the welding torch in the y-axis direction in the structured light sensor coordinate system L xyz , and L s is the welding torch on-machine y coordinate in the coordinate system U xyz of the onboard actuator, L a is the maximum working stroke of the onboard actuator in the direction of the y axis in the coordinate system U xyz of the The preset working stroke in the direction of the y-axis in the coordinate system U xyz ; 7)机器人本体根据连续路径运动轨迹规划、绕车体中心原地转弯轨迹规划或点到点直行轨迹规划执行位姿调整,同时重复步骤2)~6),进行下一次的轨迹规划,即实现焊接过程中轨迹在线动态规划与焊道跟踪协同的控制。7) The robot body performs pose adjustment according to the continuous path motion trajectory planning, the in-situ turning trajectory planning around the center of the car body, or the point-to-point straight trajectory planning, and at the same time repeat steps 2) to 6) to perform the next trajectory planning, that is, to realize Coordinated control of trajectory online dynamic planning and weld bead tracking during welding. 2.根据权利要求1所述一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,其特征在于:步骤6)中所述连续路径运动轨迹规划,采用的方法是:2. according to claim 1, a kind of control method of track online dynamic planning and weld bead tracking coordination in the welding process, it is characterized in that: step 6) described in the continuous path motion track planning, the method that adopts is: 根据步骤5)中所述焊接坡口特征点位姿矩阵的集合,采用下式:According to the collection of welding groove feature point pose matrix described in step 5), adopt the following formula: xx pp ii ythe y pp ii &theta;&theta; pp ii == xx ii ++ 11 22 LL aa sthe s ii nno (( aa rr cc tt aa nno (( dd SS (( xx ii )) dd xx )) )) ythe y ii -- 11 22 LL aa coscos (( aa rr cc tt aa nno (( dd SS (( xx ii )) dd xx )) )) arctanarctan (( dd SS (( xx ii )) dd xx )) ,, ii == 11 ,, 22 ,, ...... ,, NN 计算机器人本体在机器人本体运动轨迹上第i点的位姿矩阵:Upi:[xpi,ypipi],(i=1,2,...,N),其中:S(xi)为在待焊轨迹函数S(x)上第i点的函数值,xpi,ypi分别为机器人本体运动轨迹上第i点在基础笛卡尔坐标系Oxyz中的坐标,θpi为机器人本体在机器人本体运动轨迹上第i点的方位角,采用样条曲线对机器人本体运动轨迹上全部点的坐标(xpi,ypi),i=1,2,...,N进行插值计算,生成连续和平滑的机器人本体运动轨迹。Calculate the pose matrix of the i-th point of the robot body on the trajectory of the robot body: U pi :[x pi ,y pipi ],(i=1,2,...,N), where: S(x i ) is the function value of the i-th point on the track function S(x) to be welded, x pi and y pi are the coordinates of the i-th point on the robot body motion track in the basic Cartesian coordinate system O xyz respectively, and θ pi is The azimuth angle of the i-th point of the robot body on the robot body trajectory, using the spline curve to interpolate the coordinates (x pi , y pi ) of all points on the robot body trajectory, i=1,2,...,N Calculate and generate continuous and smooth robot body motion trajectory. 3.根据权利要求1所述的一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,其特征在于:步骤6)中所述绕车体中心原地转弯轨迹规划,采用的方法是:3. The control method for the online dynamic planning of the trajectory in the welding process and the coordination of the welding bead tracking according to claim 1, characterized in that: in the step 6), the method of turning trajectory around the center of the car body in situ is adopted yes: 控制机器人本体左右两侧驱动轮,使驱动轮速度大小相等,方向相反,实现机器人本体绕车体中心原地转弯,机器人本体转弯角度θR采用下式计算:Control the driving wheels on the left and right sides of the robot body so that the speeds of the driving wheels are equal and opposite, so that the robot body turns around the center of the car body in situ. The turning angle θ R of the robot body is calculated by the following formula: &theta;&theta; RR == aa rr cc tt aa nno (( dd SS (( xx NN )) dd xx )) -- aa rr cc tt aa nno (( dd SS (( xx 11 )) dd xx )) .. 4.根据权利要求1所述的一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,其特征在于:步骤6)中所述点到点直行轨迹规划,采用的方法是:4. The control method for online dynamic planning of trajectory and coordination of weld bead tracking in a kind of welding process according to claim 1, characterized in that: point-to-point straight trajectory planning described in step 6), the method adopted is: 保持机器人本体左右两侧驱动轮速度稳定,使机器人本体沿当前方向移动距离长度为λ,移动速度大小保持不变。Keep the speed of the driving wheels on the left and right sides of the robot body stable, so that the robot body moves a distance of λ along the current direction, and the moving speed remains unchanged. 5.根据权利要求1所述的一种焊接过程中轨迹在线动态规划与焊道跟踪协同的控制方法,其特征在于:所述焊炬采用磁控旋转式焊炬、机械旋转式焊炬、电控摆动式焊炬或机械摆动式焊炬的一种。5. The control method for the coordination of trajectory online dynamic planning and weld bead tracking in the welding process according to claim 1, characterized in that: the welding torch adopts a magnetically controlled rotary welding torch, a mechanical rotary welding torch, an electric welding torch A kind of controlled swing welding torch or mechanical swing welding torch.
CN201510536227.2A 2015-08-27 2015-08-27 In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead Active CN105081524B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510536227.2A CN105081524B (en) 2015-08-27 2015-08-27 In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510536227.2A CN105081524B (en) 2015-08-27 2015-08-27 In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead

Publications (2)

Publication Number Publication Date
CN105081524A CN105081524A (en) 2015-11-25
CN105081524B true CN105081524B (en) 2016-09-28

Family

ID=54563340

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510536227.2A Active CN105081524B (en) 2015-08-27 2015-08-27 In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead

Country Status (1)

Country Link
CN (1) CN105081524B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105458463A (en) * 2016-01-07 2016-04-06 湘潭大学 Real-time welding seam tracking method of intelligent welding robot based on rotating arc sensing
CN105855668B (en) * 2016-05-27 2018-09-21 廊坊智通机器人系统有限公司 The online welding seam tracking method of straight line of arc welding robot welding
CN106964875B (en) * 2017-04-18 2020-02-07 湘潭大学 Welding gun space attitude identification method based on arc sensor
CN109598760A (en) * 2018-12-07 2019-04-09 北京博清科技有限公司 Image processing method and image processing apparatus
CN111113409B (en) * 2019-11-21 2021-05-11 东南大学 A multi-robot and multi-station cooperative spot welding planning method based on step-by-step optimization
CN112379590B (en) * 2020-10-16 2022-08-23 西安工程大学 Mobile robot path tracking control method based on improved approach law
CN112318000B (en) * 2020-10-23 2022-06-03 成都卡诺普机器人技术股份有限公司 Self-adaptive tracking welding method for transformer oil tank
CN113843481A (en) * 2021-10-25 2021-12-28 北京石油化工学院 Narrow groove welding seam tracking method based on LabVIEW
CN114012214A (en) * 2021-11-17 2022-02-08 佛山市南海区广工大数控装备协同创新研究院 A welding seam tracking motion control method
CN113996896A (en) * 2021-12-07 2022-02-01 上海雅跃智能科技有限公司 Tubular pile welding trolley control system and welding system
CN114101851B (en) * 2021-12-30 2022-11-01 华中科技大学 A multi-weld filling self-adjusting method, system and device for valve body parts
CN114417535A (en) * 2022-03-21 2022-04-29 北京金橙子科技股份有限公司 Laser welding head dynamic track generation method based on platform motion tangent angle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4326338C2 (en) * 1993-08-05 1996-07-18 Daimler Benz Aerospace Ag Welding robot
JP4640908B2 (en) * 2003-01-24 2011-03-02 日立建機株式会社 Welding apparatus and welding method
KR100741563B1 (en) * 2003-07-15 2007-07-20 현대중공업 주식회사 Robot posture tracking control method
US20090200282A1 (en) * 2008-02-08 2009-08-13 Gm Global Technology Operations, Inc. Weld signature monitoring method and apparatus
CN101837504A (en) * 2010-06-22 2010-09-22 湘潭大学 Eddy current sensor type automatic weld tracking control method

Also Published As

Publication number Publication date
CN105081524A (en) 2015-11-25

Similar Documents

Publication Publication Date Title
CN105081524B (en) In welding process, the online dynamic programming of track follows the tracks of collaborative control method with welding bead
CN105562973B (en) A kind of laser identification axle robot space curve welding system of weld seam 8 and method
CN109144078B (en) Two-dimensional code navigation based collinear double-steering-wheel AGV route correction method and system
CN105751200B (en) The method of operating of all-hydraulic autonomous mechanical arm
CN205393782U (en) 8 robot space curve welding system of laser discernment welding seam
CN102922147B (en) Constant-speed scanning positioning type post-welding seam tracking and residual stress removal system
CN114378827B (en) Dynamic target tracking and grabbing method based on overall control of mobile mechanical arm
CN103240739B (en) Automatic switching control method for decentralization and centralization of mobile manipulators
CN105479460B (en) A kind of differential driven machine people&#39;s route tracking and controlling method of non-temporal reference
CN111610523B (en) A parameter correction method for wheeled mobile robots
CN104476550A (en) All-hydraulic autonomous moving manipulator and moving method thereof
CN105751199B (en) The method of operating of all-hydraulic autonomous mechanical arm
CN105068543B (en) It is a kind of that type AGV two-wheeled synchronous method is born based on PID control
CN104028877B (en) A kind of deep camber bending weld seam tracking method based on dynamic weld seam tangential method
CN107357288A (en) One kind is used for the double car cooperative motion apparatus and method of Mecanum wheel robots
CN102699921B (en) Control method for moving mechanism of all-wheel-drive combined attracting-type wall-climbing robot
WO2024193077A1 (en) Deep-learning-based intelligent welding method for high-altitude steel structure welding robot
CN103394833B (en) High-precision postwelding weld joint tracking and residual stress relieving system
CN101700596B (en) Method for self-trailing of mobile welding robot before welding
CN103386554A (en) Tracking system for movable welding line stress eliminating robot
CN101706665B (en) Method for adjusting self-tracing pose of mobile welding robot
TWI770966B (en) Guidance control method of unmanned self-propelled vehicle
CN114296454B (en) Self-adaptive motion control method and system for omnidirectional full-drive mobile robot
Hong et al. Seam-tracking based on dynamic trajectory planning for a mobile welding robot
CN115826572A (en) Unmanned steel grasping machine motion steering control method and system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant