CN105074124A - 增强型二氧化碳基地热能生成系统和方法 - Google Patents

增强型二氧化碳基地热能生成系统和方法 Download PDF

Info

Publication number
CN105074124A
CN105074124A CN201380069985.7A CN201380069985A CN105074124A CN 105074124 A CN105074124 A CN 105074124A CN 201380069985 A CN201380069985 A CN 201380069985A CN 105074124 A CN105074124 A CN 105074124A
Authority
CN
China
Prior art keywords
fluid
methane
heat
oil
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380069985.7A
Other languages
English (en)
Other versions
CN105074124B (zh
Inventor
吉米·布莱恩·兰道夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201910203669.3A priority Critical patent/CN109915090B/zh
Publication of CN105074124A publication Critical patent/CN105074124A/zh
Application granted granted Critical
Publication of CN105074124B publication Critical patent/CN105074124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/164Injecting CO2 or carbonated water
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • E21B43/40Separation associated with re-injection of separated materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G4/00Devices for producing mechanical power from geothermal energy
    • F03G4/023Devices for producing mechanical power from geothermal energy characterised by the geothermal collectors
    • F03G4/026Devices for producing mechanical power from geothermal energy characterised by the geothermal collectors open loop geothermal collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/70Combining sequestration of CO2 and exploitation of hydrocarbons by injecting CO2 or carbonated water in oil wells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

系统,包括用于获取一个或多个地下油气藏的一个或多个注入井,该一个或多个油气藏处于一个或多个第一温度并且含有至少一种原生流体。原生流体可包括含有甲烷的溶液。该一个或多个注入井中的每一个注入井均具有与该一个或多个油气藏中至少一个油气藏流体连通的注入井油气藏开口。该系统还包括一个或多个生产井,每一个均具有与该一个或多个油气藏中至少一个油气藏流体连通的生产井油气藏开口。工作流体供给系统向在低于第一温度的第二温度下的一个或多个注入井提供非水基工作流体。该非水基工作流体向原生流体的暴露导致至少一部分的甲烷随着原生流体从溶液中逸出,以形成至少一部分的非水基工作流体和该部分的甲烷的生产流体。该混合物向第一温度的暴露将该生产流体加热至高于第二温度的第三温度。该生产流体可进入一个或多个生产井油气藏开口。与该一个或多个生产井流体连通的能量回收设备将包含在生产流体中的能量转换为电、热或其组合。

Description

增强型二氧化碳基地热能生成系统和方法
相关申请的交叉参考
本国际申请要求提交于2012年11月12日的第61/725270号美国临时专利申请的优先权,并且通过引用将其全部内容并入本文。
发明背景
鉴于全球气候变化并且响应于减少对外国石油供应依赖的不断增长的愿望,人们正越来越多地研究和开发可再生能量系统如风能、太阳能和地热能基系统。然而,由于如成本高、整体工艺的低效率,对环境可能不利的影响等原因,许多这样的系统只有有限的潜力。
发明概述
本公开描述用于通过将非水基工作液,如二氧化碳(CO2),注入油气藏以提取地热来有效地回收来自油气藏的地热的系统和方法。CO2然后可被开采回到地表,并且由CO2捕获的地热能的一部分可以通过能量回收设备来回收,如电力生产设备(例如,驱动发电机的膨胀装置)或热回收装置(例如,一个或多个热交换器,用于加热第二工作流体)。
具体地,本公开描述从包含原生流体的油气藏中回收地热,所述原生流体包括含有天然气、特别是甲烷(CH4)的溶液。CO2可引起CH4随着原生流体逸出,使得甲烷与CO2形成生产流体。该生产流体可通过地热被加热并开采到地表,其中至少一部分的CH4可以从生产流体分离并燃烧,以在将生产流体送入能量回收设备之前增加其整体温度。该系统和方法可以利用CO2的化学性质来从油气藏中提取CH4,并且然后可以使用存储在一部分的CH4中的化学能来补充由生产流体捕获的地热能。从油气藏回收甲烷以及为了提高生产流体的温度或压力或两者而进行的一部分甲烷一的后续燃烧,相对于单独的地热捕获,可以提高整个系统的效率以及所产生的总功率。本公开的甲烷捕获和使用的系统和方法可允许从低温油气藏(例如,低至约15℃,或在某些情况下,低至约10℃的)经济上可行地回收地热能。因此,本发明的系统和方法可以开启对迄今一直在经济上很难或不可能实现的油气藏的地热开采。
本公开描述了系统,包括用于获取一个或多个地下油气藏的一个或多个注入井,该一个或多个油气藏处于一个或多个第一温度并且含有至少一种原生流体,所述原生流体可包括含有甲烷的溶液,该一个或多个注入井中的每一个均具有与该一个或多个油气藏中的至少一个油气藏流体连通的注入井油气藏开口。该系统还包括一个或多个生产井,每一个均具有与该一个或多个油气藏中至少一个流体连通的生产井油气藏开口。工作流体供给系统向在低于第一温度的第二温度下的一个或多个注入井提供非水基工作流体。该非水基工作流体向原生流体的暴露导致至少一部分的甲烷随着原生流体从溶液中逸出,以形成至少一部分的非水基工作流体和该部分的甲烷的生产流体。该混合物向第一温度的暴露将该生产流体加热至高于第二温度的第三温度,其中该生产流体能够进入一个或多个生产井油气藏开口。该体统还包括与一个或多个生产井流体连通的能量回收设备,其中包含在生产流体中的能量可以在能量回收设备中转换为电、热,或其组合。
本公开还描述了方法,包括将在第一温度的非水基工作流体通过一个或多个注入井引入含有至少一种原生流体的一个或多个地下油气藏中,该原生流体包括含有甲烷的溶液,其中该一个或多个油气藏在高于所述第一温度的一个或多个第二温度下,使非水基工作流体暴露于原生流体以使至少一部分的甲烷随着原生流体从溶液中逸出,以形成至少一部分的非水基工作流体和该部分的甲烷的生产流体,使生产流体暴露于第二温度以将所述生产流体加热至高于所述第一温度的第三温度,通过一个或多个生产井生产所述生产流体,以及从所述生产流体提取能量。
本系统和方法的这些和其它实例和特征将在以下详述的部分中阐述。本概述旨在提供本主题的概览,并不旨在提供排他性或穷尽性的说明。以下的详述被引入以提供本系统和方法的进一步信息。
附图说明
图1是实例地热能回收系统的简化示意图。
图2是另一个实例地热能回收系统的简化示意图
图3是另一个实例地热能回收系统的简化示意图。
图4是另一个实例地热能回收系统的简化示意图。
图5是油气藏内高甲烷浓度区地层的简化示意图。
图6是用于从油气藏中提取工作流体和甲烷的各种注入井和生产井的布置的简化示意图。
图7A是仅CO2工作流体的实例动力循环的相图。
图7B是CO2-甲烷工作流体的实例动力循环的相图。
图8是另一个实例地热能回收系统的简化示意图。
图9是另一个实例地热能回收系统的简化示意图。
图10是另一个实例地热能回收系统的简化示意图。
图11A示出了依赖于所产生的流体的井口温度,与非增强型CO2基地热能回收系统相比和与甲烷燃烧相比,由甲烷增强型地热能回收系统产生的电的曲线。
图11B示出了依赖于所产生的流体的井底温度,与非增强型CO2基地热能回收系统相比和与甲烷燃烧相比,由甲烷增强型地热能回收系统产生的电的曲线。
图12A示出了依赖于所产生的流体的井口温度,与非增强型CO2基地热能回收系统相比和与甲烷燃烧相比,由甲烷增强型地热能回收系统产生的电的曲线。
图12B示出了依赖于所产生的流体的井底温度,与非增强型CO2基地热能回收系统相比和与甲烷燃烧相比,由甲烷增强型地热能回收系统产生的电的曲线。
图13示出了与非废热增强型CO2基地热能回收系统相比,以及与单独废热回收相比,废热增强型地热能回收系统产生的电的曲线。
图14示出了来自各种来源的可用能量值的曲线。
图15示出了来自各种来源产生的电的曲线。
发明详述
在以下详述中,参考构成其一部分的附图,并且其中通过图示的方式示出可以实现本发明的具体实例。对这些实例进行了足够详细的描述以使本领域的技术人员能够实现本发明,并且应当理解的是,其它实施方案也可以使用。也应理解的是,可以在不脱离本发明的精神和范围进行结构上的、程序性的、化学的和系统的变化。因此,以下详述不应被视为具有限制意义,并且本发明的范围应由所附的权利要求及其等效物来限定。
本公开描述了使用非水基工作流体如二氧化碳(CO2)来回收地热能的地热能回收系统和方法。地热能回收系统和方法可以包括在Saar等人的题为“CARBONDIOXIDE-BASEDGEOTHERMALENERGYGENERATIONSYSTEMSANDMETHODSRELATEDTHERETO”的美国第US2012-0001429号公开申请,以及在2012年7月20日提交的Saar等人的题为“CARBONDIOXIDE-BASEDGEOTHERMALENERGYGENERATIONSYSTEMSANDMETHODSRELATEDTHERETO”的第13/554868号美国专利申请中公开的实例系统和方法,在此通过引用将二者以整体形式并入本文。如在这些申请中所述,二氧化碳工作流体可以作为气羽流(gasplume)通过油气藏,因此本申请中该系统被称为二氧化碳(或CO2)羽流地热(“CPG”)系统。
本公开还描述了将非水基工作流体供给至包含原生流体的油气藏,所述原生流体包括含有甲烷的溶液。例如,该油气藏可以包括深的盐水含水层,其包含具有溶解在盐水溶液中的天然气(天然气通常包含约97%以上的甲烷)的盐水溶液。因为如本文所用的“天然气”,一般是至少约97wt%以上的甲烷,所以为简便起见,本公开的其余部分将称其为“甲烷”。应当为本领域普通技术人员所理解的是,“甲烷”可以指可包括在天然气中的其它气态烃,如乙烷、丙烷和更高级的烷烃。将二氧化碳工作流体注入至盐水含水层可导致一部分的CO2溶解到盐水溶液中,其可以迫使大部分所溶解的甲烷从溶液中逸出。所释放的甲烷可以与剩余的二氧化碳结合形成气态羽流形式的生产流体,类似于在CPG系统中CO2羽流。此外,具有溶解的甲烷或自由相甲烷加上CO2的盐水溶液的混合物的区域,可以在天然盐水溶液与CO2结合甲烷的区域之间形成。除了与在CPG系统中形成的CO2羽流类似的生产流体外,包括盐水、甲烷和/或CO2的流体也可以形成生产流体。如下面更详述的,从盐水含水层回收的甲烷的一部分可以被燃烧以在从生产流体中回收能量(如通过使生产流体通过膨胀装置提供发电机的动力来产生电能)之前,增加生产流体的温度或压力或两者。在生产流体中存在的甲烷的剩余部分可以被分离出并出售,或者可以将其回注入油气藏中以用于在能量回收系统中进一步生产和使用。使用回收的甲烷以提高该系统的经济效率,可以在本文中称为甲烷增强型CO2羽流地热(“ME-CPG”)系统。
可替代地,油气藏可包括油田或天然气田,其中所述石油或天然气的烃已经使用常规回收方法部分回收。石油或天然气的烃可以通过注入油田的二氧化碳或其它回收流体来回收,从而从油气藏释放一部分烃。这个过程可以称为“增强型石油采收”(EOR)(在下面更详述)。来自EOR油田的生产流体可包括CO2工作流体、甲烷和其它天然气组分、其它较高级烃和盐水。作为上述盐水含水层油气藏,在进行进一步能量回收之前,可以使用从EOR油田中回收一部分甲烷以提高生产流体的温度、压力或两者。EOR烃可从生产流体中分离和出售。分离的烃的一部分也可以燃烧以在能量回收之前加热工作流体或增加工作流体的压力。
本公开的系统可以包括,其中产生大量热量的部件或方面,该热量通常损失到大气中。例如,EOR和CPG系统可以包括用于CO2的一个或多个压缩机,使得CO2可以回注入油气藏,用于进一步石油或天然气回收、地热的热回收,或CO2隔离。压缩机可以产生大量热量,根据所用压缩机系统的类型,在压缩的各个阶段以压缩400-450千焦耳(kJ)/千克(kg)的量级压缩二氧化碳。EOR系统还可以在从生产流体分离石油和天然气的烃的期间产生大量的热,例如,在一部分甲烷或其它所产生的流体被燃烧以加热生产流体从而提高分离效率时。
在一些实例中,地热能回收系统和EOR系统(如果存在)可以与另一个设施类型共址,例如,发电厂或乙醇或生物燃料生产厂。例如,共址设施可以是被压缩并注入油气藏并用于回收地热、甲烷和/或其它烃的CO2初始源。共址设施通常还可以产生大量废热。此外,对于共址生物燃料生产工厂,如乙醇工厂,该工厂生产的一部分的生物燃料可以被燃烧,以在从工作流体或生产流体能量回收之前增加工作流体或生产流体的温度或增加工作流体的压力或两者。同样地,可获得来自场外第三方的生物燃料等并且输送到热回收系统并燃烧,以增加工作流体或生产流体的温度或者增加工作流体的压力,或这两者。
在一些实例中,本公开内容的系统和方法可包括用于回收由该系统或方法的一些其它方面产生的废热的热回收系统,如来自CO2压缩机、EOR分离系统或者共址设施的废热。由热回收系统中回收的废热,也可在其被送入能量回收系统(例如,膨胀装置和发电机)之前用于增加生产流体的温度、压力或两者。采用热回收系统的废热捕获可以增加地热能回收系统和方法的效率,这与在ME-CPG系统中通过回收的甲烷燃烧所提供的强化类似。为了提高该系统的经济效率而进行的废热捕获,在本文中可以称为废热增强型CO2羽流地热(“WHE-CPG”)系统。应当理解,ME-CPG和WHE-CPG可以在同一系统中共同使用。
常规的地热能技术
地热能是在地球(或任何其它行星)内部产生并储藏的热能,它可以被“开采”以用于各种用途,包括产生电、供直接使用,或者用于地源热泵。在被“开采”之后,相对于在人体时间尺度上补给的热能,地热能可以是相对恒定的。除了地球之外,地热能也可以不需要存储。
常规的地热能的潜在用途一般是温度依赖性的,其中级联系统将单一地热资源用于多种用途。使用水作为工作流体的水基地热系统(例如,常规的水基增强型地热系统(EGS)和常规的非EGS水基)可能需要非常高的温度。例如,在水基地热发电厂,发电通常需要超过165℃的温度。当水是地下的地热工作流体时,来自该系统的直接的使用如水产养殖、温室、工业和农业过程、度假村、空间和区域供热(井至建筑物)可以利用约38-165℃的更适中的温度。来自水基地热系统的住宅和商业建筑的地源热泵,其可使用次级热交换流体(如异丁烯)以便从地面传输地热能来供使用,一般可以需要介于约4-38℃之间的温度。
定义
本文所用的术语“地下(subterranean/subsurface/underground)”,可以是指地球表面之下位置和/或地质层。
如本文所用的术语“原位”,可以指地质特征的原生的或原始位置或地方,其可以是在地面上或地下,使得其位于在它最初形成或自然沉积的地方,并且随着时间的推移基本上保持未受干扰,从而使得其处于基本相同的原始状态中。地质特征可以是岩石、矿物、沉积物、油气藏、盖层等,或其任意组合。而在该地质特征的内部、周围或附近进行最小人为干扰以用于创建和/或放置组件(例如,诸如注入井和/或生产井的通道)之后,地质特征还进一步被看做保持“原位”。在最小人为干扰之后,如造成岩石、矿物、沉积物和土壤由于最小人为或自然干扰造成的可控或有限数量的脱落,特征也被看作保持“原位”。与此相反,在任何类型的大型人为干扰之后,包括大规模水力压裂(如创建人工油气藏),或者如永久变形地质特征、在大型压裂之后地震和/或震颤的人为干扰,所有这些都可能对地下水的流动路径、栖息地和人造建筑物造成进一步的负面影响,特征不被认为保持“原位”。
术语“大规模水力压裂”,如本文使用的,可以指已知的方法,用于创建或诱导在特征(诸如岩石或部分固结沉淀物)中的人工裂缝和/或断层,通常是在增强型地热系统的操作期间(EGS)。参见,例如,Potter(波特)的第3786858号美国专利,其采用水用于岩石的水力压裂来创建从其中将流体输送到地表的热地质油气藏。已知大规模水力压裂造成意想不到的流体流动通路,其可能导致流体损失或“短路”,这反过来又降低了工作流体的地热加热效率。大规模水力压裂也可以引起天然和/或人工建筑物的(微)地震和损害。
在本文中使用的术语“岩石”,可以指较硬的自然形成的矿物、矿物的集合,或石化物质。岩石的集合通常被称为“岩层”。地球上各种类型的岩石已被确定,包括,例如,火成岩、变质岩、沉积岩等。岩石可以侵蚀或受质量损耗,成为接近或距离其原始位置许多英里的沉淀物和/或土壤。
在本文中使用的术语“沉积物”可以指由自然力侵蚀的颗粒材料,但尚未到成为“土壤”的程度。沉积物可能在地壳上或在地壳内找到。沉积物的集合通常被称为“沉积物层”。虽然沉积物通常是松散的,但是“部分固结的沉积物”往往简称为“沉积物”,因此被视为被包括在沉积物的定义范围内。
在本文中使用的术语“土壤”,可以指含有生物活性的多孔介质的颗粒材料。土壤出现在(或作为)地壳的最上层部分,并通过固体材料,如固结的岩石、沉积物、冰碛物火山灰和有机物质的风化演变而来。虽然经常与术语“泥土”互换使用,但是泥土在技术上是无生物活性的。
在本文中使用的术语“流体”可以指液体、气体或其组合,或存在在临界点以上的流体,例如,超临界流体。流体能够流动、扩大和适应其物理环境的形状。流体可以包括原生流体、工作流体或其组合。流体的实例包括,例如,空气、水、盐水溶液(即盐水)、烃、二氧化碳、岩浆、稀有气体或其任意组合。
在本文中使用术语“原生流体”可以指在本发明的系统或方法实施之前流体驻留在岩层或沉积物层中。原生流体包括,但不限于,水、盐水、石油、天然气、烃(例如,甲烷、天然气、石油)及其组合。二氧化碳也可以是预先存在于岩层或沉积物层中的,从而构成本例中的原生流体。
在本文中使用的术语“工作流体”,可以指不是天然的岩层或沉积物层原生的流体,并且由于一些目的其被用于本发明的系统或方法中。工作流体可经历从气体到液体(能量源)、从液体到气体(制冷剂)的相变,或可以成为溶液的一部分(例如,通过溶解到原生流体)。在机器中或在封闭循环系统中的“工作流体”可以是致动机器的加压气体或液体。在常规的(例如,水基)热力发动机系统中使用水作为工作流体。非水基工作流体可以包括,但不限于,氨、二氧化硫、二氧化碳以及非卤化的烃如甲烷。工作流体可以包括在超临界状态下的流体。不同的工作流体可以有不同的热力学和流体动力特性,从而导致不同的功率转换效率。
在本文中使用的术语“孔隙”,可以指不被固体(岩石或矿物)占用的任何空隙。孔隙可以是在颗粒之间形成的空隙,或由断裂、断层、裂缝、管道、洞穴形成的空隙,或任何其它类型的非固体空隙形式。孔隙可以连接或不连接,并且由于固体体积或大小(其可以来自化学反应,变形等)的改变,它可以随着时间的推移而变化。空隙可填充有流体,并仍然被认为是“孔隙”。
在本文中使用的术语“CO2羽流”,可以指在地下孔隙内存在的大规模(例如,几米到几千米到几十公里的跨度)的CO2。在CO2羽流中,在孔隙中高百分比的流体可以是CO2。CO2羽流可包括可以在其行进通过油气藏的时候被CO2羽流收集并携带的其它流体,如原生甲烷或其它烃。例如,CO2羽流可以包括已从盐水含水层解吸(如在下面更详述)的相当高百分比(例如,多达20wt%)的甲烷。CO2羽流也可包括很大部分的天然烃(例如,多达90wt%以上的烃),并且仍然可以被认为是在本发明的含义范围内的“CO2羽流”。CO2羽流可以含有很大部分(例如,高达70v/v%或更多的)原生流体,如从油气藏中提取的盐水溶液或碳氢化合物。盐水溶液或其它原生流体可以是静止的或仅最低限度地移动的,因此,在本领域中一般认为是被剩余捕获的。
在本文中使用的术语“油气藏”或“存储岩层”或“存储沉积物层”,可以指包含一个或多个岩石、泥沙和土壤的地层,其可以能够基本上“永远”(如该术语为在地质领域中所理解的)接收和存储的一定量流体。
在本文中使用的术语“地热流量”,可以指在地下的任何种类的热传递,并且可以包括一个或多个热传递、对流热传递(也称为对流换热)和辐射热传递(虽然在地下辐射热传递通常可以忽略不计)。“低的”热流通常可以被认为是低于约50毫瓦/平方米。“中等的”热流通常可以被认为是至少约50至约80毫瓦/平方米。“高的”热流通常可以被认为是大于80毫瓦/平方米。
如本文中使用的术语“注入井”,可以指井或井眼,其可以为加盖的(例如,有内衬的)或不加盖的,并且其可以包含一个或多个管道,通过其流体可以以释放出流体到地下某一深度为目的流动(通常方向是向下)。
如本文中使用的术语“生产井”,可以指井或井眼,其可以为加盖的(例如,有内衬的)或不加盖的,并且其可以包含一个或多个管道,通过其流体可以以将流体从地下输送至地表或接近地表为目的的流动(通常方向是向上)。生产井可以在同一钻孔作为注入井存在。
如本文中使用的术语“增强型地热系统”(EGS),可以指通常通过地下的大规模水力压裂在其中创建了人工(例如,人造)油气藏的系统,如通过引入裂缝来创造可容纳显著量的流体的空隙。这样的人工油气藏通常可以比天然油气藏要小得多。
如本文中使用的术语“增强型石油采收”(EOR)(也被称为“改善的石油回收”,“三次采油”或“四次采油”),可以指从油气藏中回收烃(包括但不限于,液体烃如原油以及在大气压力和温度下是气态的烃如天然气)的系统或方法。EOR可包括将流体(如二氧化碳)或其它组分注入到油气藏中,以提高烃的提取,如通过至少降低流体粘度、减少烃的表面张力或增加油气藏的压力中的至少一种,以更方便地将其从油气藏中去除。
如本文中使用的“常规的水基地热系统”,可以指使用水作为工作流体的地热系统。常规的水基地热方法可以在原生油气藏系统或水力压裂的(例如,EGS)系统中使用。
如本文中使用的术语“常规的CO2基EGS”,可以指使用二氧化碳作为工作流体的常规EGS系统。
如本文中使用的术语“废热”,可以指通常允许消散到环境中而不是在系统或方法内被用于某些其它目的、通过系统或单元操作产生的热能。
增强型CPG系统
图1示出了用于从油气藏1回收地热能的实例系统10。油气藏1可以包括原生流体2。原生流体2可以包括含有甲烷(CH4)4的溶液。在实例中,原生流体2可以包含在作为盐水含水层的油气藏1中的盐水溶液。甲烷4可以溶解于在低浓度的盐水溶液中。在另一个实例中,原生流体2可以是天然的烃,如在油田中的那些。工作流体12可以通过注入井14注入油气藏1。注入井14可以包括与油气藏1流体连通的注入井开口16,以允许工作流体12进入油气藏1。
在实例中,工作流体12是非水基工作流体12,如二氧化碳(CO2)。为简便起见,在本公开其余部分将工作流体12描述为CO2工作流体12。然而,如上所述,工作流体12可以包括能够从其周围吸收热能并如本文所述进一步释放热能的其它合适的化合物。非水基工作流体12的其它实例可以包括但不限于,氨、二氧化硫或非卤化的烃如甲烷。
CO2工作流体12可以由CO2源18提供,诸如来自如通过燃烧产生CO2的工厂的废气流。可以作为CO2源18的设施的实例,可以包括发电厂,如化石燃料发电厂(如煤电厂、天然气厂等),能够产生燃料如生物燃料的工厂(如乙醇工厂),或工业工厂,比如为水泥制造厂、钢铁制造厂等。该CO2源18也可以是由地质层产生的天然地质的CO2。在实例中,CO2可以从远程CO2源18经由任何适当的方法(例如,管道或通过各种运输方式,例如卡车、船或铁路)运输。在另一实例中,提供CO2源18的设施可以与地热回收系统10共址,诸如共址的发电厂、生物燃料工厂或工业工厂。如下面更详述的,共址的设施可以提供协同作用以允许对共址设施和地热能回收的更有效操作。
在实例中,系统10可以位于配置为提供通向靶层的通道的位点(例如,在某个位置)。靶层可以包括位于油气藏1上方的盖层8,如图1中所示。油气藏1可以具有高于工作流体温度的自然温度。自然温度可以通过位于油气藏或接近油气藏内的地质层的原位地热引起。油气藏1的自然温度可以受到地热6流动的影响,如地热6从下向上流动。
顶层9可位于盖层8和油气藏1之上。顶层9可以包括任何数目的层和任意类型的天然沉积物或地层。例如,顶层9可以包括一个或多个特征,例如具有如本文所述特性的一个或多个油气藏(例如,油气藏1或不同的油气藏)或一个或多个盖层(例如,盖层8)。顶层9可以另外地或替代地包括适于注入工作流体(例如,CO2工作流体12)的其它区域。在实例中,顶层9可以另外地或替代地进一步包括任何类型的岩石,包括在层、岩石或沉积物层中的岩石或沉积物等,或者其任意组合。顶层9可以另外地或替代地包括不同深度的顶层或多层沉淀物或土壤。顶层9的渗透率和孔隙率可以有很宽的变化范围,只要可以进行钻孔以插入注入井14和生产井28,如下所述。
顶层9可以包括各种地质特征,包括但不限于,土壤、砂、泥土、沉积物等,或其组合。顶层9还可以具有很宽的深度(例如,“厚度”)范围,足以确保引入到油气藏1中的工作流体可以保持在所期望的状态,如超临界状态。在实例中,顶层9的深度至少为100米(m)或更多,并且可多达一(1)公里(km)或更多,如多达三(3)km、四(4)km、五(5)km,例如多达10km或超过15km,包括其间的任何范围,在地表以下(例如,低于或在区域中的给定地形中,其可以是或可以不是暴露于大气中的)。然而,在多数实例中,预期靶层将位于地表以下约800米至约四(4)km之间。
根据当地的地质(例如,具体岩石类型、地热流量、次表层温度),工作流体的获取(如二氧化碳来自燃烧化石燃料的发电厂、乙醇工厂),钻孔和操作成本,以及社会政治情况(例如,消费者的位置、建筑物、电网的位置等),选择油气藏深处时可以考虑的因素也可有所不同。
靶层,其可以包括油气藏1、盖层8和顶层9,可以由各种岩石类型构成,包括但不限于,火成岩、变质岩、石灰石、沉积岩、结晶岩及其组合。在实例中,靶层为具有基本为碗形或凸形形状的沉积盆地。在其它实例中,靶层可以具有其它形状,如大致拱顶或凹状,尽管本公开不限于附图中描述或示出的形状。在一些实例中,靶层低于最低的淡水含水层,但可能不总是这种情况。靶层可以包括包含原生流体2的盐水溶液含水层或水含水层或者充盐水溶液岩层或充水岩层(例如,油气藏1)。可以抑制或防止原生流体2向上逸出,例如由于盖层8的存在。靶层也可包括可以使靶层或一部分靶层偏移的断层,从而形成如该术语在本领域所理解的地质陷阱。在实例中,靶层是含有天然气、石油、天然CO2、淡水或盐水中一个或多个的油气藏。
在实例中,CO2,如图1中所示的CO2工作流体12,用作工作流体并入位于至少约0.1km至约5km深的油气藏1。这样的组合可以使工作流体的向上泄漏最小化,因为另外的盖层8可存在于油气藏1和地表之间。此外,可以在这样的深度遇到更高的原生油气藏温度(例如,大于约70℃)和更高的压力(例如,大于约8MPa)。更大的深度也可以增加溶解的盐及其它矿物质的在原生流体中存在的可能性,这可以降低该原生流体还可用于饮用和灌溉应用的可能性。
如果存在,盖层(如在图1中所示的盖层8)可以是具有非常低渗透率的地质特征,例如,低于约10-16m2。这样低的渗透率可以允许盖层8主要用于在以下油气藏1中含有的流体的屏障。渗透率也可以是(部分地)依赖于盖层8的深度(例如,厚度)以及盖层8和油气藏1上方顶层9的深度。盖层8的孔隙率可以在很宽的范围内变化。如本领域已知的,即使岩石是高度多孔的,如果岩石内孔隙无互相连接,在封闭孤立的孔隙内的流体不能移动。因此,只要盖层8展示足够低的渗透率,以允许其防止或抑制在油气藏1中流体的流体泄漏,那么在盖层8的孔隙率不受限定。
盖层8的厚度可变化,但通常基本上比顶层9的厚度更小。在实例中,顶层9的厚度是盖层8厚度的10倍、或10-100倍、高达1000倍的量级,还包括其间的任何范围,虽然本发明的系统和方法并不限于此。在实例中,盖层8的厚度可从约一(1)cm到约1000m或更厚,例如在约五(5)cm和1000m之间,例如在约一(1)cm至约100m之间变化。盖层8可包括一个以上的盖层,使得多个盖层可以部分地或完全覆盖彼此而存在,并可以共同作为盖层8,以防止或减少工作流体从油气藏1向上泄漏。
油气藏1可以是能够容纳流体的一种或多种天然的地下岩油气藏。例如,油气藏1可以是以前创建的人造油气藏或先前创建的人造油气藏的一部分,例如,为脱除烃而进行的页岩压裂所余下的页岩地层。油气藏1也可以是能够在永久或基本上永久基础上存储二氧化碳,如本领域所理解的该术语。在一些实例中,油气藏1是足够多孔的和可渗透的,以便能够隔离流体,如二氧化碳,以及接收和保持地热6。与常规的地热系统相反,诸如使用水基工作流体的增强型地热系统,不要求油气藏1是干热岩油气藏,如本领域所理解的该术语,但是如本文所述,这样的油气藏是可以任选地使用的。
油气藏1可以有足够的渗透率以允许多方向路线用于流体以相对高的速率分散或流动,包括侧向分散或流动。油气藏1上方的盖层8,如果存在的话,可以进一步提高油气藏1的分散能力。在实例中,油气藏1的孔隙率的范围可以从约二(2)%至约50%或更高,例如高达约60%。
油气藏1可以有足够的渗透率以使流体相对容易的流动,例如,以约0.1至约50升/分钟(L/min)或更高的速率,例如高达几千L/min。在实例中,油气藏1具有约10-16m2至约10-9m2或更大,例如高达约10-6m2的渗透率。
在实例中,油气藏1具有至少约二(2)%的孔隙率和至少约10-15m2的渗透率,其中盖层8的渗透率为约10-16m2
油气藏1可具有任何合适的天然温度。在实例中,油气藏1的自然温度为至少约40℃,虽然自然温度低于40℃可以是足够的,比如低至30℃或20℃以下,还包括低至10℃,包括其间的任何范围。从具有天然温度低至10℃的油气藏1经济地回收地热能的能力,如下所述,说明了本公开的甲烷增强型地热回收系统比单独使用二氧化碳热回收的系统(如上述的CPG系统)的显着优点。自然温度大于90℃也可以存在,其中最高温度仅受限于所提供地热6的量和油气藏1捕获和保留地热6的能力。例如,可能的是高于约300℃的温度可存在于油气藏1中。
具体期望的自然温度可以通过改变注入井14或生产井28或二者的深度来获得。在实例中,较高的自然温度可以通过增加注入井14的深度而获得,其中增加或不增加生产井28的深度。油气藏1的总尺寸也可以变化。
地热6可以以任何合适的速率流动,包括以如存在于“高地热流动区域”中的高速率流动,如本领域所理解的该术语。已知常规的水基系统在大多数情况下需要高地热流量。结果是,相对于使用水作为工作流体传统系统,本文描述的系统可以在更大范围内的位置(包括低和中等地热流动区域)进行操作。本公开的甲烷增强型和废热增强型系统也可以比仅仅使用CO2工作流体来回收热能在更宽范围内操作,包括在比仅CO2地热的系统更低的热流速。还与常规的水基系统相反,其可在几乎不含天然水(例如,美国西南部)的区域进行操作,因此要求输入水,本文所描述的新颖的系统不依赖于水作为工作流体,并且因此不导入水作为工作流体。但是应当理解,也可以使用具有中等或低的地热流速的区域。
在一些实例中,来自CO2源18的CO2的工作流体可以在压缩机20中被压缩至升高的压力。在实例中,被压缩的CO2可以在冷却单元22中进行冷却,因为在注入注入井14之前冷却CO2工作流体12通过提高二氧化碳的注入性可以是有利的。大多数流体,包括CO2,在它们冷却时比在它们温暖时更致密,从而在注入井14中相对冷体积的CO2与相对热体积的CO2相比可以压缩本身。因此,在表层处相对冷的和相对低压的CO2工作流体12,可以在注入井14的底部具有与以相对较热和相对高压的CO2工作流体12供给至注入井14的相同的压力。在CO2工作流体12进入注入井14之前或在注入井14内时,冷却单元22的下游可以任选地包括泵(未示出)。
虽然在一些实例中来自CO2源18的CO2可以“按原样”使用,然而在其它实例中,来自CO2源18的CO2的进一步处理可以在将CO2引入压缩机20、冷却部22或注入井14之前进行。例如,某些废物流可能需要脱水或干燥,或两者兼而有之。在实例中,来自CO2源18的CO2可以储藏在现场或场外一段时间。在实例中,从冷却单元22输入至注入井14作为CO2工作流体12的冷CO2是饱和的液态或超临界CO2
如图1所示,工作流体12可以CO2羽流24的形式穿过油气藏1。CO2工作流体12可以使在油气藏1内甲烷4的至少一部分从原生流体2的溶液中逸出,其中甲烷4可以随CO2羽流24一起被载出。CO2羽流24中的CO2工作流体12以及甲烷4可以形成生产流体26,其可以通过一个或多个生产井28中每一个的生产井开口30。每个生产井28可以携带生产流体26至或接近能量回收系统32中的能量回收表面。在一些实例中,生产流体26可以通过在表面处或在表面附近的过滤器系统输送,以减少或防止颗粒物质进入任何表面的系统组件,例如在能量回收系统32内的那些。
如上所述,在实例中,原生流体2可包括诸如可以存在于深盐水含水层1中的盐水溶液。在实例中,盐水含水层1可以邻近于油气田(hydrocarbonfield)而存在,使得甲烷的一部分和其它气态烃,如乙烷和丙烷,可以溶解入在含水层1内的盐水溶液2。虽然许多烷烃化合物可以溶解于盐水溶液中,但是与高阶烷烃(如乙烷、丙烷、丁烷等)相比,甲烷具有最高的溶解度。因此,虽然其它烷烃可以被溶解到盐水溶液2中,但是本公开将描述本文中的系统和方法考虑了溶解的甲烷。在实例中,溶解在盐水2中的甲烷组合物可以是从约0.1wt%至约5wt%的甲烷。甲烷的这种低百分比通常会使甲烷其本身对于开采来说不经济。例如,提取溶解于盐水含水层中的稀甲烷的费用,通常通过泵送盐水到地表并提取甲烷而产生。泵送盐水到地表所需的能量会花费得比所提取的甲烷的实际价值多很多。
已知二氧化碳在盐水中的溶解度比甲烷和其它烷烃更高,使得当CO2工作流体12被注入含水层1中时,CO2将优先溶解到甲烷的盐水溶液2中,并且驱使至少一部分的甲烷4从溶液中逸出。甲烷4的溶解可以在前进的CO2羽流24的前面产生甲烷浓度相对高的区域。图5(在下面更详述)示出了在CO2羽流2前面具有高浓度的甲烷4的区域34的层的实例。CO2羽流24可以驱使高浓度区域34,其也可以含有相当大百分比的盐水或其它原生流体2,通过油气藏1并进入一个或多个生产井28。此外,已经随盐水溶液2从溶液中逸出的一部分甲烷4,能溶解到CO2相中以形成由CO2羽流24推动或与CO2羽流24结合的CO2/甲烷溶液羽流。如上所述,已经从溶液中逸出的甲烷4与CO2羽流24的组合,在本文中称为“生产流体26”,不论二氧化碳和甲烷是否形成分离的羽流、气体混合物或甲烷和CO2的气体溶液。如下面更详述的,在一些实例中,高浓度的甲烷区域34也可以与CO2羽流24分开生产,例如通过形成各自单独的生产井28A、28B。
当生产流体26移动通过油气藏2时,它可以被其中存在的或提供给油气藏120的地热6加热。地热6可以提高生产流体26的一种或多种组分的温度,提高生产流体26的一种或多种组分的压力,或二者。例如,地热6可以在该生产流体26中提高CO2工作流体12、所释放甲烷4或两者的温度,提高CO2工作流体12、所释放甲烷4或两者的压力,或者提高二氧化碳的工作流体12、或释放甲烷4或两者中的压力和温度。例如,在其进入生产井开口30时,生产流体26的温度可以比在其离开注入井开口16时CO2工作流体12的温度高。
当其在注入井油气藏开口16处释放时,相对冷的CO2工作流体12可以渗透过油气藏1形成CO2羽流24。一旦暴露于存在于油气藏1的温度下(这是比冷的CO2工作流体12的温度高),冷CO2工作流体12从油气藏1吸收热量,因此导致CO2羽流24的向上迁移,在实例中,由于在油气藏1内的非零地下水流速其可以横向推进。在实例中,由于CO2羽流24的扩散,如补充的CO2离开生产井28,横向迁移另外地或可替代地发生。在实例中,CO2工作流体12,以CO2羽流24或生产流体26的形式,可以形成从注入井开口16至生产井开口30的连续或基本上连续的连接流。
CO2羽流24可以迁移,可被运送(如在本文中所描述的封闭循环系统),或可以流动或扩散至生产井28,进入生产井油气藏开口30作为相对较热的生产流体26,例如,具有比在注入井开口16处的冷CO2工作流体12更高温度的流体。CO2羽流24可以以任何合适的速率在基本水平的方式横跨油气藏1移动。在实例中,CO2羽流24的移动速率开放性地包括可以为约0.1至约一(1)米/天,例如约0.4至约0.6米/天,但是本公开的系统和方法并不限于此。
在另一实例中,油气藏1可包括油气田,诸如油气藏是油田或天然气田的一部分。石油或天然气油气藏1可以通过常规烃采收方法部分耗尽。在这种情况下,如果CO2工作流体可以通过增强型石油采收(EOR)来协助油或烃采收。EOR系统可设置为类似于以上描述的用于盐水溶液盐水含水层的系统,例如其中CO2源18提供CO2的工作流体,可以使用压缩机20以及(在一些实例中)冷却单元22将其注入到油气藏1中。因此,图1还将被用于描述EOR系统。
在EOR型系统中,甲烷4和其它烃气体可以是在原生流体2内的溶液中,如通过溶解或在原生流体2与其它烃络合,或者甲烷4可以物理地存储在油气藏1中,如形成油气藏1的岩层孔内的原生流体2。原生流体2还包括待回收的至少一种烃,如石油、天然气或两者兼而有之。CO2工作流体12可通过一个或多个注入井14被注入并进入油气藏1中,其中CO2工作流体12可与原生流体2相互作用,并且尤其可以与原生流体2的至少一种烃相互作用,以形成至少一种生产流体26。CO2工作流体12与原生流体2之间的相互作用可以提高所得到的生产流体26中烃的流动性,从而改善来自油气藏2的烃的提取。生产流体26可以被推向一个或多个生产井28,在那里其可在地表或接近地表处被返回。
在实例中,除了二氧化碳或其它非水基工作流体12之外,水或其它流体可被注入油气藏中。例如,可以使用水气交替注入(“WAG”)法,其中CO2工作流体12和含水工作流体交替注入,其中CO2工作流体12用于提高烃的流动性,而含水工作流体推动CO2和烃生产流体26朝向一个或多个生产井开口30,并且向上至一个或多个生产井28。对EOR和WAG的进一步描述包括在国家能源技术实验室(NETL)的“CarbonDioxideEnhancedOilRecovery”(可从以下网址获得http://www.netl.doe.gov/technologies/oil-gas/publications/EP/small_CO2_eor_primer.pdf)(2010,3月),在此通过引入将其全部内容并入本文。
在EOR型方法的情况下,生产流体26可以包括至少一部分的CO2工作流体12,以及一部分的烃(其已成为原生流体2的一部分)。生产流体26也可以包括可以存在于油气藏1中的其它原生流体如盐水溶液,以及其它注入的流体如含水工作流体。在实例中,生产流体26可以开放性地包括约0.01wt%至约99wt%的非水基工作流体(例如,CO2),例如约33wt%至约50wt%的非水基工作流体。生产流体26可以开放性地包括约1wt%至95wt%的烃含量,例如约25wt%至约50wt%的烃。生产流体26可以包括其它流体组合物,诸如约1wt%至约95wt%的盐水或注入的含水工作流体,例如约25wt%至约50wt%的其它原生流体或其它注入的流体。
根据在油气藏1中的原生流体的组成以及特定EOR操作的具体步骤,生产流体26可以开放性地具有来自工作流体的“高”百分比的CO2,例如,约66wt%至约99wt%的CO2,来自工作流体的“低”百分比的CO2,例如,1wt%至约33wt%的CO2,或其间任何范围的二氧化碳含量,例如“中等”百分比之间的CO2工作流体,在约33wt%和约66wt%的CO2。在一些实例中,二氧化碳在生产流体中的百分比可以是非常低的,如1wt%至9wt%,例如2wt%至5wt%。
在CO2工作流体12的情况下,二氧化碳可以与烃部分地或完全地混溶,以使CO2工作流体12与烃形成均匀或基本上均匀的二氧化碳和烃的溶液。可替代地,CO2工作流体12可以是完全或基本上不混溶,以使CO2仅部分溶解,或基本上不溶解在烃中,使得在生产流体141中的CO2和烃被制成单独的不混溶或基本上不混溶的流体。CO2可以与烃混合,并能提供以下中至少一个:降低的烃粘度、降低的烃地表张力、增加的烃流动性,或油气藏1中增加的流体压力,以使烃可以更容易地与油气藏1的岩层分离,或更容易被推动朝向生产井开口30,或两者兼而有之。
生产流体26可以例如通过或结合CO2羽流24而携带通过油气藏2。生产流体26也可以形成为流动的烃和CO2的区域,其可以是类似于羽流,但不一定是。在实例中,当使用含水工作流体时,如在WAG方法(如上所述)中,一个或多个生产流体26可以包括迁移的烃与CO2的交替区域以及含水工作流体的区域。当生产流体26移动通过油气藏2时,它可以被存在于或提供给油气藏1的地热6加热。地热6可以提高生产流体26的一种或多种组分的温度,提高生产流体26的一个或多个组分的压力,或二者兼而有之。例如,地热6可以提高CO2工作流体12、从原生流体2释放的甲烷4、或原生流体2释放的其它烃中的至少一种的温度,提高CO2工作流体12、从原生流体2释放的甲烷4、或原生流体2释放的其它烃中的至少一种的压力,或者提高CO2工作流体12、从原生流体2释放的甲烷4、或原生流体2释放的其它烃中的至少一种的温度和压力。例如当其进入生产井开口30时,生产流体26的温度可以比当其离开注入井开口16时CO2工作流体12的温度更高。
进入盐水工作流体2的CO2工作流体12的至少一部分的溶解,可以提供CO2隔离,例如用于存储已在发电厂、生物燃料工厂或工业工厂中产生的CO2以减少CO2在大气中的排放。类似地,当在EOR中使用CO2工作流体12时,CO2工作流体12的一部分可以被隔离在油气藏或油气藏1中。
原生流体2是否包括具有溶解的甲烷的流体(如盐水)或烃流体(例如在EOR田中的石油或天然气),生产流体26可以通过一个或多个生产井28被带到地表,使得能量可以通过能量回收系统32回收。在实例中,如图中1中所示,能量回收系统32可包括膨胀装置36。膨胀装置36可以提供轴功率38至发电机40,这反过来又可以产生电42。由于图1中的膨胀装置36是直接由地热6加热的生产流体26驱动的,所以图1中的系统可以被称为直接膨胀装置系统,或更常见的成为直接涡轮机系统。
系统10可以包括在地表处的泵或压缩机(未示出),例如,基本上紧邻生产井28下游,以及能量回收系统32的上游,以便提高生产流体26的压力。当生产流体26通过膨胀装置36运行时,来自该泵或压缩机的所增加的压力可以允许生产流体26有效且高效地产生动力。在此位置处的泵或压缩机,例如能量回收系统26的上游,对于包括具有在原生流体2中的天然CO2的盐水含水层的油气藏1,可以是特别有效的,因为可以在过低而无法经济有效地从膨胀装置36和发电机40产生电42的压力下产生生产流体26。从该泵或压缩机流出的废热可以被采收,如下面更详述的,用于补充电力生产。可替代地,在将CO2作为工作流体12的一部分回注入油气藏1之前,可以在注入井14的基本上正上游处添加泵或压缩机到系统中。
膨胀装置36可以包含任何本领域已知的合适类型的膨胀装置36,例如涡轮,但是本公开并不受此限制。与在高体积流速下产生低压蒸汽的常规水基地热系统相反,在本文描述的更高压力CO2地热能系统和方法中使用常规涡轮机,是选项,而不是要求。
在实例中,膨胀装置36包括一个或多个的活塞-气缸装置。膨胀装置36可以是设计为以发动机形式逆向运行一个或多个涡旋式、螺杆式或旋转式压缩机。膨胀装置36可以包括单一膨胀装置36,或多个膨胀装置36。多个膨胀装置36可以并行运行,其中一个或多个第一膨胀装置36直接运转泵或压缩机,以及一个或多个第二膨胀装置36生产电用于出售。发电机40可以是在本领域中已知的任何合适的发电机以产生电42。在实例中,生产流体26的组分可以主要或基本上包括所有较低密度的气体,从而膨胀装置36可以是直接涡轮机。当在相同的压力水平之间降低时,相比在液相中的更高密度的流体,相对低密度的气态或超临界流体可以提供相对较高的能量效率,从而以电的形式产生相对更多的能量。当在相同的入口和出口条件下操作时,通过直接涡轮机传递低密度流体如CO2和甲烷,通常可以比操作有机郎肯循环(OrganicRankingCycle)或其它二元系统提取热能产生更多的电,然后通过阀或涡轮机降低压力。
如上所述,在油气藏2中的原生流体2可以包括甲烷4,如在原生流体2内的甲烷4。如以上进一步描述的,在CO2工作流体12的注入能引起甲烷4的至少一部分随着原生流体2从溶液逸出并且被带至地表,其中CO2工作流体12作为生产流体26。本公开的系统和方法可以被配置为利用被开采到地表的甲烷4的优点,以便从油气藏1回收另一种形式的能量即存储在甲烷4中的化学能的一部分,以改善地热能回收效率。
如图1所示,系统10可以包括分离系统44,其可以被配置为从包含CO2和甲烷的生产流体中分离甲烷的一部分46。所分离的甲烷46可以燃烧,以增加生产流体26的温度、生产流体26的压力,或两者。在实例中,所分离的甲烷46的至少一部分可以被供给到加热器48,其可以加热该生产流体26,或者增加生产流体26的压力,或两者,以形成加热和/或加压的生产流体50。
在加热器48中燃烧后,将甲烷46转换成在废气流56中的CO2和水蒸汽。在实例中,在废气流56中的CO2的至少一部分可以由CO2捕获系统58捕获。在实例中,CO2捕获系统58可以包括吸收材料可以流动通过其的吸收器,如包含一种或多种胺的吸收溶液,以及可以从胺溶液中剥去CO2的再生器。从CO2捕获系统58的输出可以包括富二氧化碳CO2的气流60和排出气62(例如,水蒸汽和其它非吸收化合物)。如果需要,排出气62可以被进一步处理。CO2输出流60可以反馈回油气藏1,例如通过在压缩机压缩CO2输出流60,其可以是用于压缩来自CO2源18的CO2的相同压缩机20,如图1所示,或者它可以是不同的压缩机。
在另一个实例中,与其用加热器48加热生产流体26,可以将所分离的甲烷46在常规的燃气轮机或燃气发动机(未示出)中燃烧,以从涡轮机或发动机产生电。在燃气涡轮机或发动机中甲烷46的燃烧可以以热燃烧气体(例如,CO2和水蒸汽)和热发动机或涡轮机的冷却护套流体的形式产生大量废热。可以将废热添加到生产流体26,诸如经由热交换器。在某些情况下,这种配置可以导致更高的能量转换效率,然后直接在加热器48中加热该生产流体26。
在一些实例中,所分离的甲烷46的一部分可以从甲烷气流46中分离出来,并作为甲烷产品47存储或出售。然而在某些情况下,出售所分离甲烷46的一部分,而不是燃烧全部甲烷46以提高工作流体或生产流体的温度或压力,可能是低效的或不经济的。这样做的原因是因为所售出甲烷的最可能的终点是天然气发电厂,在那里其将被燃烧以产生电。如上所述,将所分离的甲烷46在加热器48中燃烧用于加热工作流体或生产流体,这相应地还可以通过能量回收系统32送去产生电42。然而,由于将甲烷47带至外部电厂的运输成本,所出售的甲烷47可能失去部分经济效率。在发电厂燃烧甲烷也可能比能量回收系统32的效率更低,因为电厂也不会结合地热能回收。此外,天然气发电厂通常采用蒸汽涡轮机,它可以比使用超临界CO2作为工作流体或CO2和甲烷作为生产流体的直接涡轮机效率低很多。此外,多数天然气发电厂不配备用于CO2捕获的装置,从而递送到这些发电厂的甲烷47将可能贡献了CO2排放。与此相反,本公开的能量回收系统32还可以配置有CO2捕获系统58,如上所述,以捕获由加热器48形成的任何CO2。因此,本公开的系统可以用于降低向大气中的二氧化碳排放。即使外部发电厂分别具有CO2捕获能力,本公开的系统和方法可以提供更有效的降低排放,因为CO2捕获系统和CO2的地质储藏可以与地热能回收系统共址,减少或省去了对减少或防止来自天然气发电厂的排放必要的运输系统。
加热器48可以放置在膨胀装置36的上游,如图1所示,从而在生产流体50被供给到膨胀装置36之前形成加热和/或加压的生产流体50。通过膨胀装置36后,加热和/或加压的生产流体50可以成为稍冷却的生产流体52。
在一些实例中,分离系统44可以使生产流体冷却或减压,以实现甲烷46的分离(在下面更详述)。因此,在实例中,甲烷分离系统44是在膨胀装置的下游36,使得冷却的生产流体52被供给到分离系统44中。在从生产流体52中分离甲烷46的过程中,通过在膨胀装置36的下游从生产流体52分离甲烷46,该系统可以防止或减少地热能的损失。
在实例中,甲烷分离系统44可以包括一个或多个膜,其被配置为选择性地允许生产流体52中的一种或多种组分通过该膜,同时防止或妨碍生产流体52内的一种或多种其它组分通过该膜。例如,该膜可以是在二氧化碳和甲烷之间选择性透过的,以使CO2可通过基本上无阻碍地通过膜,而甲烷46的一部分被阻止通过膜,或者反之亦然。在实例中,可以控制跨膜的压力差,从而可以控制可以从生产流体52中去除的甲烷百分比,以控制在所分离的甲烷流46中甲烷的量。
已经发现,即使只有一小部分的甲烷被从生产流体中分离,可以提供从能量回收系统32回收能量的显著增加。在实例中,生产流体含有约5wt%的甲烷,以及其中约10wt%至约30wt%的甲烷可以分离并燃烧,这可以用于使产生的电42与可从由单独生产流体收集的热能产生的电相比增加约75%至1000%以上。此外,仅从生产流体中分离一小部分甲烷能确保在被回注入油气藏1(在下面更详述)之前大量甲烷仍然存在于生产流体中。在回注入生产流体中存在的甲烷可以确保在待随着时间提取的油气藏中存在甲烷,使得通常总是有一部分的甲烷可以随着生产流体26被带到地表。
使用所分离的甲烷46可以允许经济上可行地从油气藏回收地热能,所述油气藏具有比简单地通过生产流体26提取地热更低的温度。例如,使用CO2羽流24来收集地热能,而没有燃烧所产生的甲烷或任何其它热回收的方法(如下面所述),回收来自油气藏的地热能可能仅在温度降至约30℃至约50℃,且在大多数情况下仅在降至约60℃时是经济效率的。然而,当使用甲烷分离系统44和甲烷燃烧加热器48的时候,经济上可行的地热能回收可以在油气藏温度降至约10℃至约25℃下获得,这取决于可以从油气藏1中产生的甲烷的百分比、油气藏深度和温度以及在本地环境温度。
如上所述,本公开的系统10可以用于地热能捕获,如本文所述,并且也可用于在油气藏1中的岩层或原生流体2内隔离CO2。因此,在一些实例中,CO2工作流体12的至少一部分可以永久或半永久地存储在油气藏1内,使得可以为了系统的连续操作而需要CO2的替换供给。来自废气流56中的CO2输出流60的捕获可以提供所需的补足CO2的相当大的部分。在实例中,来自CO2捕获系统58的CO2输出流60可提供所有或基本上所有所需的CO2,以弥补油气藏1中隔离的CO2。图2-4示出了可用于从生产流体26回收能量的目的的间接能量回收系统的实例。图2-4中的每一个显示了生产流体26通过热交换器62,以便加热次级工作流体64。次级工作流体64可以通过一个或多个的能量转换装置被输送。图2-4中的系统之所以常被称为“二元系统”,是因为它们使用两种工作流体,而不是一种。
图2示出了实例能量回收系统66,其中来自次级工作流体64的一部分能量被抽出作为热68。热68可以在任何合适的直接用途中应用,例如空隙加热。次级工作流体64可以然后通过膨胀装置70输送,以产生可被提供给压缩机20的轴功率72,用于压缩来自CO2源18或CO2输出流60,或二者的CO2。在通过膨胀装置70后,补充的热量68可以被提取用于直接利用热的应用。可以在输送次级工作流体64返回到热交换器62之前,在次级冷却装置74中冷却次级工作流体64,以完成的次级工作流体64循环。
图3示出能量回收系统78的另一实例,其中热能80,例如,对于直接使用的应用,以及电82可从次级工作流体64中生成。图3中的实例,工作流体64可以通过膨胀装置84,与图2中的膨胀装置70类似。来自膨胀装置84的轴功率86A的至少第一部分用于驱动发电机88以产生电82。膨胀装置84的轴功率86B的第二部分可被用于辅助驱动压缩机20。
图4示出了能量回收系统92的另一个实例,其中在次级工作流体64中的一部分能量可以以类似于以上描述的参考图3的方法回收为电90,来自次级工作流体64的另一部分能量可以作为热提供给具有本领域理解组件的单独的动力循环94,如郎肯(Rankine)动力循环,有机郎肯循环(OrganicRankineCycle,ORC),或卡林娜循环(KalinaCycle)。考虑到单独的动力循环94,热加成期间可以是超临界或次临界,冷凝压力可以是亚临界和最高压力。
图2-4中的二元系统66、78、92中的每一个,可以提供对生产流体26中一部分甲烷的分离和燃烧,以补充来自油气藏1的能量回收。例如,在图2中,当生产流体26通过热交换器64之后,生产流体可以通过可与上述图1中所述的甲烷分离系统44类似的甲烷分离系统96。甲烷分离系统96可以分离生产流体中甲烷的一部分98,其可以被提供给燃烧加热器100。在实例中,燃烧加热器100可以被配置为在次级工作流体64进入膨胀装置70之前,加热循环次级工作流体64。在图2中所示的实例中,在用甲烷燃烧加热器100加热该次级工作流体64之后,并且将该次级工作流体64通过膨胀装置70之后,热量68已从该次级工作流体64中排出。然而,该系统并不限于此,在用甲烷燃烧加热器100加热该次级工作流体64之前,以及将该次级工作流体64通过膨胀装置70之前,热量68可以从该次级工作流体64中排出。
在图3的实例中,从分离系统96中分离的甲烷98可以被供给到被配置为在生产流体26被送入热交换器62之前将其加热的加热器102。图4示出了实例,用来自甲烷分离系统96的已燃烧的甲烷98加热在热交换器62之前的生产流体26和在膨胀装置84之前的次级工作流体64。在图4所示的实例中,所分离的甲烷的第一部分98A被供给至第一燃烧加热器104以加热生产流体26,并且所分离的甲烷的第二部分98B被供给至第二燃烧加热器106以加热次级工作流体64。在另一个实例中(未示出),生产流体26和次级工作流体64可以用单个通用的燃烧加热器进行加热。
正如图1中的加热器48,来自加热器100、102、104和106中每个的废气可以通过CO2捕获系统输送,以捕获来自甲烷98的燃烧的CO2,以将所分离的CO2注入油气藏1。在图2-4中未示出CO2的捕获和再循环至压缩机,但在本领域的普通技术人员应理解可以实现CO2捕获系统。
甲烷分离系统44、96可以分离甲烷流46、98,如上所述,并且可以留下可以包含CO2和甲烷的最终生产流体108。最终生产流体108还可以包含其它化合物,例如来自EOR油气藏的石油和天然气的化合物,或者来自盐水含水层的夹带的盐水溶液,其可从最终生产流体108进一步分离并作为单独的产品出售,或者其它化合物可以回注入油气藏1或到另一个油气藏。在实例中,可以需要最终生产流体108的进一步冷却,使得最终生产流体108通过冷却单元如冷却塔输送,以在将生产流体回注入油气藏之前将生产流体进一步冷却。在实例中,最终生产流体108可以用能够冷却来自压缩机20的压缩CO2的同一冷却单元22进行冷却。图2-4中的系统可包括泵(未示出),其可以任选地包括在冷却单元22的下游,在CO2工作流体12进入注入井14或在注入井14内之前。
可替代地,其它化合物,如石油和天然气的化合物或盐水溶液,在其从生产井28生产之后,并在能量回收系统32、66、78、92之前,可以从生产流体26分离。在这种情况下,生产流体26可以被分离为各种组分流,如CO2和甲烷流、烃流和盐水流。组分流的每个将包括从油气藏1提取的地热热量。因此,热能可从各流中用单独的能量回收系统提取,例如参照图1如上所述的膨胀装置和发电机,或如参照图2-4如上所述的二元系统中。因此各流中所采用的能量回收系统可以针对该流的具体特性。例如,对于CO2和甲烷流,直接涡轮机系统可以是合适的,因为对于低密度超临界或气态工作流体它通常是最有效的。相反,对于烃流或盐水流,二元系统可能更合适且有效的。因此,在生产流体26包括多种待分离的化合物的情况下,能量回收系统可设计为针对各具体流是最经济有效的。
可以是生产流体26中两个主要组分的CO2和甲烷的物理和热力学性质,可以允许待回注入油气藏1的最终生产流体108可以经由注入井14而不需要注入泵来注入。换句话说,系统10可以被配置为使得CO2工作流体12/生产流体26、108可以形成热虹吸管,因为它循环通过油气藏1,通过生产井28至地表,通过能量回收系统32、66、78、92,并返回到注入井14。
在CO2和甲烷的情况下,热虹吸管可以形成是因为其在油气藏1中被加热的气体膨胀性质。在实例中,相对冷的和压缩的CO2工作流体12(其可以包括在回注的最终生产流体108内的甲烷)被注入注入井14,形成冷流体的长柱。随着进入井中的深度增加,在注入井内的特定位点处的流体变得越来越压缩,直至CO2工作流体成为重质致密流体从注入井开口16离开注入井14。如上所述,CO2工作流体12的至少一部分可以形成CO2羽流24(其可以包括来自原生流体2的回注的甲烷、未溶解的甲烷4以及其它化合物)。CO2羽流24可以形成注入井开口16和生产井开口30之间的连接。当CO2羽流24移动通过存油气藏1时,其可以被油气藏1内部或流入油气藏1的地热6加热。当被加热时CO2和甲烷基本上以如下量级膨胀,例如,对于CO2每100℃膨胀100%,以及对于甲烷约每50℃膨胀20%。
当其从注入井14向生产井28移动通过所述油气藏1时,油气藏1中对于膨胀来说有限的空隙可能导致CO2羽流24变得越来越压缩。当CO2、甲烷和其它流体移动通过油气藏时,这个效果可以部分抵消由于达西渗流(Darcyflow)引起的压力损失。因此一旦CO2羽流24作为生产流体26到达生产井开口30,其相对于在注入井开口16处的CO2工作流体12是相对较热的,并且其在注入井开口16和生产井开口30之间具有的压力损失在相同油气藏中比使用其它工作流体(诸如水或盐水)所预期的更小。作为生产流体26沿生产井28向上移动,其膨胀或变得密度更小(例如,因为,当其沿着生产井28向上移动时,在生产流体26顶部的气体越来越少),但仍然是相对较高的温度和较高的压力。在实例中,相比当CO2工作流体12沿注入井14向下移动时的压缩,当生产流体26沿着生产井28向上移动时其膨胀更少。
注入井14、生产井28和能量回收系统32、66、78、92的各个组成部分,可以被配置为使得热虹吸管可在生产井28和注入孔14之间形成,使得最终生产流体108可以被回注入注入井14,而无需使用单独的泵(如示于图1,其中最终生产流体108可以在冷却单元22之后立即回注入注入井14,而不需要使用压缩机20)。在一些实例中,可以进行调整以提供热虹吸管系统的参数,可以包括井14、28的尺寸或直径,其可以决定CO2工作流体12与生产流体26通过注入井14和生产井28的摩擦损失,以及通过生产流体26流过的整个设备的压降,特别是在直接涡轮机系统中的膨胀装置32或在二元系统中的热交换器62。
热虹吸管或类热虹吸管系统,如上所述,可以提供相比使用其它工作流体的系统的效率优势。例如,CO2和/或甲烷热虹吸管的形成可以减少或最小化寄生功率损失,如那些可以由于流体注入或生产泵导致的。从泵或压缩机损失的寄生功率可以占使用其它工作流体的地热系统(例如水基地热回收系统)所产生总功率的多达30%或更多。对于CO2工作流体12以及可以包括在生产流体26中的甲烷,相比其它工作流体,提供热虹吸的能力可以是特别优点,实际上特别是在其中不可能形成热虹吸管的水基地热系统。
在基本上紧邻生产井28下游存在的泵或压缩机,如上所述,不妨碍系统的热虹吸管或类热虹吸管操作的功能。相反,泵或压缩机可以仅提高了能量回收系统32、66、78、92的电力生产效率。当所生产的CO2温度非常低时(例如远低于比常规地热在经济上可以支持的温度,如低于约75℃以下的温度),能量回收系统32、66、78、92上游的泵或压缩机可以是理想的。当补充热量(废热或来自燃烧燃料的热量)被添加到在上游泵或压缩机与能量回收系统32、66、78、92之间的生产流体26时,泵或压缩机可以在经济上是可行的。
在油气藏1中的盐水原生流体2的剩余饱和度可以影响系统的甲烷生产的寿命。如本文中所使用的术语“剩余饱和度”可以是指,在CO2工作流体12被注入油气藏1以形成CO2羽流24之后,保持由盐水原生流体或水原生流体2占据的油气藏孔隙比率。剩余盐水原生流体或水原生流体2可以包括溶解的甲烷4,并且随着时间的推移甲烷4可以扩散出溶液,并且被CO2羽流24携带且推动。剩余的水原生流体或盐水原生流体2还可以防止CO2循环通过被剩余原生流体2占据的油气藏1的那部分,同时仍允许来自油气藏1和剩余原生流体2的地热热量6向CO2工作流体12的交换。因此,盐水原生流体2的剩余饱和度在实践中可以增加由CO2工作流体12的给定体积所占据的油气藏1的百分比。因此,剩余原生流体2在本质上可以增加与CO2工作流体12接触的油气藏1中岩层的体积,其反而可以增加可被CO2工作流体12捕获的热能的量。此外,从来自剩余盐水或水的溶液中释放出的甲烷4是指油气藏1可以连续产生甲烷,并增加与CO2工作流体12接触的岩层体积,从而增加甲烷生产和系统的地热能回收效率。出于这个原因,剩余饱和度可以提供本公开的甲烷增强型系统的主要特征。
如上所述,当CO2工作流体12被注入油气藏1,其中甲烷4和其它烷烃是在原生流体2中的溶液中,CO2可以导致甲烷4的一部分从溶液中逸出,其中甲烷可以与前进的CO2羽流24相互作用。甲烷4从溶液的释放可以导致在CO2羽流24的前面形成高甲烷浓度区。图5示出了在前进CO2羽流24前面的高浓度甲烷区34的概念图。所释放甲烷4的一部分可以溶解在CO2羽流24中或与CO2羽流24混合,然而,高浓度区34可以包括比在CO2羽流24中存在的更多wt%的甲烷。在实例中,为了从油气藏1中最大化提取甲烷,生产井28可被配置为包括位于相对靠近注入井14的一个或多个第一生产井28A,以及位于相对远离注入井14的一个或多个第二个生产井28B。在图5中所示的实例中,第一生产井28A使得生产井开口30A(在图5中示出为水平生产井28A)位于包括CO2和混合或溶解入CO2的甲烷的CO2羽流24内。第二生产井28B可以放置为使生产井开口30B(在图5中示出为垂直生产井28B)在高浓度甲烷区域34内。
第一生产井28A,其也可以在本文中称为“CO2生产井28A”,可以包括包含CO2和一小部分甲烷的生产流体。来自CO2生产井28A的生产流体可以与如上所述参考在图1-4中的生产流体相同的方式进行处理,例如,通过分离掉在生产流体中存在的甲烷的至少一部分,以在将生产流体送至能量回收系统之前补充生产流体所吸收的热能。
第二生产井28B,其也可以在本文中称为“甲烷生产井28B”,可产生来自油气藏1的甲烷和盐水溶液的组合。来自甲烷生产井28B的生产流体也可以包括一些CO2和(在一些实例中)其它原生流体,例如来自EOR油气藏的烃。因为甲烷生产井28B的开口30B被设计成在油气藏1中的高浓度甲烷区34内,来自甲烷生产井的所生产的流体预计将主要是甲烷,其中盐水溶液还包含相当大的部分的生产流体。
从来自CO2生产井28A的CO2羽流24(具有一小部分甲烷,主要是CO2),以及从甲烷生产井28B的高浓度甲烷区34(具有一小部分盐水,主要是甲烷)的单独回收生产流体,可以提供甲烷和CO2更可控的提取,并且提供从油气藏1最大化的甲烷提取。然而,如本领域普通技术人员可以理解的,因为CO2羽流24在油气藏1内膨胀,高浓度的甲烷区域34可以移动经过甲烷生产井28B。因此,对于生产井28进行安置和开凿的分阶段方法,可以用来连续地提供分别从CO2生产井28A生产CO2,以及从甲烷生产井28B生产甲烷。
图6是示出了对于使用分开的CO2生产井和甲烷生产井进行分阶段生产的井安置实例的地图示图。如图6中实例所示,初始注入井114在油田110的大致中央位置开凿。一组弧型生产井可以在注入井114的两侧开凿。在实例中,每组生产井可以包括第一CO2生产井116A,和第二甲烷生产井116B。在实例中,在系统启动时,仅开凿了注入井114、CO2生产井116A和甲烷生产井116B。
CO2工作流体可以被注入注入井114,如上所述,以使在地下油气藏内形成CO2羽流。如以上进一步描述的,CO2工作流体可导致甲烷从溶液逸出,使得在CO2羽流的前面形成甲烷高浓度区。CO2生产井116A可以相对于注入井114放置,使得CO2生产井开口在启动后的初始操作期间位于CO2羽流内。甲烷生产井116B可以相对于注入井114放置,使得甲烷生产井开口在启动后的初始操作期间位于甲烷高浓度区内。在实例中,CO2生产井116A与注入井114间隔约100米至约2000米。每个甲烷生产井116B可以与相应的CO2生产井116A再间隔10m至约1000米。
当将CO2工作流体从CO2源、从循环的CO2或从离开甲烷燃烧加热器的CO2捕获物添加到油气藏中时,CO2羽流将随时间增长。经过最初的操作期间之后,CO2羽流将达到甲烷生产井116B,并且高浓度甲烷区将被推动超出第一甲烷生产井116B。在这时,可以开凿第二组生产井,例如第二对弧形CO2生产井118A和第二对弧形甲烷生产井118B。在图6所示的实例中,第一组生产井(例如,CO2生产井116A和甲烷生产井116B)可相对于注入井114沿第一轴线安置(例如,自东向西通过注入井114,如图6所示)。第二组生产井(例如,CO2生产井118A和甲烷生产井118B)可以相对于注入井114沿第二轴线安置,其中第二轴线可以是大致垂直于第一轴线(例如,自北向南通过注入井114,如图6所示)。补充的生产井118A、118B和更大的CO2羽流可以支持更高的通过油气藏的CO2循环速度。可以开凿一个或多个补充的注入井120以容纳补充的二氧化碳循环。在一个实例中,补充的注入井120可以相对于注入井114沿第二轴线安置。补充的注入井120可以与最初的注入井114隔开同CO2生产井116A与注入井114隔开的间距大致相同的间距,例如约100米至约2000米。类似地,第二CO2生产井118A可以与补充的注入井120隔开大致相同的间距,例如约100米至约2000米,其中第二甲烷生产井118B与CO2生产井118A隔开约10米至约1000米。
由于CO2羽流的持续增长,CO2羽流可以到达甲烷生产井118B,使得可以开凿补充的生产井。例如,第三组的生产井,如可以开凿第三CO2生产井122A和第三甲烷生产井的122B。在实例中,第三生产井(例如,CO2生产井122A和甲烷生产井122B)可沿着第一轴线安置(例如,与第一生产井118A、118B相同的轴线),或者可以沿相对于所述注入井114的另一个轴安置。在实例中,各个第三CO2生产井122A可以与相应的第一CO2生产井116A隔开同第一CO2生产井116A与注入井114隔开的间距大致相同的间距,例如约100米至约2000米。各个第三甲烷生产井122B可以与相应的第三CO2生产井122A隔开约10米至约1000米。
如上所述,来自甲烷生产井28B、116B、118B的主要组分预计是甲烷和盐水溶液,在地表其通常为分离的相(例如,气态的甲烷和液态的盐水溶液)。因此,分离来自甲烷生产井28B、116B、118B的生产流体的甲烷可以相对容易和便宜。可以将来自甲烷生产井28B、116B、118B的甲烷的一部分,连同从CO2生产井28A、116A、118A分离的任何甲烷,供给至燃烧加热器以补充通过能量回收系统回收的地热能。来自甲烷生产井28B、116B、118B的甲烷的一部分也可以被存储或回注入油气藏,以确保在油气藏的寿命内甲烷的可用性,其中所回注的甲烷以后可以伴随CO2产生、被分离并燃烧以补充从油气藏回收地热能。
从甲烷生产井28B、116B、118B产生的任何CO2,可以通过能量回收系统输送,如果来自甲烷生产井28B、116B、118B的CO2的温度和/或压力是足够高的。可替代地,从甲烷生产井28B、116B、118B产生的CO2可以被压缩,如在压缩机20中,并与CO2的工作流体12一起注入至注入井14、114、120。
从CO2生产井28A、116A、118A或甲烷生产井28B、116B、118B产生的任何盐水或其它液体,可以用能量回收装置进行处理,如膨胀装置、二元能量回收系统或热交换器,以回收已被盐水或其它液体吸收的地热能。在大多数实例中,除非盐水具有足够高的温度,只能通过二元发电系统从盐水溶液回收热量,如有机郎肯循环(ORC)或卡林娜循环。如果盐水溶液的温度为至少约165℃,并且优选至少约200℃,那么可以使用直接闪蒸或双闪蒸动力系统。在某些实例中,可能需要燃烧从油气藏1中提取甲烷的一部分,以提高盐水溶液的温度,还有增加CO2生产流体的温度和/或压力。然而,在一般情况下,水基电力系统比气体基发电系统的效率较低,特别是CO2基发电系统。在一些实例中,在地热热量已从盐水溶液提取之后,所述盐水溶液系统可处理为,如通过将盐水溶液注入油气藏1或另一个地质层,或盐水溶液可用于在系统中的另一个目的,如在冷却单元22中的冷却介质。可替代地,盐水溶液可被处理以提取有用的矿物或以提供淡水。
为了最大化甲烷生产并确保甲烷在系统的寿命内是可用的,可以采用细致且分阶段的CO2羽流的发展。能够支持CO2注入和隔离的单一地质油气藏可以,例如,具有可优先允许CO2流的多个子层。子层可以由渗透率和孔隙度来区分。通过相对高的渗透率或孔隙率或两者有利地支持CO2注入的子层,可以是从低渗透率、孔隙度或这两者的子层近乎垂直地分开的。支持或阻滞CO2流的子层可以以任何顺序交替地近乎垂直堆叠,其中如本文所述“近乎垂直的”,可以指的地质层和次层基本上水平定向的,或在深的自然可渗透且多孔地层中较水平仅有从零到几度的倾斜。该子分层在深的渗透地层中是普遍的。该子层可以允许CO2注入和生产从一个子层开始,然后在其它中进行,如通过用穿孔和完成注入井或生产井或两者,用于在子层中的CO2羽流(其可包括甲烷羽流,如上所述),当各子层日趋成熟时其中甲烷的高浓度区在另一子层中。以这样的方式,用于地热能回收系统操作的长期甲烷供应可以更容易地实现。
上述参照图1-6的实例都示出或描述了单个油气藏,其包括在溶液中包含甲烷的原生流体,其中注入油气藏的CO2工作流体既提取甲烷的一部分又吸收地热。然而,其它系统和方法可以包括在本公开的概念内。例如,地质层可以包括靠近第二地质层的第一地质层。第一地质层可以包含包括甲烷的原生流体,而第二地质层可以包括有利于将地热吸收到CO2工作流体或用于CO2隔离或两者的条件。例如,第一含甲烷层可以位于第二地热层的上方或下方。这样的地质层中,第一组的一个或多个注入井和一个或多个生产井可以在第一层开凿,以及第二组的一个或多个注入井和一个或多个生产井可以在第二层开凿。少量CO2工作流体可以被注入到第一地层中以从中提取甲烷,而大量的CO2工作流体可以注入到第二地层中用于地热回收或CO2隔离或两者兼而有之。在第一地层中CO2工作流体的循环可以为系统提供甲烷,而在第二地层中CO2工作流体的循环可以用于地热的热回收例如通过形成CO2羽流层,或用于隔离所注入CO2的至少一部分,或两者。
如上所讨论的,从油气藏1中生产的生产流体26可以具有在生产流体26中包括的一定百分比的甲烷,例如从1wt%至10wt%或更多,例如约5wt%的甲烷和95wt%CO2。已经令人惊讶地发现,与基本上都是CO2的所产生的流体如在CPG地热回收系统中相比,在生产流体26中纳入甚至小百分比的甲烷,可以具有对系统效率显而易见的改进。图7A和7B示出了100%CO2工作流体(图7A)和95%CO2、5%甲烷的工作流体(图7B)循环通过该系统的压力-焓相图。每个相图已被标记为当其移动通过油气藏1、产生至地表系统(例如,能量回收系统32)、并回注入油气藏1时,工作流体或生产流体的假想循环。
在图7A和7B中相图循环中的每一个都标有表示周期内五个具体位置点的五(5)点。在图7A和图7B中,点“1”表示在注入井14上方注入的工作流体12。点“2”表示在其离开注入井开口16时的工作流体12。点“3”表示进入生产井开口30时的生产流体26。点“4”表示就在生产流体26进入能量回收系统之前的点,例如,就在它通过膨胀设备36时。点“5”表示在其已经离开能量回收系统32(例如,来自膨胀装置36)的生产流体26,但在此之前它已被冷却单元22冷却。
如从图7A和7B的对比中可以看出,包括5%的甲烷的系统可以实际回收更多的在能量回收系统32中的能量,如与在沿图7A的水平轴点4和点5之间的焓变化相比,在沿图7B的水平轴点4和点5之间的较大的焓变化所指示。例如,在图7A中点4和5之间的焓变(仅CO2)为约40kJ/kg的工作流体,而在图7B中点4和5之间的焓变(CO2和甲烷)为约50kJ/kg的工作流体,或比待提取的势能增加略多于20%。虽然不是所有的工作流体或生产流体的焓变可通过能量回收系统32回收,假定能量回收系统32从二氧化碳和甲烷的流体回收能量的效率与从纯CO2系统中回收能量的效率是基本相同的,因此对于CO2和甲烷的系统与CPG系统中仅CO2流相比,预计焓变的差将导致从生产流体提取较高的能量(并因此所生产的电的量更大)。
此外,在冷却单元22中待去除的热能的量(由在图7A和7B中点5和1之间的焓变化表示),对于CO2和甲烷的工作流体或生产流体是较少的。例如,在图7A中点5和1之间的焓变(仅CO2)为约215kJ/kg,而在图7B中点5和1之间的焓变(CO2和甲烷)为约195kJ/kg,或在冷却单元22中所需要的吸热器中约9%的减少。
如图7A和7B所示,加入甲烷的甚至一小部分(5wt%)提供了用于潜在地电力生产20%的增加,以及在回注之前所需的冷却负荷10%的减少。这表明,令人惊奇的是,从油气藏1的原生流体2中甲烷的甚至一小部分的提取,不仅可以用来提高可以增加整个系统效率(如上所述)的生产流体的温度或压力,而且仅仅通过甲烷的存在进一步提高了系统的工作效率。
废热增强型CPG系统
如上所述,在一些实例中,CO2工作流体注入其中的油气藏,例如,图1-4中的油气藏1,可以包括已通过常规石油或天然气的回收方法被部分消耗的油气田。在这些部分耗尽的石油和天然气田中,CO2可以被注入用于增强型石油采收(EOR)目的。油气藏可以含有主要比率的石油和天然气,其可以是远远超过小百分比的可以溶解在深盐水含水层的甲烷。注入该油气藏的CO2工作流体可以将大量烃和其它流体释放并携带至地表,使得二氧化碳构成生产流体的少部分。在一些实例中,然而,烃油气田可以是烃基本上被耗尽的,使得其在初级或次级回收中产生非常少的石油或天然气。在这些基本上被耗尽的油气田中,水或盐水和CO2可以包括比烃多得多的流量。总之,来自EOR油气田的生产流体的组成可以是复杂和多样的。在一些实例中,所产生的甲烷和其它碳氢化合物可以是远远大于增强型地热能回收和回注入油气藏所需的,从而除了保留在加强CPG操作中使用之外,额外的甲烷和其它碳氢化合物可以出售。
从EOR油气田复合生产的流体,其通常可以包括CO2、烃以及水或盐水的组合,可以在用地热能提取之前或之后进行分离。在EOR设置中所使用的热提取装置,通常是直接或二元发电系统,可以根据生产流体的温度、压力和组成条件在特定地点的基础上进行选择。
在实例中,EOR操作所需的系统可以由电力驱动。EOR系统的电力需求可以比对CO2羽流地热系统或包括甲烷燃烧以补充热能回收的CO2地热系统的要求明显更多。EOR操作的电力可以从电网购买或通过使用由购买的或本地生产的甲烷驱动的现场燃气轮机。在所产生的甲烷情况下,电力生产效率和生产的总电力,可以通过使用上述的甲烷增强型地热回收系统而增加。甲烷增强型系统的效率提高,可通过站点经营者在成本上的很少或无增加而实现,因为地热和气体燃烧能量被合并。此外,用甲烷增强型地热能回收补充的EOR系统的整体电力耗成本可以降低,因为现场产生的电力可以从所有可用的能量种类进行生产,如地热和天然气化学品。
地热能回收系统或其它共址系统(诸如EOR回收系统)的一个或多个组件,可以包括可产生大量热量的操作或设备。通常情况下,通过这些系统、操作或设备产生的热量被允许消散到大气中,使得热能基本上被浪费。这种热量被在本文中称为“废热”。
可以在或接近地热能回收系统中发生的废热实例可以包括通过CO2压缩机产生的热量。如上所述,来自CO2源18的CO2工作流体12在其注入注入井14之前可以在压缩机20中被压缩。同样,在燃烧所分离的甲烷46以增加生产流体26温度或压力过程中形成了CO2,且捕获的CO2也可用压缩机20来压缩并注入注入井14。另外,在增强型石油采收(EOR)系统中,CO2可以从油气藏1中产生,并从生产流体26中分离。所产生的CO2可以被压缩并回注入油气藏1。可以理解的是,在本领域中CO2的压缩机,例如在EOR系统使用的或用于压缩CO2以注入油气藏中所使用的那些,例如用于CO2隔离,可以生成大量的热量。在实例中,用于将CO2注入油气藏1的CO2压缩机可以产生50至1500kJ热能每kg压缩的CO2,如200至600kJ热能每kg压缩的CO2,例如400至450kJ热能每kg压缩的CO2
废热源的另一个实例可以发生在EOR系统中。如上所述,来自EOR油气田的生产流体可包括CO2、盐水或其它天然液体和来自石油或天然气油气藏的烃。在地热能回收之前或者之后,生产流体的不同组分可以被分离。从生产流体中其它流体分离烃的一种方法,可以包括燃烧在分离容器内产生的甲烷或其它烃的一部分,其又加热生产流体。生产流体的温度上升能够促进液态烃与CO2、天然气和盐水的分离。但是,加热以促进分离结果得到热液态烃、热盐水溶液、热CO2和天然气或其任意组合,其通常一直简单地被允许通过向大气耗散热量而冷却。
废热源的又另一个实例可以发生在其中包括与产生过量热量的另一类型设施共址的本公开的地热能回收系统设施中。例如,如果地热能回收设备是与乙醇或其它生物燃料厂共址。共址的乙醇或生物燃料厂可以是期望的,因为该厂通常在生产过程中产生可被捕获并作为用于本公开的地热能回收系统的CO2源的CO2废气流。来自其它设施的废热源的其它实例包括,但不限于,在生物燃料设施中的发酵罐、在工业设施(如水泥生产厂)中的炉、化石燃料发电厂的冷却单元,以及燃烧(如甲烷或天然气燃烧)产生的热能。此外,由乙醇和生物燃料厂所产生的CO2,是可以用比来自化石燃料发电厂的CO2更低的成本捕获且通常相对干净的CO2流。捕获和注入来自乙醇或生物燃料厂的CO2可以要求使用CO2压缩机,其中,如上所述,可以生成大量废热。
上述实例的废热旨在仅提供废热源的示例,当其与地热能回收共址时其可能是典型的或有利的。上述实例并不旨在限制,而本领域的普通技术人员可以容易地确定其它废热源是否可用于补充地热能回收,如下所述。
图8示出了系统130的非限制性实例,其中地热能回收可以通过废热回收来补充。图8的该系统130可以包括CO2源132,其在压缩机134中压缩以形成可以通过注入井140被注入至油气藏138的CO2工作流体136。离开压缩机134的CO2工作流体136可以在冷却单元135中冷却。
该油气藏138可包括原生流体142,其可以包括在原生流体142的溶液中的甲烷144。在实例中,原生流体142可在EOR油气藏138内包括油或其它烃或盐水。CO2工作流体136可以在油气藏138内形成可以包含来自工作流体136的CO2的CO2羽流146,原生流体142内的溶液释放的甲烷144的一部分,来自原生流体142的由于CO2工作流体136的注入而释放的烃,以及如盐水或水的其它原生流体(上面更详细讨论的)。所有这些组分可以通过开采井150开采到地表形成生产流体。总之,该系统130可被配置为增强型石油采收(EOR)系统。如上所述,系统130可以包括用于能量回收或转换的若干子系统,其通过增加可用于能量回收系统中的能量来补充地热能回收。
生产流体148可以被供给至可以将生产流体148分离为各种组分的分离系统152。在实例中,分离系统152可以将生产流体148分成气态CO2和甲烷流154、液态盐水或水流156,以及液态烃流158。如上所述,在一些方法中分离可以在分离系统152中得到辅助,其通过将生产流体148加热到高温,以更有效地从其它组分分离液态烃158,这会导致来自分离系统152的所有三种产品的流154、156和158处于高温,例如约30℃至约120℃,例如约50℃至约80℃。
在分离系统152中产生的热能通常作为废热被允许消散到大气中。然而,图8的实例系统130被配置为从分离系统152回收废热的至少一部分。次级工作流体160可以在地表上的整个系统中循环以从各种来源回收热能。如在图8的实例中所示,一个或多个热交换器可以被配置为从热分离流154、156、158回收热量,例如在CO2/甲烷流154上的第一热交换器162A,在盐水物流156上的第二热交换器162B,以及在液态烃流158上的第三热交换器162C。次级工作流体160可以被分成三个独立的流,其通过热交换器162供给以便从热产物流154、156、158吸收热量。次级工作流体160还可以吸收由在油气藏138中的生产流体148所吸收的地热能的至少一部分。在通过热交换器162之后,次级工作流体160可以再汇合用于进一步循环。
在实例中,该分离系统152可以不产生大量的废热,例如,在其中可以不进一步加热而实现液态烃的分离。在这种情况下,热交换器162可以被配置为仅吸收生产流体148(并且其存在于单独的产物流154,156,158)已吸收的地热能。可替代地,单一的热交换器可以位于分离系统152的上游或下游来吸收地热能。
所冷却的CO2/甲烷流154的至少一部分可以由压缩机164压缩以用于通过注入井140回注至油气藏138。所冷却的盐水或水流156可以被放入盐水储存器166,例如在水或盐水罐内或被注入至地质层中。所冷却的液态烃流158的至少一部分可以作为烃产品168出售。
次级工作流体160可以循环至系统130的其它部分,以吸收否则可能被耗散到大气中的其它热能。如上所述,CO2/甲烷压缩机164可以产生相当大的热能,例如,约400kJ至约450kJ/kg的CO2和甲烷在压缩的每个阶段被压缩。在实例中,次级工作流体160可以被循环至压缩机164以回收废热能的一部分。在实例中,热交换器(未示出)可以被放置在CO2/甲烷流154上紧邻压缩机164的下游,以从热CO2/甲烷流154传递热能给次级工作流体160。在另一个实例中,压缩机164可以被配置为使得次级工作流体160流在压缩机164周围或通过压缩机164,例如,通过压缩机164的冷却夹套,以从压缩机164吸收热量。此外,热量可从压缩机(如紧邻压缩机的下游)出口被吸收,或者热可以在压缩机的一个或多个阶段(例如,从中间冷却器)之后被吸收。
在实例中,压缩机164产生比在分离系统152产生的热能更多的热能。出于这个原因,次级工作流体160的循环可以被配置为首先从分离系统152回收的热能(通过热交换器162),然后从压缩机164回收热能。
参照图1-4如上所讨论的,从油气藏138中产生的甲烷的一部分可以从生产流体分离并燃烧,以通过增加流体(如生产流体或次级工作流体)的温度来补充能量回收。图8的系统可以通过包括甲烷分离系统170来任选地包括在本发明的这个特征,以从CO2/甲烷流154分离甲烷的一部分172。所分离的甲烷172可以供给至加热次级工作流体160的燃烧加热器174。在实例中,燃烧加热器174产生比在分离系统152或压缩机164中产生的热能更多的热能。由于这个原因,次级工作流体160的循环可以被配置为首先回收来自分离系统152的热量能量,然后从压缩机164回收热能,并且然后从燃烧加热器174回收热能。
液体烃的一部分可以从液体烃流158被分离出来以在加热器中燃烧,以进一步加热次级工作流体160。在图8所示的实例中,液态烃流158的分离部分176可以在精制或处理系统178中被处理或精制,以将所分离的液态烃176的组成改变得在加热器内的燃烧更理想。所精制或处理的液体烃176可以被供给至一个加热器,其可以是相同的加热器174,其中所分离的甲烷172被燃烧(如图8),或所精炼或加工处理的烃176可以供给单独的加热器(未示出)。
可替代地,如上所述,不是用加热器174加热次级工作流体160,而是所分离的甲烷172和液态烃176可在常规的燃气轮机或燃气发动机(未示出)中燃烧,以从涡轮机或发动机产生电力。烃燃料的燃烧,例如,在燃气涡轮机或发动机中的甲烷172和液态烃176可以以热燃烧气体(例如,CO2和水蒸汽)和热的发动机或涡轮机的冷却套流体的形式产生大量的废热。废热可以被添加到工作流体160,例如通过热交换器。这种配置可以在某些情况下,导致比在加热器174中直接加热工作流体160更高的能量转换效率。
燃烧加热器174的副产物可以包括二氧化碳,其可以被捕获和压缩以回注至油气藏138,类似于参照图1的上述CO2捕获系统58。所捕获的CO2可以供给至同一压缩机164作为所分离的CO2和甲烷154,或可以使用的单独的压缩机(未示出)。压缩所捕获的CO2的废热也可以使用次级工作流体160回收。
在次级工作流体160从各热源回收热量(例如,来自分离系统152或压缩机164的废热或两者、来自所分离的甲烷172或所分离的液体烃176在燃烧加热器174(如果存在的话)中的燃烧)之后,次级工作流体160可以被送入能量回收系统180,其可以将在次级工作流体160中的能量转换为另一种形式,如电力182或直接使用的热量。在图8所示的实例中,能量回收系统180包括膨胀装置184,通过其该次级工作流体160被递送以产生轴功率186。轴功率186可以驱动发电机188以产生电力182。次级工作流体160然后可以在热交换器162重新启动循环之前通过冷却单元190循环。
如上面进一步所述,单独的设施,如发电厂、生物燃料工厂或工业工厂可以与本发明的地热能回收系统共址。来自该共址设施的废热可以被回收,通过热交换器以及在共址设施和地热能回收系统之间被泵送的工作流体(诸如次级工作流体160),或生产流体148或可以被泵送到共址设施的其一种或多种组成成分,以使废热可以直接转移到生产流体或其构成成分或组分中。
备选配置
在实例中,另一种可燃燃料,如天然气、生物质或生物燃料(例如,生物来源生产的乙醇或柴油),可从地热能回收系统外部的第三方获得。在另一个实例中,其它燃料可由共址设施来生产,例如共址的乙醇或其它生物燃料生产设施。其它燃料可被用来提高地热能回收系统的总功率产出,例如,通过燃烧外部燃料,以增加CO2基工作流体的温度、压力或两者。例如,如果热能回收设施已运作很长时间,使得正从油气藏产生的甲烷的量低,则外部燃料可用于补充或替代现在已不存在的甲烷生产。用CO2基工作流体和外部燃料源回收地热可以以用CO2基能量回收并燃烧所产生的甲烷相同的方式结合,以提高能量转换为电能的总效率,并产生超过两个系统中任一个单独所能提供的电。在一些实例中,从第三方购买天然气(主要是甲烷)、或其它燃料,而不是依赖于或单纯依靠从生产流体所分离的甲烷,可能会更经济。例如,如果天然气的成本比分离成本更便宜。在实例中,在燃烧加热器中使用的燃料可以包括单独的天然气或其它外部燃料,如从第三方购买的外部天然气或燃料,而不是使用从油气藏产生的任何分离的CH4
在另一个实例中,位置开发方面的考虑可以优选直接生产油气藏中的甲烷,而不是甲烷的长期稳定生产。例如,并非在位置的寿命期内保证渐进的甲烷产量,而是通过产生在二氧化碳注入开始时就立即开始提取并在CO2羽流建立的同时连续可提取的最大化的甲烷,其可以更好地操作。所产生的甲烷可以出售或原位储存,如在甲烷储罐中或在与CO2工作流体所注入的油气藏分开的地质层中。在出售甲烷的情况下,根据需要可将甲烷的一部分随时间回购以提供给该系统。在存储甲烷的情况下,该甲烷可以随时间从储存中移除来提供给该系统。当用于甲烷或盐水生产的井可以重新利用于二氧化碳循环,而不需要单独的甲烷和二氧化碳的井时,直接生产甲烷可在环境经济上更为有利。将CO2循环重新用于甲烷或盐水生产井的经济优势可与甲烷存储所添加的成本平衡(例如,储罐或用于在地质层中存储甲烷的系统)。
图9示出了另一个系统200的实例,用于从油气藏通过生产井204产生的生产流体202回收地热能。油气藏未显示在图9中,但本领域的普通技术人员应理解,油气藏可以类似于在图1-4和8中所示的油气藏。该系统200可以特别适合于EOR油气藏,例如,油气藏包括包含甲烷、石油或其它烃以及盐水溶液的原生流体。系统200还可以包括EOR设施206,例如设施包括将生产流体202分离成其组成部分的一个或多个单元操作,其中的一些如参照图8所述。生产流体202中存在的地热能,可用于向EOR设施206内提供过程热能。换言之,通过所述生产流体202回收的天然地热能,除了提供整个本公开所述的发电,还可以提高在EOR设施206中EOR过程的效率。如在图9中所示的,EOR废物处理热量208可以用任何本文所描述的技术由EOR设施206回收。
EOR设施206可以分离出生产气体流210,其可以包括来自生产流体202的CO2、CH4和其它气态烃以及水和其它烃211。系统200可包括在EOR设施206下游的压缩机或泵212,用于在从生产气体流210回收能量之前,增加生产气体流210的压力。具体地,如果来自EOR设施206的生产气体流210的输出压力具有相对较低的输出压力,压缩机或泵212可能是需要的。压缩机或泵212也可以压缩所生产的气体流210至所希望的注入条件,以使能量回收后,所生产的气体流210可以通过注入井214注入回到油气藏。
压缩机或泵212可以提高系统的整体效率。令人惊讶地,已经发现,增加所生产的气体流210的压力,例如用压缩机或泵212,可以提高系统的效率,超过压缩所生产的气体流210所需要的能量的量。来自压缩机或泵212的废热216可以通过系统200回收,如上下文所详述。
在压缩机或泵212之后,如果存在的话,所生产的气体流210可以通过可以类似于上述方法的能量回收装置来供给,例如,首先在加热器218中加热所生产的气体流210,如通过在加热器218中燃烧一种或多种燃料219如所分离的CH4、来自EOR操作的烃燃料或其它提供的燃料例如补充的CH4,或通过在加热器218中回收废热,以增加所生产气体流210的温度、压力,或两者。可替代地,一种或多种燃料219可以在常规的燃气轮机或燃气发动机(未示出)中燃烧,以从涡轮机或发动机产生电力,而涡轮机或发动机的废热(热的燃烧气体和热的冷却夹套流体的形式)可以被添加到所产生气体流210,如通过热交换器,而不是用加热器218直接加热所生产气体流体210。
加热或加压的所生产气体流210可以通过初级能量回收系统220直接从生产气体流210被供给以产生电222,诸如一个或多个涡轮、发电机或能量回收循环,例如作为郎肯动力循环、有机郎肯循环(ORC)或卡林娜循环。初级能量回收系统的几个实例参照图1-4和8如上所述。
图9中的系统200还可以包括次级能量回收循环224,以从热的低压生产气体流210回收额外能量。次级能量回收循环224可以包括任何可行类型的能量回收循环,如郎肯动力循环、有机郎肯循环(ORC)或卡林娜循环。在图9的实例中,次级能量回收循环224包括ORC型能量回收循环,其中次级工作流体226通过循环224进行循环。可以在次级能量回收循环224中使用的次级工作流体224的实例包括但不限于,CO2、异丁烯、氨或各种其它流体中的一种或多种。次级流体的类型,可以取决于紧邻初级能量回收系统220的下游的生产气体流210的温度以及生产气体流210的流率来选择和优化。
在已经通过初级发电机或涡轮机系统220供给生产气体流210之后,次级工作流体226可以通过热交换器228来用热的生产气体流210加热。加热的次级工作流体226然后可以被供给次级涡轮或者发电机230,以产生额外的电232。在通过次级涡轮和发电机230之后,次级工作流体226可以在冷却单元234冷却,并且次级工作流体226的压力可以用泵或压缩机236增加,以便在开始循环并加热工作流体226之前提高工作流体226的压力,例如利用在热交换器228中的热的低压生产气体流210。
根据在紧邻初级能量回收系统220的下游的生产气体流210的温度,次级能量回收循环224可以包括超临界循环、跨临界循环、亚临界循环或与亚临界过热器循环。
次级能量回收循环224可以提供从相对较低的温度来源的能量回收。因此,在只使用热生产气体流210以外,补充的低温加热源可应用于进一步加热该次级工作流体226。来自较低温度源的额外加热可以包括使用经由热交换器238的地热能回收,基本是从生产井204被生产之后热交换器238基本上立即使用生产流体202来加热次级工作流体226。次级工作流体226还可以在废热热交换器240中进一步加热,废热热交换器240被来自系统200的其它部分的废热所加热。可以在次级能量回收循环224中具体使用的废热源可以包括来自EOR设施206的废热208和来自泵或压缩机212的废热216。
如上所述,使用初级能量回收系统220在相对较低温度的能量回收热能将是困难,因为从EOR设施206或在泵或压缩机212中出来的CO2、CH4和其它气体的生产气体流210可能相对较热。相反,对于次级能量回收循环224的至少一部分,次级工作流体226可能相对较冷,尤其是在冷却单元234之后,但在该热交换器228中用热的生产气体流210加热所述次级工作流体226之前。
次级工作流体226还可以进一步由高温能量源通过燃烧一种或多种燃料244,如所分离CH4,来自EOR设施206的其它烃,或其它燃料(如购买的CH4)在二次燃烧加热器242被加热。在实例中,二次燃烧加热器242在温度高于热产生气体流210的温度下操作,使得二次加热器242被放置在热交换器228的下游作为最后热源,而加入至次级能量回收循环224中的次级工作流体226。图9的次级能量回收循环系统200可以特别适用于非常低温的地热油气藏,如温度低于约75℃的那些。
补充的能量回收循环,例如,三级循环、四级循环等等,可以被包括在系统200中。例如,从二级涡轮或发电机230中流出的热的次级工作流体226可用于加热在三级能量回收循环中的三级工作流体,并依此类推。
图10示出用于地热能回收的另一个系统250的实例。该系统250可以类似于参见图9的上述系统200,例如,系统250可以提供通过生产井204从油气藏所产生的生产流体202的能量回收。油气藏未在图10中显示,但本领域的普通技术人员应理解,油气藏可以类似于在图1-4和8中所示的油气藏。系统250可以是特别适合用于EOR油气藏,例如,油气藏包括包含甲烷、油或其它烃以及盐水溶液的原生流体。与图9中的系统200类似,系统250还可以包括可以将生产流体202分离为一种或多种组分的EOR设施206,其中包括生产气体流210,其可以包括来自生产流体202的CO2、CH4和其它气态烃。
类似于图9的系统200,在图10中所示的系统250可以在EOR设施206下游包括压缩机或泵212,用于在从生产气体流210回收能量之前增加生产气体流210的压力,例如,如果来自EOR设施206的生产气体流210的输出压力具有相对低的输出压力。压缩机或泵212也可以将生产气流210压缩至所希望的注入条件,使能量回收后可以将生产气体流210可以通过注入井214注入回到油气藏。
如图9的系统200所示,系统250可包括在压缩机或泵212(如果存在的话)之后,通过初级能量回收设备输送所述生产气体流210。例如,生产气体流210可以在加热器252中加热,诸如通过在加热器252中燃烧一种或多种燃料254来增加生产气体流210的温度、压力或两者。所加热或加压的生产气体流210可以通过初级能量回收系统256来供给,诸如涡轮机和发电机的组合,来产生电力258。
该系统250还可以包括同流热交换器260,以从加热器252和初级能量回收系统256下游的热的生产气体流210回收热能。同流热交换器260使用在初级能量回收系统256下游的温度比较高的生产气体流210,以在其进入加热器252和初级能量回收系统256之前增加生产气体流210进入流的温度,从而与不包括同流热交换器的系统相比,增加了系统250的总效率。如图10的同流热交换器系统250可以是特别适合于非常低的温度下低热油气藏,如温度低于约75℃的那些。
从生产气体流210回收能量之后,如通过次级能量回收循环224,如图9中,或者通过同流热交换器260,如图10中,生产气体流210可以被供给至分离器或分离系统262,其可以将生产气体流210中的CO2与生产气体流210中的CH4和其它气态组分分离,以形成相对纯净的CO2流264和甲烷和其它燃料的流266。CO2流可在冷却单元268中冷却,以及在泵或压缩机270中压缩,如果需要的话,通过注入井214回注入油气藏中。CH4/燃料流266可用于供给系统200、250的加热器,如形成用于加热器218的所有的或部分燃料流219(图9),用于加热器252的所有或部分的燃料流254(图10),或者在次级能量回收循环224中用于次级加热器242(图9)的所有或部分的燃料流244。CH4/燃料流266的一部分也可以用于该设施的另一部分(例如在EOR设施206中,或者在共址的乙醇设施或其它共址设施中),或部分或全部的CH4/燃料流266可以在公开市场出售。
可在所有CO2-EOR操作中所需的压缩机之后使用直接CO2涡轮机。如果现有的EOR压缩机输出压力不足,此配置可能需要包括在涡轮之前的泵/压缩机(优选在甲烷加热器和废热捕获单元之前)。可替代地,泵可以包括在冷却单元之后,该配置可以是优选的,因为冷的液体/超临界流可以相对容易地再压缩到所需的注入条件。需要注意的是,本申请定义了在一些情况下在电力系统之后的泵,但未明确指定在压缩机后是直接涡轮机的情况。
实施例
通过参考以下实施例提供本发明的各种实施方案的进一步说明,本发明将得到进一步的说明。然而,应当理解,可以在本发明的范围之内进行多种变形和修改。这些实施例包括来自各种工作流体或生产流体的电力生产的数值模拟。使用由TheMathWorks公司(纳提克,马萨诸塞州,美国)销售的Matlab,以及美国国家标准与技术研究院(NIST)的参考流体热力学和传输特性数据库(REFPROP)(9.0版)创建了模型。
实施例1
图11A示出了依赖于工作流体的井口温度或一经开采到地表后的生产流体所产生的电(兆瓦(MW))。图11B示出依赖于井底温度所产生的电。井口温度(图11A)和井底温度(图11B)之间的温度差是由于焦耳-汤普森冷却,其发生当在生产井中流体上升过程中流体压力减小,从而使得流体的井底温度和压力大于井口温度和压力。考虑到水基地热工作流体中不发生焦耳-汤普森行为,利用计算生成图11A和图11B。
建模假设1500米的油气藏深度,200kg/s的生产流体流速,其中生产流体是99wt%的CO2和1wt%的甲烷,其中2.0kg/s的甲烷被分离并且燃烧,以提高生产流体的温度、压力或两者。假定膨胀装置和发电机具有50%的卡诺效率的电力系统效率。
类似于图1所示的系统10,图11A和图11B都包括甲烷增强型CO2羽流地热(ME-CPG)系统所产生的电力的数据线。示出了ME-CPG系统的两条数据线,第一条线300示出了如果来自加热器48的排出气流56中的CO2不被捕获时所产生的电力,如在CO2捕获系统58中,以及第二条线302表示如果CO2被捕获时所生产的电力。如果使用CO2捕获系统58,它可以使用一些由能量回收系统32产生的电力,例如用于捕获和压缩CO2,其为由图11A和图11B中低于线300的数据线302所展示的。对于模型,假定CO2捕获系统58提供90%的捕获效率,例如,加热器48产生的CO2的90%是通过CO2捕获系统58捕获的,以及所捕获的CO2被压缩并注入油气藏。对于CO2捕获数据线302和非CO2捕获数据线300,假定在生产流体中的所有甲烷被分离并燃烧,以增加生产流体的温度,提高生产流体的压力,或两者。假设甲烷燃烧热的90%转移到生产流体,并且由动力循环捕获。
图11A和图11B还示出了地热回收系统的数据,其不分离和燃烧所释放的甲烷,例如单独的CPG系统,表示为线304,以及来自单独的甲烷燃烧的电力生产的线,无CO2捕获(线306)和具有二氧化碳捕获(线308)。
如图11A和图11B中所示,已经惊奇地发现,使用CO2和甲烷生产流体结合一部分甲烷的分离和燃烧的地热能回收,可以产生比CO2地热能回收和甲烷单独燃烧二者组合更多的电力。换句话说,用CO2羽流的地热能回收以及甲烷分离和燃烧的组合以提高生产流体的温度或压力或两者,出乎意料地比对这些能量组分本身各自组合所期望的更有效。例如,在图11A中,在约100℃的井口温度下,仅CPG的数据线304示出了约17兆瓦的电力生产,并且随着CO2捕获的甲烷燃烧的数据线308示出了约18兆瓦的电力生产,使得使用CPG和甲烷燃烧的地热能回收预期的组合电力生产为约35兆瓦。然而,如图11A所示,具有CO2捕获数据线302的甲烷增强型地热能回收示出了100℃井口温度下约44兆瓦的电力生产,这比所期望的35兆瓦高约25%。
实施例2
比较无CO2捕获(数据线310)和具有二氧化碳捕获(数据线312)的ME-CPG系统、仅CPG的地热能回收(数据线314),以及仅甲烷燃烧无CO2捕获(数据线316),以及具有CO2捕获(数据线318),图12A和图12B显示,得到类似的数据,但是在2500米的油气藏深度,而不是在图11A和图11B中的1500米。
实施例3
图13示出了依赖于生产流体的井口温度所产生的电(兆瓦(MW))。图13包括来自EOR应用的甲烷增强型地热能生产的数据,其中地热能回收从CO2压缩机通过废热捕获进一步补充。
该实施例建模假设1500米的油气藏深度,100kg/s的生产流体的流速。假设生产流体是20wt%的CO2、1wt%的甲烷,以及其余为液态烃和盐水。从生产流体分离并燃烧的甲烷的流速假定为0.5kg/s。用于EOR系统的能量回收系统假定为具有第二工作流体的二元系统,使得能量回收比可用于实施例1和实施例2的直接涡轮机系统的效率更低。因此,假定能量回收体系具有33%的卡诺效率的电力系统效率。废热是由高比(10:1)压缩机产生,其仅在压缩的最后阶段捕获热量,对其余任何压缩机中间冷却器无热捕获。因此,从图13所示之外的压缩机捕获热量是可能的。
图13包括甲烷增强型和废热增强型地热能回收的数据,无任何通过甲烷燃烧产生的CO2的CO2捕获(数据线320),以及具有CO2捕获的甲烷增强型和废热增强型地热能回收(数据线322)。还包括数据线324,以显示仅由甲烷增强型地热能回收产生的电力,例如无废热捕获以及无CO2捕获。图13还包括地热回收系统的数据,该系统不分离和燃烧所释放的甲烷,例如仅CPG的系统由线326表示,以及单独甲烷燃烧无CO2捕获的电力生产的数据(线328),以及通过单独废热捕获产生的电力数据(线330)。
如图13所示,已经令人惊奇地发现,除了地热能回收以外还捕获废热来进一步加热工作流体,可以产生比单独的地热能回收和单独的捕获废热的组合更多的电力。换句话说,地热能回收和废热捕获两者的组合,令人惊奇地比对这些能量组分本身每一个进行组合所期望的更有效。例如,在图13中约100℃的井口温度,单独的甲烷增强型地热(无废热捕获和无CO2捕获)的数据线324示出了约8.5兆瓦的电力生产,而废热捕获数据线330示出了约1.5兆瓦的电力生产,从而所预期的地热能和废热捕获结合的电力生产为约10兆瓦。然而,如图13中所示,具有废热捕获和无CO2捕获的甲烷增强型地热能回收产生了100℃井口温度下约11兆瓦的电力生产,这比所期望的10兆瓦高约10%。
各种组合的压缩机阶段可以用来捕获废热而用于补充地热能回收。图14示出了来自各种井底温度下的不同来源的可用能量(千焦每千克所产生的流体)。该实施例中的能量源包括甲烷燃烧(线350),地热能(线352),来自高比率(例如10:1)的压缩机出口废热,CO2压缩机(线354),来自高比率(例如10:1)中间冷却器的废热,CO2压缩机(线356),来自低比率(例如2:1)的压缩机出口废热,CO2压缩机(线358),以及来自低比率(例如2:1)的中间冷却器的废热,CO2压缩机(线360)。
实施例4
图15示出了依赖于所燃烧甲烷的体积(百万标准立方英尺每年)所产生的电力(以兆瓦(MW))。图15包括来自EOR应用的甲烷增强型地热能生产的数据,其中通过从CO2压缩机捕获的废热进一步补充地热能回收。
图15包括由甲烷增强型CO2羽流地热(E-CPG)系统产生的电力的数据线,类似于图9中所示的系统200,例如,假定CO2基生产流体210是从生产井204中生产的,通过EOR设施206,然后进入甲烷燃烧加热器218和直接CO2涡轮机(例如,初级能量回收系统220)中,然后被用来加热次级能量回收循环224,其中氨作为工作流体。然后可以将CO2基生产流体210冷却,如果需要的话,压缩并回注到油气藏中。
图15中的第一数据线370中显示了100kg/sCO2流量的甲烷增强型CPG(E-CPG)所产生的电,并且包括将来自EOR设施的CO2压缩机中间阶段的过量热的废热捕获添加到增强型CPG功率系统中,而不是像通常在EOR操作中所做的那样排放到大气中。第二数据线372显示了同样具有废热捕获的75kg/sCO2流量的E-CPG系统所产生的电力。假设保守估计75%的压缩机的废热被传送到该增强型CPG功率系统。将废热转换为109kJ/kgCO2。请注意,在某些情况下此废热的量是保守估计的,因为EOR位置可以有多个CO2压缩步骤。第三和第四条数据线374和376分别显示了分别在100kg/s和75kg/s下且没有来自CO2压缩机的废热捕获所产生的电力。
对于数据线370、372、374、376中的每条,假定CO2基工作流体在2000psia(约13.8MPa)和300°F(约149℃)下离开EOR设施(包括CO2压缩机),这是适中的CO2注入压力和合理的预冷却压缩机出口温度。CO2的质量流速显示为100kg/s(数据线370和374)和75kg/s(数据线372和376),这是与中等规模的CO2EOR设施一致的。系统内的压缩机或泵的寄生能量需求也被记入结果中,但EOR设施所需的用于提高从分离到注入条件下CO2压力的压缩机功率不包括在内,因为该设施需要该能量,而不管增强型CPG系统是否包括在内。初级能量回收或次级能量回收循环都可用于收集地热和(如果适用的话)废热。
数据线370、372、374和376中的每条,还包括在系统中假定的地热输入,假定油气藏为具有中等油和水产量的相对低温的EOR田(每一部分为6000桶/每天)。地热能被从组合的CO2、烃和水的生产流中提取,将该流从57℃(约135°F)冷却至环境条件。假定保守估计75%的地热能被传送到增强型CPG功率系统。
图15还包括表示单独的废热可以潜在地产生多少电的数据线378,以及单独的地热能可以潜在地产生多少电的数据线380。最后,作为参考,图15也示出了使用假定具有34%效率的现成燃气轮机(数据线382),以及假定具有25%效率的现成燃气发动机(数据线384)可以生产的电量。
如图15中可以看到的,与单独的地热能、单独的废热,或单独甲烷燃烧所预期的电力生产相比,包括次级能量回收循环的甲烷增强型CPG系统可以提供显着更多的电力生产。如在图15中进一步示出的,具有废热捕获的增强型CPG系统,与单独的增强型CPG系统和单独的废热的预期组合相比更有效。最后,如图15中所示,在具有次级能量回收循环的增强型CPG系统中的总能量(包括所产生的废热),超过通过其本身各自能量输入所预期的。因此图15示出了具有次级能量回收循环和废热回收的增强型CPG系统提供了超出每个单独的能量输入的组合所预计的出人意料的协同益处。
上述详述旨在说明,而非限制。例如,上述实例(或其一个或多个要素)可用于彼此组合。当参考以上描述时,例如本领域的普通技术人员可以使用其它实施方案。此外,可以将各个特征或要素组合在一起以简化本公开。这不应该被解释为,意图使该未要求保护的已公开特征对任何权利要求是必不可少的。相反,本发明的主题可以在于比特定公开的实施方案的所有特征更少。因此,所附权利要求由此并入详述中,其中每个权利要求独立地作为单独实施方案。在本发明的范围应参考所附权利要求来确定,连同这些权利要求所享有的等效权利要求的全部范围。
在本文件和通过引用并入的任何文件之间的不一致用法的情况下,由本文件的用法确定。
在该文件中,术语“一”或“一个”的使用,与专利文献中常见的相同,包括一个或一个以上的,独立于“至少一个”或“一个或多个”的任何其它实例或用法。除非另有表述,在该文件中,术语“或”用于指非排它的或者,如“A或B”包括“A但非B”、“B但非A”以及“A和B”。在该申请文件中,术语“包括(including)”和“其中(inwhich)”被当作分别的术语“包含/包括(comprising)”和“其中(wherein)”的简易英语等效物。另外,在所附的权利要求中,术语“包括”和“包含”是开放式的,即,系统、设备、物品、组合物、制剂,或过程,其包含除了列在该术语之后那些之外的要素仍然认为落在该权利要求书的范围内。此外,在权利要求中,术语“第一”、“第二”和“第三”等仅仅用作标识,并且不旨在强加其对象的数序要求。
本文中所描述的方法实例可以,至少一部分,是机器或计算机实现的。一些实例可以包括由指令编码的计算机可读介质或机器可读介质其可操作以配置电子装置来执行如上述实例中所述方法或方法步骤。这样的方法或方法步骤的实施方案可以包括代码,例如微代码、汇编语言代码、高级语言代码等。这样的代码可以包括用于执行各种方法的计算机可读指令。该代码可形成计算机程序产品的部分。此外,在实例中,代码可以被有形地存储在一个或多个易失性、非短暂性或非易失性有形计算机可读介质,如在执行期间或在其它时间。这些有形的计算机可读介质的实例可以包括但不限于,硬盘、可移动磁盘、可移动光盘(例如,压缩盘和数字视频盘)、磁带盒、存储卡或棒、随机存取存储器(RAMs),和只读存储器(ROMs)等。
根据37C.F.R.§1.72(b)提供摘要,以允许读者快速地确定技术公开的性质。应当理解,该摘要将不用来解释或限制权利要求的范围或含义。

Claims (39)

1.系统,包括:
一个或多个注入井,用于获取一个或多个地下油气藏,所述一个或多个油气藏处于一个或多个第一温度并且含有至少一种原生流体,所述原生流体包括含有甲烷的溶液,所述一个或多个注入井中的每一个均具有与所述一个或多个油气藏中的至少一个油气藏流体连通的注入井油气藏开口;
一个或多个生产井,每一个均具有与所述一个或多个油气藏中至少一个油气藏流体连通的生产井油气藏开口;
工作流体供给系统,用于向在低于第一温度的第二温度下的所述一个或多个注入井提供非水基工作流体,
其中,所述非水基工作流体向所述原生流体的暴露导致至少一部分的所述甲烷随着所述原生流体从溶液中逸出,以形成至少一部分的所述非水基工作流体和所述部分的甲烷的生产流体,
其中所述混合物向第一温度的暴露使所述生产流体加热至高于所述第二温度的第三温度,其中,所述生产流体能够进入一个或多个所述生产井油气藏开孔;以及
能量回收设备,与所述一个或多个生产井流体连通,其中所述生产流体中包含的能量可以在所述能量回收设备中转换为电、热或其组合。
2.如权利要求1所述的系统,其中所述能量回收设备包括:至少一个分离设备,用于从所述生产流体分离一部分的所述甲烷;以及加热器,用于燃烧所分离部分的甲烷以将所述生产流体加热至高于所述第三温度的第四温度。
3.如权利要求2所述的系统,其中所述能量回收设备还包括以下中的至少一种:一个或多个膨胀装置和一个或多个发电机;一个或多个热交换器;或其组合,
其中所述加热器加热所述一个或多个膨胀装置和所述一个或多个发电机、所述一个或多个热交换器,或者其组合的上游的所述生产流体。
4.如权利要求3所述的系统,其中所述至少一个分离设备是在所述一个或多个膨胀装置和所述一个或多个发电机、所述一个或多个热交换器,或者其组合的下游。
5.如权利要求2至4中任一项所述的系统,其中所述能量回收设备还包括所述加热器的外部燃料的供料源,其中所述加热器燃烧所分离部分的甲烷和所述外部燃料中的至少一种以加热所述生产流体。
6.如权利要求1至5中任一项所述的系统,其中所述能量回收设备包括至少一个热回收设备,用于从至少第一部分的所述生产流体回收热量以加热第二部分的所述生产流体,所述第二部分的生产流体来自所述第一部分的生产流体的上游。
7.如权利要求6所述的系统,还包括至少一个压缩机,用于压缩至少一部分的所述生产流体,其中所述至少一个热回收设备从在所述至少一个压缩机内的下游的生产流体回收能量或从在所述至少一个压缩机下游的生产流体回收热量。
8.如权利要求6或7中任一项所述的系统,其中所述原生流体还包含至少一种烃,其中所述生产流体包含至少一部分的所述至少一种烃,
所述系统还包括一个或多个分离单元以从所述生产流体中分离所述至少一种烃;
其中所述热回收设备从所述一个或多个分离单元、所分离的至少一种烃以及所分离的生产流体中的至少一个回收热量。
9.如权利要求1至8中任一项所述的系统,其中所述一个或多个油气藏位于一个或多个盖层的下方,并且是不使用大型水力压裂而可获取的。
10.如权利要求1至9中任一项所述的系统,其中所述一个或多个油气藏包含盐水含水层,所述原生流体包含盐水并且在所述盐水中溶解有甲烷。
11.如权利要求1至10中任一项所述的系统,其中所述一个或多个油气藏包括部分耗尽的石油或天然气田,并且所述原生流体包含至少一种烃。
12.如权利要求1至11中任一项所述的系统,其中所述生产流体包含0.01wt%至99wt%的所述非水基工作流体。
13.如权利要求1至12中任一项所述的系统,其中所述非水基工作流体是二氧化碳。
14.如权利要求13所述的系统,其中所述二氧化碳是超临界二氧化碳。
15.如权利要求13或14中任一项所述的系统,其中所述二氧化碳是从发电厂、工业工厂或天然二氧化碳源获得的。
16.如权利要求15所述的系统,其中所述系统包括所述发电厂或所述工业工厂。
17.如权利要求1至16中任一项所述的系统,其中所述能量回收设备包括以下中的至少一种:一个或多个膨胀装置和一个或多个发电机;一个或多个热交换器;或其组合。
18.如权利要求1至17中任一项所述的系统,还包括回注系统,用于通过一个或多个所述注入井回注至少一部分的所述非水基工作流体。
19.如权利要求18所述的方法,其中将所述一个或多个生产井、所述能量回收系统以及所述回注系统配置为形成所述非水基工作流体的热虹吸管。
20.方法,包括:
将在第一温度的非水基工作流体通过一个或多个注入井引入含有至少一种原生流体的一个或多个地下油气藏中,所述原生流体包括含有甲烷的溶液,其中所述一个或多个油气藏处于高于所述第一温度的一个或多个第二温度;
使所述非水基工作流体暴露于所述原生流体,以使至少一部分的甲烷随着所述原生流体从溶液中逸出,以形成至少一部分的所述非水基工作流体和所述部分的甲烷的生产流体;
使所述生产流体暴露于所述第二温度以将所述生产流体加热至高于所述第一温度的第三温度;
通过一个或多个生产井生产所述生产流体;以及
从所述生产流体提取能量。
21.如权利要求20所述的方法,其中从所述生产流体提取所述能量包括从所述生产流体中分离一部分的所述甲烷并且燃烧所分离部分的甲烷,以将所述生产流体加热至高于所述第三温度的第四温度。
22.如权利要求21所述的方法,其中从所述生产流体提取所述能量包括燃烧外部燃料和所分离部分的所述甲烷中的至少一种,以将所述生产流体加热至所述第四温度。
23.如权利要求21或22中任一项所述的方法,其中提取所述能量包括将所述生产流体中的热能转换为电和热中的至少一种,其中燃烧所分离的甲烷而加热所述生产流体处于将热能转换为电和热量中至少一种的上游。
24.如权利要求23所述的方法,其中将热能转换为电包括将所述生产流体供给至与发电机相连的膨胀装置。
25.如权利要求23或24中任一项所述的方法,其中将热能转换为热量包括将所述生产流体供给至热交换器。
26.如权利要求23至25中任一项所述的方法,其中分离所述部分的甲烷位于将所述生产流体的热能转换为电和热量中至少一种的下游。
27.如权利要求20至26中任一项所述的方法,还包括从第一部分的所述生产流体回收热量,以加热来自所述第一部分的生产流体的上游的第二部分的所述生产流体。
28.如权利要求27所述的方法,其中从所述第一部分的生产流体回收热量包括从压缩所述第一部分的生产流体的压缩机中回收热量。
29.如权利要求20至28中任一项所述的方法,其中所述一个或多个油气藏位于一个或多个盖层的下方,并且是不使用大型水力压裂而可获取的。
30.如权利要求20至29中任一项所述的方法,其中所述生产流体包含0.01wt%至99wt%的所述非水基工作流体。
31.如权利要求20至30中任一项所述的方法,其中所述非水基工作流体是二氧化碳。
32.如权利要求31的所述的方法,其中所述二氧化碳是超临界二氧化碳。
33.如权利要求31或32中任一项所述的方法,还包括从发电厂、工业工厂或天然二氧化碳源回收二氧化碳。
34.如权利要求20至33中任一项所述的方法,其中提取所述能量包括产生电、在一个或多个热交换器中加热第二工作流体、向所述油气藏提供压缩的流体、向所述油气藏提供冷却的流体以及向一个或多个泵或压缩机提供轴功率中的至少一种。
35.如权利要求34所述的方法,其中产生所述电包括:
向一个或多个膨胀装置提供至少一部分的所述生产流体,或者向所述一个或多个膨胀装置提供在一个或多个热交换器中加热的所述第二工作流体,以及
为一个或多个发电机产生轴功率以产生电。
36.如权利要求34或35中任一项所述的方法,其中在所述一个或多个热交换器中加热的所述第二工作流体为直接使用、为地下水热泵、为郎肯动力循环或其组合提供热量。
37.如权利要求20至36中任一项所述的方法,其中提取所述能量包括提取在所述生产流体中的至少一部分的热能以及在所述生产流体中的至少一部分的化学能。
38.如权利要求20至37中任一项所述的方法,还包括通过一个或多个所述注入井回注至少一部分的所述生产流体。
39.如权利要求20至38中任一项所述的方法,其中回注至少一部分的所述生产流体包括:在所述一个或多个生产井与所述一个或多个注入井之间形成所述生产流体的热虹吸管。
CN201380069985.7A 2012-11-12 2013-11-12 增强型二氧化碳基地热能生成系统和方法 Active CN105074124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910203669.3A CN109915090B (zh) 2012-11-12 2013-11-12 增强型二氧化碳基地热能生成系统和方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261725270P 2012-11-12 2012-11-12
US61/725,270 2012-11-12
PCT/US2013/069680 WO2014075071A2 (en) 2012-11-12 2013-11-12 Enchanced carbon dioxide-based geothermal energy generation systems and methods

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201910203669.3A Division CN109915090B (zh) 2012-11-12 2013-11-12 增强型二氧化碳基地热能生成系统和方法

Publications (2)

Publication Number Publication Date
CN105074124A true CN105074124A (zh) 2015-11-18
CN105074124B CN105074124B (zh) 2019-04-12

Family

ID=49681157

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380069985.7A Active CN105074124B (zh) 2012-11-12 2013-11-12 增强型二氧化碳基地热能生成系统和方法
CN201910203669.3A Active CN109915090B (zh) 2012-11-12 2013-11-12 增强型二氧化碳基地热能生成系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201910203669.3A Active CN109915090B (zh) 2012-11-12 2013-11-12 增强型二氧化碳基地热能生成系统和方法

Country Status (8)

Country Link
US (4) US9869167B2 (zh)
EP (1) EP2917474A2 (zh)
JP (1) JP2016504516A (zh)
CN (2) CN105074124B (zh)
AU (1) AU2013341366A1 (zh)
CA (2) CA2891287C (zh)
MX (2) MX367872B (zh)
WO (1) WO2014075071A2 (zh)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105805969A (zh) * 2016-04-14 2016-07-27 中国石油大学(华东) 一种注co2开采废弃高温气藏地热的工艺方法
CN106382106A (zh) * 2016-10-26 2017-02-08 东北石油大学 利用超临界二氧化碳进行井下周期吞吐采油的方法和装置
CN106761659A (zh) * 2016-12-15 2017-05-31 中国石油大学(华东) 一种用于油田co2驱产出气回注的提纯液化工艺
WO2017107240A1 (zh) * 2015-12-22 2017-06-29 彭斯干 无碳排放联合油气发电方法及装备
CN108035699A (zh) * 2017-11-27 2018-05-15 华南理工大学 一种利用海底地热能原位开采天然气水合物的系统及方法
CN108150369A (zh) * 2017-12-11 2018-06-12 西安交通大学 一种利用干热岩地热能的多性态二氧化碳发电系统及方法
CN109682099A (zh) * 2017-07-10 2019-04-26 华北电力大学 利用烟气与co2余热的增强地热发电与封存一体化系统
CN109915334A (zh) * 2019-04-09 2019-06-21 李福军 地热井下循环高效热动电三联供装置及工艺方法
CN110325707A (zh) * 2017-02-07 2019-10-11 艾奎诺能源公司 用于co2强化采油的方法和系统
CN110749703A (zh) * 2019-11-05 2020-02-04 山东省地勘局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 一种模拟砂岩热储地热尾水回灌与示踪实验的方法
CN111412033A (zh) * 2020-02-26 2020-07-14 中国华能集团清洁能源技术研究院有限公司 一种太阳能与地热能耦合的超临界二氧化碳联合循环发电系统及方法
CN112240177A (zh) * 2020-11-25 2021-01-19 河北绿源地热能开发有限公司 一种用于中深层地热井同井采灌装置及其操作方法
CN112269209A (zh) * 2020-08-06 2021-01-26 吉林大学 断陷盆地地震资料中火山岩熔岩型冷却单元的识别方法
CN112413915A (zh) * 2019-08-22 2021-02-26 黑尔姆霍尔茨中心波茨坦德国国家地理研究中心-Gfz国家勃兰登堡公共基金会 生产地热能的系统和方法
US11598186B2 (en) 2012-11-12 2023-03-07 Terracoh Inc. Enhanced carbon dioxide-based geothermal energy generation systems and methods

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8991510B2 (en) 2009-03-13 2015-03-31 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
US9683428B2 (en) 2012-04-13 2017-06-20 Enservco Corporation System and method for providing heated water for well related activities
US20160138456A1 (en) * 2013-03-06 2016-05-19 Willard Harvey Wattenburg Moveable, fuel-localized-power (flp) plant
WO2015192011A1 (en) * 2014-06-13 2015-12-17 Greenfire Energy Inc Geothermal loop energy production systems
US9739509B2 (en) 2014-06-20 2017-08-22 Lawrence Livermore National Laboratory Multi-fluid renewable geo-energy systems and methods
US10995972B2 (en) 2014-06-20 2021-05-04 Lawrence Livermore National Security, Llc Multi-fluid renewable geo-energy systems and methods
JP6247170B2 (ja) * 2014-07-07 2017-12-13 鹿島建設株式会社 二酸化炭素貯留用地中構造体
US9057517B1 (en) 2014-08-19 2015-06-16 Adler Hot Oil Service, LLC Dual fuel burner
US10767859B2 (en) 2014-08-19 2020-09-08 Adler Hot Oil Service, LLC Wellhead gas heater
JP6327730B2 (ja) * 2014-12-22 2018-05-23 独立行政法人石油天然ガス・金属鉱物資源機構 水溶性天然ガスの採掘方法
CH710999A2 (de) * 2015-04-27 2016-10-31 Von Düring Man Ag Verfahren zur Nutzung der inneren Energie eines Aquiferfluids in einer Geothermieanlage.
US9145873B1 (en) * 2015-05-18 2015-09-29 Nahed A. Elgarousha Geothermal energy generator system
US20170059091A1 (en) * 2015-08-28 2017-03-02 Chevron U.S.A. Inc. Energy recovery from reduction in pressure of a dense phase hydrocarbon fluid
CN106479556B (zh) * 2015-08-31 2021-02-26 通用电气公司 采收碳氢化合物的系统和方法
NL2015780B1 (en) * 2015-11-12 2017-05-31 Heerema Marine Contractors Nl Device for converting thermal energy in hydrocarbons flowing from a well into electric energy.
CA3012359A1 (en) * 2016-02-29 2017-09-08 XDI Holdings, LLC Improved dirty water and exhaust constituent free, direct steam generation, convaporator system, apparatus and method
WO2017172321A1 (en) * 2016-03-30 2017-10-05 Exxonmobil Upstream Research Company Self-sourced reservoir fluid for enhanced oil recovery
NO20170525A1 (en) * 2016-04-01 2017-10-02 Mirade Consultants Ltd Improved Techniques in the upstream oil and gas industry
US10323200B2 (en) 2016-04-12 2019-06-18 Enservco Corporation System and method for providing separation of natural gas from oil and gas well fluids
BR112019009950A2 (pt) * 2016-11-16 2019-08-20 Subsurface Tech Inc método de manutenção de poço de água ? abordagem baseada em tempo
US11078767B2 (en) * 2016-12-21 2021-08-03 Henry D. Tiffany, III Apparatus and method for potable water extraction from saline aquifers
GB2597880B (en) * 2017-02-07 2022-05-04 Equinor Energy As Method and system for CO2 enhanced oil recovery
FR3066255B1 (fr) * 2017-05-11 2019-11-08 Pluton Dg Systeme et procede pour la production et le stockage d’ energie geothermique
NL2019056B1 (en) * 2017-06-12 2018-12-19 Circular Energy B V Power plant, a gas field, a method of exploitation of a subsurface hydrocarbon reservoir.
CN107288600B (zh) * 2017-08-07 2023-03-24 南充西南石油大学设计研究院有限责任公司 尾气回注和余热利用复合驱动油田增产的装置及工艺
CN107990577A (zh) * 2017-12-29 2018-05-04 古强 一体式抽汲回灌两用地热循环装置及采用该装置的一种地热井结构
WO2019139664A1 (en) * 2018-01-10 2019-07-18 Safe Marine Transfer, LLC Well annulus fluid expansion storage device
WO2019178447A1 (en) * 2018-03-16 2019-09-19 Lawrence Livermore National Security, Llc Multi-fluid, earth battery energy systems and methods
US11421516B2 (en) * 2019-04-30 2022-08-23 Sigl-G, Llc Geothermal power generation
US11174715B2 (en) * 2019-06-10 2021-11-16 Saudi Arabian Oil Company Coupling enhanced oil recovery with energy requirements for crude production and processing
US11525186B2 (en) 2019-06-11 2022-12-13 Ecolab Usa Inc. Corrosion inhibitor formulation for geothermal reinjection well
WO2020250006A1 (en) * 2019-06-11 2020-12-17 Firth Energy Solutions Inc. Systems and methods for storing and extracting natural gas from underground formations and generating electricity
US11905856B2 (en) * 2019-07-03 2024-02-20 Ormat Technologies, Inc. Geothermal district heating power system
US11168673B2 (en) * 2019-11-11 2021-11-09 Saudi Arabian Oil Company Geothermal energy recovery process with selective recirculation
CA3181981A1 (en) * 2020-01-25 2021-02-12 Matthew Toews Method for on demand power production utilizing geologic thermal recovery
WO2022040430A1 (en) * 2020-08-21 2022-02-24 Terracoh Inc. Power generation from supercritical carbon dioxide
WO2022178195A1 (en) * 2021-02-22 2022-08-25 Seaquest Ccs, Llc Systems and methods of carbon dioxide removal with permanent subsea sequestration
US11326550B1 (en) 2021-04-02 2022-05-10 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11421663B1 (en) 2021-04-02 2022-08-23 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic Rankine cycle operation
US11493029B2 (en) 2021-04-02 2022-11-08 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11592009B2 (en) 2021-04-02 2023-02-28 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11486370B2 (en) 2021-04-02 2022-11-01 Ice Thermal Harvesting, Llc Modular mobile heat generation unit for generation of geothermal power in organic Rankine cycle operations
US11293414B1 (en) 2021-04-02 2022-04-05 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power in an organic rankine cycle operation
US11480074B1 (en) 2021-04-02 2022-10-25 Ice Thermal Harvesting, Llc Systems and methods utilizing gas temperature as a power source
US11280322B1 (en) * 2021-04-02 2022-03-22 Ice Thermal Harvesting, Llc Systems for generating geothermal power in an organic Rankine cycle operation during hydrocarbon production based on wellhead fluid temperature
US11644015B2 (en) 2021-04-02 2023-05-09 Ice Thermal Harvesting, Llc Systems and methods for generation of electrical power at a drilling rig
US11566819B2 (en) * 2021-04-15 2023-01-31 Mass Flow Energy, Inc. Method and system for deep-drilling for renewable energy
US11821408B2 (en) * 2021-05-19 2023-11-21 Terracoh Inc. Systems and methods for geothermal energy generation with two-phase working fluid
WO2023287792A1 (en) 2021-07-13 2023-01-19 Terracoh Inc. Systems and methods for carbon dioxide sequestration injection
US20230059338A1 (en) * 2021-08-20 2023-02-23 National Oilwell Varco, L.P. Systems and methods for electricity generation
CN113686034A (zh) * 2021-08-30 2021-11-23 中能建地热有限公司 一种复合含水层用中低温地热井利用系统
AU2021464173A1 (en) * 2021-09-10 2024-05-02 Deep Earth Energy Production Corp. Horizontal drilling for geothermal wells
WO2023087064A1 (en) * 2021-11-19 2023-05-25 Good Water Energy Ltd Geothermal carbon capture system
CN114293962A (zh) * 2021-12-30 2022-04-08 中国矿业大学 瓦斯抽采利用并回注煤层增透的闭环系统及工作方法
US11598187B1 (en) * 2022-01-11 2023-03-07 Saudi Arabian Oil Company Membrane-based systems and methods for increasing the mass transfer rate of dissolved gases
DE102022104030A1 (de) 2022-02-21 2023-08-24 Stablegrid Engineers GmbH Anordnung zur Stabilisierung von Elektrizitätsnetzen mit Kaverne zur Gasspeicherung
US11841172B2 (en) 2022-02-28 2023-12-12 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
CN114542957B (zh) * 2022-04-07 2024-03-22 重庆大学 一种利用层状盐岩溶腔储存二氧化碳的方法
US11905797B2 (en) 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11795784B1 (en) * 2022-05-06 2023-10-24 Low Carbon Energies, LLC System and method for carbon dioxide sequestration in offshore saline aquifers as carbon dioxide hydrate
US20230358120A1 (en) * 2022-05-06 2023-11-09 Low Carbon Energies Llc System and method for carbon dioxide storage and geothermal heat mining in depleted gas, gas condensate or oil reservoirs
WO2023220286A1 (en) * 2022-05-11 2023-11-16 Cameron International Corporation Method and system for power generation
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
AU2023254942A1 (en) * 2022-10-07 2024-05-02 Petroleo Brasileiro S.A. - Petrobras Subsea electrical energy generation system
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11912572B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Thermochemical reactions using geothermal energy
US11897828B1 (en) 2023-03-03 2024-02-13 EnhancedGEO, Holdings, LLC Thermochemical reactions using geothermal energy
US11912573B1 (en) 2023-03-03 2024-02-27 EnhancedGEO Holdings, LLC Molten-salt mediated thermochemical reactions using geothermal energy
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668554B1 (en) * 1999-09-10 2003-12-30 The Regents Of The University Of California Geothermal energy production with supercritical fluids
US20060026961A1 (en) * 2004-08-04 2006-02-09 Bronicki Lucien Y Method and apparatus for using geothermal energy for the production of power
WO2007112254A2 (en) * 2006-03-27 2007-10-04 Shell Oil Company Water injection systems and methods
CN101679888A (zh) * 2007-05-24 2010-03-24 鲁奇有限责任公司 处理通过加压气化固体燃料产生的产品气的方法和装置
CN101981162A (zh) * 2008-03-28 2011-02-23 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN102177309A (zh) * 2008-08-22 2011-09-07 德士古发展公司 使用来自油和气生产的产出流体的热产生能量
US20120001429A1 (en) * 2009-03-13 2012-01-05 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
CN102597417A (zh) * 2009-10-19 2012-07-18 格雷特波因特能源公司 整合的强化采油方法

Family Cites Families (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786858A (en) 1972-03-27 1974-01-22 Atomic Energy Commission Method of extracting heat from dry geothermal reservoirs
US4060988A (en) 1975-04-21 1977-12-06 Texaco Inc. Process for heating a fluid in a geothermal formation
US4137719A (en) 1977-03-17 1979-02-06 Rex Robert W Method for energy extraction from hot dry rock systems
US4132269A (en) 1978-01-16 1979-01-02 Union Oil Company Of California Generation of electricity during the injection of a dense fluid into a subterranean formation
US4357802A (en) 1978-02-06 1982-11-09 Occidental Petroleum Corporation Geothermal energy production
US4223729A (en) 1979-01-12 1980-09-23 Foster John W Method for producing a geothermal reservoir in a hot dry rock formation for the recovery of geothermal energy
US4200152A (en) 1979-01-12 1980-04-29 Foster John W Method for enhancing simultaneous fracturing in the creation of a geothermal reservoir
US4765143A (en) 1987-02-04 1988-08-23 Cbi Research Corporation Power plant using CO2 as a working fluid
US4787450A (en) * 1987-05-07 1988-11-29 Union Oil Company Of California Gas lift process for restoring flow in depleted geothermal reservoirs
US5038567A (en) 1989-06-12 1991-08-13 Ormat Turbines, Ltd. Method of and means for using a two-phase fluid for generating power in a rankine cycle power plant
US5685362A (en) 1996-01-22 1997-11-11 The Regents Of The University Of California Storage capacity in hot dry rock reservoirs
US7644759B2 (en) 1997-03-24 2010-01-12 Wavefront Energy & Environmental Services Inc. Enhancement of flow rates through porous media
US6851473B2 (en) 1997-03-24 2005-02-08 Pe-Tech Inc. Enhancement of flow rates through porous media
US20040200618A1 (en) 2002-12-04 2004-10-14 Piekenbrock Eugene J. Method of sequestering carbon dioxide while producing natural gas
AU2005258224A1 (en) 2004-06-23 2006-01-05 Terrawatt Holdings Corporation Method of developingand producing deep geothermal reservoirs
FR2881482B1 (fr) 2005-02-02 2007-04-06 Inst Francais Du Petrole Procede de production d'energie mecanique a partir d'energie geothermique
US7426959B2 (en) * 2005-04-21 2008-09-23 Shell Oil Company Systems and methods for producing oil and/or gas
US7484561B2 (en) 2006-02-21 2009-02-03 Pyrophase, Inc. Electro thermal in situ energy storage for intermittent energy sources to recover fuel from hydro carbonaceous earth formations
US9605522B2 (en) 2006-03-29 2017-03-28 Pioneer Energy, Inc. Apparatus and method for extracting petroleum from underground sites using reformed gases
US7654320B2 (en) 2006-04-07 2010-02-02 Occidental Energy Ventures Corp. System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir
EP2010755A4 (en) 2006-04-21 2016-02-24 Shell Int Research HEATING SEQUENCE OF MULTIPLE LAYERS IN A FORMATION CONTAINING HYDROCARBONS
DE102006018215A1 (de) 2006-04-25 2007-11-22 Werner Foppe Verfahren und Vorrichtung zur Nutzung von SC-GeoSteam in Kombination mit SC-Wärme- und Druckwasser-Kraftwerke
US7562708B2 (en) 2006-05-10 2009-07-21 Raytheon Company Method and apparatus for capture and sequester of carbon dioxide and extraction of energy from large land masses during and after extraction of hydrocarbon fuels or contaminants using energy and critical fluids
US7946346B2 (en) 2006-07-03 2011-05-24 Zornes David Allen Supercritical fluid recovery and refining of hydrocarbons from hydrocarbon-bearing formations applying fuel cell gas in situ
JP4972752B2 (ja) 2007-03-30 2012-07-11 一般財団法人電力中央研究所 地熱発電方法並びにシステム
US7654330B2 (en) 2007-05-19 2010-02-02 Pioneer Energy, Inc. Apparatus, methods, and systems for extracting petroleum using a portable coal reformer
US7650939B2 (en) 2007-05-20 2010-01-26 Pioneer Energy, Inc. Portable and modular system for extracting petroleum and generating power
US8616294B2 (en) 2007-05-20 2013-12-31 Pioneer Energy, Inc. Systems and methods for generating in-situ carbon dioxide driver gas for use in enhanced oil recovery
US20080296018A1 (en) 2007-05-29 2008-12-04 Zubrin Robert M System and method for extracting petroleum and generating electricity using natural gas or local petroleum
US7882893B2 (en) * 2008-01-11 2011-02-08 Legacy Energy Combined miscible drive for heavy oil production
US7753972B2 (en) 2008-08-17 2010-07-13 Pioneer Energy, Inc Portable apparatus for extracting low carbon petroleum and for generating low carbon electricity
CA2692994C (en) 2009-02-19 2015-07-21 Conocophillips Company Steam assisted oil recovery and carbon dioxide capture
US8002033B2 (en) 2009-03-03 2011-08-23 Albert Calderon Method for recovering energy in-situ from underground resources and upgrading such energy resources above ground
US8991510B2 (en) * 2009-03-13 2015-03-31 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
US20100258291A1 (en) 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
US20110000210A1 (en) * 2009-07-01 2011-01-06 Miles Mark W Integrated System for Using Thermal Energy Conversion
US7937948B2 (en) 2009-09-23 2011-05-10 Pioneer Energy, Inc. Systems and methods for generating electricity from carbonaceous material with substantially no carbon dioxide emissions
US20120240577A1 (en) * 2009-12-06 2012-09-27 Heliofocus Ltd. Thermal generation systems
US8337613B2 (en) 2010-01-11 2012-12-25 Bert Zauderer Slagging coal combustor for cementitious slag production, metal oxide reduction, shale gas and oil recovery, enviromental remediation, emission control and CO2 sequestration
WO2012021810A2 (en) * 2010-08-13 2012-02-16 Board Of Regents, The University Of Texas System Storing carbon dioxide and producing methane and geothermal energy from deep saline aquifers
CN101988384B (zh) * 2010-08-31 2015-11-25 新奥科技发展有限公司 利用烟道气原位干馏地下煤层的方法
US8869889B2 (en) * 2010-09-21 2014-10-28 Palmer Labs, Llc Method of using carbon dioxide in recovery of formation deposits
US20110272166A1 (en) * 2011-06-09 2011-11-10 Robert Daniel Hunt Separation Under Pressure of Methane from Hot Brine Useful for Geothermal Power
CA2879544C (en) 2012-07-20 2019-09-24 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
US9869167B2 (en) 2012-11-12 2018-01-16 Terracoh Inc. Carbon dioxide-based geothermal energy generation systems and methods related thereto

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6668554B1 (en) * 1999-09-10 2003-12-30 The Regents Of The University Of California Geothermal energy production with supercritical fluids
US20060026961A1 (en) * 2004-08-04 2006-02-09 Bronicki Lucien Y Method and apparatus for using geothermal energy for the production of power
WO2007112254A2 (en) * 2006-03-27 2007-10-04 Shell Oil Company Water injection systems and methods
CN101679888A (zh) * 2007-05-24 2010-03-24 鲁奇有限责任公司 处理通过加压气化固体燃料产生的产品气的方法和装置
CN101981162A (zh) * 2008-03-28 2011-02-23 埃克森美孚上游研究公司 低排放发电和烃采收系统及方法
CN102177309A (zh) * 2008-08-22 2011-09-07 德士古发展公司 使用来自油和气生产的产出流体的热产生能量
US20120001429A1 (en) * 2009-03-13 2012-01-05 Regents Of The University Of Minnesota Carbon dioxide-based geothermal energy generation systems and methods related thereto
CN102597417A (zh) * 2009-10-19 2012-07-18 格雷特波因特能源公司 整合的强化采油方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IAN TAGGART: "《Extraction of Dissolved Methane in Brines by CO2 Injection: Implication for CO2 Sequestration》", 《SPE》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11598186B2 (en) 2012-11-12 2023-03-07 Terracoh Inc. Enhanced carbon dioxide-based geothermal energy generation systems and methods
WO2017107240A1 (zh) * 2015-12-22 2017-06-29 彭斯干 无碳排放联合油气发电方法及装备
CN105805969B (zh) * 2016-04-14 2017-11-10 中国石油大学(华东) 一种注co2开采废弃高温气藏地热的工艺方法
CN105805969A (zh) * 2016-04-14 2016-07-27 中国石油大学(华东) 一种注co2开采废弃高温气藏地热的工艺方法
CN106382106A (zh) * 2016-10-26 2017-02-08 东北石油大学 利用超临界二氧化碳进行井下周期吞吐采油的方法和装置
CN106382106B (zh) * 2016-10-26 2019-02-26 东北石油大学 利用超临界二氧化碳进行井下周期吞吐采油的方法和装置
CN106761659A (zh) * 2016-12-15 2017-05-31 中国石油大学(华东) 一种用于油田co2驱产出气回注的提纯液化工艺
CN106761659B (zh) * 2016-12-15 2021-01-15 中国石油大学(华东) 一种用于油田co2驱产出气回注的提纯液化工艺
CN110325707A (zh) * 2017-02-07 2019-10-11 艾奎诺能源公司 用于co2强化采油的方法和系统
CN109682099A (zh) * 2017-07-10 2019-04-26 华北电力大学 利用烟气与co2余热的增强地热发电与封存一体化系统
CN108035699A (zh) * 2017-11-27 2018-05-15 华南理工大学 一种利用海底地热能原位开采天然气水合物的系统及方法
CN108150369B (zh) * 2017-12-11 2019-07-19 西安交通大学 一种利用干热岩地热能的多性态二氧化碳发电系统及方法
CN108150369A (zh) * 2017-12-11 2018-06-12 西安交通大学 一种利用干热岩地热能的多性态二氧化碳发电系统及方法
CN109915334A (zh) * 2019-04-09 2019-06-21 李福军 地热井下循环高效热动电三联供装置及工艺方法
CN109915334B (zh) * 2019-04-09 2023-12-19 陕西国诚恒业能源技术有限公司 地热井下循环高效热动电三联供装置及工艺方法
CN112413915A (zh) * 2019-08-22 2021-02-26 黑尔姆霍尔茨中心波茨坦德国国家地理研究中心-Gfz国家勃兰登堡公共基金会 生产地热能的系统和方法
CN110749703A (zh) * 2019-11-05 2020-02-04 山东省地勘局第二水文地质工程地质大队(山东省鲁北地质工程勘察院) 一种模拟砂岩热储地热尾水回灌与示踪实验的方法
CN111412033A (zh) * 2020-02-26 2020-07-14 中国华能集团清洁能源技术研究院有限公司 一种太阳能与地热能耦合的超临界二氧化碳联合循环发电系统及方法
CN111412033B (zh) * 2020-02-26 2023-11-03 中国华能集团清洁能源技术研究院有限公司 一种太阳能与地热能耦合的超临界二氧化碳联合循环发电系统及方法
CN112269209A (zh) * 2020-08-06 2021-01-26 吉林大学 断陷盆地地震资料中火山岩熔岩型冷却单元的识别方法
CN112240177A (zh) * 2020-11-25 2021-01-19 河北绿源地热能开发有限公司 一种用于中深层地热井同井采灌装置及其操作方法

Also Published As

Publication number Publication date
US20180106138A1 (en) 2018-04-19
CA2891287A1 (en) 2014-05-15
US20140130498A1 (en) 2014-05-15
US11598186B2 (en) 2023-03-07
CA2891287C (en) 2023-01-17
WO2014075071A2 (en) 2014-05-15
US20210025265A1 (en) 2021-01-28
MX367872B (es) 2019-09-09
CN109915090B (zh) 2022-07-15
CN105074124B (zh) 2019-04-12
EP2917474A2 (en) 2015-09-16
JP2016504516A (ja) 2016-02-12
CN109915090A (zh) 2019-06-21
US9869167B2 (en) 2018-01-16
AU2013341366A1 (en) 2015-07-02
US20230313650A1 (en) 2023-10-05
CA3143888A1 (en) 2014-05-15
WO2014075071A3 (en) 2014-11-06
MX2019010729A (es) 2019-11-01
MX2015005976A (es) 2016-03-17

Similar Documents

Publication Publication Date Title
CN105074124A (zh) 增强型二氧化碳基地热能生成系统和方法
US8991510B2 (en) Carbon dioxide-based geothermal energy generation systems and methods related thereto
US8833475B2 (en) Carbon dioxide-based geothermal energy generation systems and methods related thereto
CA2879544C (en) Carbon dioxide-based geothermal energy generation systems and methods related thereto
JP4972752B2 (ja) 地熱発電方法並びにシステム
US20170247994A1 (en) Thermally Assisted Oil Production Wells
US20230016334A1 (en) Systems and methods for carbon dioxide sequestration injection
US11821408B2 (en) Systems and methods for geothermal energy generation with two-phase working fluid
Saraf et al. Carbon dioxide injection for enhanced oil recovery and underground storage to reduce greenhouse gas
Bryant The one-stop carbon solution
US20220056893A1 (en) Power generation from supercritical carbon dioxide
Pétursdóttir Feasibility of the application of the CarbFix method to geothermal power plants globally
Ezekiel Assessment and optimization of geological carbon storage and energy production from deep natural gas reservoirs
Jonsson et al. Case Study: Hellisheidi power plant, combined heat and power
Evans et al. Mineral planning factsheet: underground storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant