CN105074056A - Techniques and prefabricated cathode structures for the manufacture of chlorinated products - Google Patents
Techniques and prefabricated cathode structures for the manufacture of chlorinated products Download PDFInfo
- Publication number
- CN105074056A CN105074056A CN201380073663.XA CN201380073663A CN105074056A CN 105074056 A CN105074056 A CN 105074056A CN 201380073663 A CN201380073663 A CN 201380073663A CN 105074056 A CN105074056 A CN 105074056A
- Authority
- CN
- China
- Prior art keywords
- ionogen
- phosphate
- electrochemical process
- negative electrode
- calcium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 130
- 238000004519 manufacturing process Methods 0.000 title claims description 34
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims abstract description 127
- 239000010452 phosphate Substances 0.000 claims abstract description 123
- 229910019142 PO4 Inorganic materials 0.000 claims abstract description 121
- -1 calcium phosphate compound Chemical class 0.000 claims abstract description 109
- 230000008569 process Effects 0.000 claims abstract description 90
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims abstract description 77
- 229910001424 calcium ion Inorganic materials 0.000 claims abstract description 74
- 230000003197 catalytic effect Effects 0.000 claims abstract description 67
- 238000005868 electrolysis reaction Methods 0.000 claims abstract description 64
- 239000012535 impurity Substances 0.000 claims abstract description 64
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 42
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 40
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 40
- BZSXEZOLBIJVQK-UHFFFAOYSA-N 2-methylsulfonylbenzoic acid Chemical compound CS(=O)(=O)C1=CC=CC=C1C(O)=O BZSXEZOLBIJVQK-UHFFFAOYSA-N 0.000 claims abstract description 36
- 239000000758 substrate Substances 0.000 claims abstract description 36
- 229910052588 hydroxylapatite Inorganic materials 0.000 claims abstract description 27
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 claims abstract description 27
- 239000011575 calcium Substances 0.000 claims description 83
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 63
- 229910052791 calcium Inorganic materials 0.000 claims description 63
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 57
- 229910052742 iron Inorganic materials 0.000 claims description 37
- 230000015572 biosynthetic process Effects 0.000 claims description 31
- XTEGARKTQYYJKE-UHFFFAOYSA-M chlorate Inorganic materials [O-]Cl(=O)=O XTEGARKTQYYJKE-UHFFFAOYSA-M 0.000 claims description 31
- 230000007797 corrosion Effects 0.000 claims description 29
- 238000005260 corrosion Methods 0.000 claims description 29
- 229910001220 stainless steel Inorganic materials 0.000 claims description 29
- 238000000576 coating method Methods 0.000 claims description 27
- 238000006243 chemical reaction Methods 0.000 claims description 25
- 239000010935 stainless steel Substances 0.000 claims description 24
- 239000011248 coating agent Substances 0.000 claims description 23
- SUKJFIGYRHOWBL-UHFFFAOYSA-N sodium hypochlorite Chemical compound [Na+].Cl[O-] SUKJFIGYRHOWBL-UHFFFAOYSA-N 0.000 claims description 21
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical class [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 17
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 150000002500 ions Chemical class 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 15
- WQYVRQLZKVEZGA-UHFFFAOYSA-N hypochlorite Chemical compound Cl[O-] WQYVRQLZKVEZGA-UHFFFAOYSA-N 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 12
- 229910014497 Ca10(PO4)6(OH)2 Inorganic materials 0.000 claims description 10
- 238000004070 electrodeposition Methods 0.000 claims description 9
- 239000011159 matrix material Substances 0.000 claims description 9
- 238000007750 plasma spraying Methods 0.000 claims description 9
- UJXVAJQDLVNWPS-UHFFFAOYSA-N [Al].[Al].[Al].[Fe] Chemical group [Al].[Al].[Al].[Fe] UJXVAJQDLVNWPS-UHFFFAOYSA-N 0.000 claims description 5
- 229910021326 iron aluminide Inorganic materials 0.000 claims description 5
- 239000002244 precipitate Substances 0.000 claims description 5
- 230000004044 response Effects 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000012530 fluid Substances 0.000 claims description 4
- 231100000572 poisoning Toxicity 0.000 claims description 4
- 230000000607 poisoning effect Effects 0.000 claims description 4
- 238000003980 solgel method Methods 0.000 claims description 3
- 230000000630 rising effect Effects 0.000 claims 6
- 238000003618 dip coating Methods 0.000 claims 5
- 239000003054 catalyst Substances 0.000 claims 2
- 230000003628 erosive effect Effects 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 134
- 239000010410 layer Substances 0.000 abstract description 104
- 230000001681 protective effect Effects 0.000 abstract description 57
- 239000011241 protective layer Substances 0.000 abstract description 39
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 abstract description 21
- 238000001556 precipitation Methods 0.000 abstract description 16
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 39
- 235000011007 phosphoric acid Nutrition 0.000 description 20
- 239000000047 product Substances 0.000 description 20
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 18
- 239000012267 brine Substances 0.000 description 13
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 13
- 238000002474 experimental method Methods 0.000 description 12
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 239000000460 chlorine Substances 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 6
- 239000000920 calcium hydroxide Substances 0.000 description 6
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- 238000004140 cleaning Methods 0.000 description 6
- SOCTUWSJJQCPFX-UHFFFAOYSA-N dichromate(2-) Chemical compound [O-][Cr](=O)(=O)O[Cr]([O-])(=O)=O SOCTUWSJJQCPFX-UHFFFAOYSA-N 0.000 description 6
- 239000011229 interlayer Substances 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 239000002344 surface layer Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 5
- 229910017372 Fe3Al Inorganic materials 0.000 description 5
- 239000005708 Sodium hypochlorite Substances 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000003592 biomimetic effect Effects 0.000 description 5
- 238000004210 cathodic protection Methods 0.000 description 5
- 238000007598 dipping method Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000011066 ex-situ storage Methods 0.000 description 5
- 238000011065 in-situ storage Methods 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 4
- 239000010406 cathode material Substances 0.000 description 4
- 229910052804 chromium Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 4
- 230000000873 masking effect Effects 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- VQWFNAGFNGABOH-UHFFFAOYSA-K chromium(iii) hydroxide Chemical group [OH-].[OH-].[OH-].[Cr+3] VQWFNAGFNGABOH-UHFFFAOYSA-K 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- QWPPOHNGKGFGJK-UHFFFAOYSA-N hypochlorous acid Chemical compound ClO QWPPOHNGKGFGJK-UHFFFAOYSA-N 0.000 description 3
- 235000013980 iron oxide Nutrition 0.000 description 3
- 229910000398 iron phosphate Inorganic materials 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 230000001376 precipitating effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000011253 protective coating Substances 0.000 description 3
- 238000001228 spectrum Methods 0.000 description 3
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 2
- 229910000316 alkaline earth metal phosphate Inorganic materials 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 229940085991 phosphate ion Drugs 0.000 description 2
- 239000002574 poison Substances 0.000 description 2
- 231100000614 poison Toxicity 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 2
- 208000004434 Calcinosis Diseases 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- VTLYFUHAOXGGBS-UHFFFAOYSA-N Fe3+ Chemical compound [Fe+3] VTLYFUHAOXGGBS-UHFFFAOYSA-N 0.000 description 1
- 229910017116 Fe—Mo Inorganic materials 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- OOIOHEBTXPTBBE-UHFFFAOYSA-N [Na].[Fe] Chemical compound [Na].[Fe] OOIOHEBTXPTBBE-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052586 apatite Inorganic materials 0.000 description 1
- 238000004061 bleaching Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 239000008364 bulk solution Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 235000011148 calcium chloride Nutrition 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- ZHZFKLKREFECML-UHFFFAOYSA-L calcium;sulfate;hydrate Chemical compound O.[Ca+2].[O-]S([O-])(=O)=O ZHZFKLKREFECML-UHFFFAOYSA-L 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000001148 chemical map Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 description 1
- BFGKITSFLPAWGI-UHFFFAOYSA-N chromium(3+) Chemical compound [Cr+3] BFGKITSFLPAWGI-UHFFFAOYSA-N 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- PYRZPBDTPRQYKG-UHFFFAOYSA-N cyclopentene-1-carboxylic acid Chemical compound OC(=O)C1=CCCC1 PYRZPBDTPRQYKG-UHFFFAOYSA-N 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 235000019800 disodium phosphate Nutrition 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000001652 electrophoretic deposition Methods 0.000 description 1
- 238000000724 energy-dispersive X-ray spectrum Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229910001447 ferric ion Inorganic materials 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 150000004712 monophosphates Chemical class 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 239000001205 polyphosphate Chemical class 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000007781 pre-processing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- YZHUMGUJCQRKBT-UHFFFAOYSA-M sodium chlorate Chemical compound [Na+].[O-]Cl(=O)=O YZHUMGUJCQRKBT-UHFFFAOYSA-M 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/073—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
- C25B11/075—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D9/00—Electrolytic coating other than with metals
- C25D9/04—Electrolytic coating other than with metals with inorganic materials
- C25D9/08—Electrolytic coating other than with metals with inorganic materials by cathodic processes
- C25D9/10—Electrolytic coating other than with metals with inorganic materials by cathodic processes on iron or steel
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/24—Halogens or compounds thereof
- C25B1/26—Chlorine; Compounds thereof
- C25B1/265—Chlorates
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
- C25B11/051—Electrodes formed of electrocatalysts on a substrate or carrier
- C25B11/055—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
- C25B11/057—Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
- C25B11/061—Metal or alloy
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B15/00—Operating or servicing cells
- C25B15/02—Process control or regulation
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B9/00—Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
- C25B9/17—Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Automation & Control Theory (AREA)
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Abstract
Description
技术领域technical field
本发明总体上涉及制造氯化产物的领域,并且更具体地涉及在氯酸钠的制造中的阴极保护技术以及预制阴极结构体。The present invention relates generally to the field of manufacture of chlorination products, and more particularly to cathodic protection techniques and prefabricated cathodic structures in the manufacture of sodium chlorate.
背景技术Background technique
氯酸钠(NaClO3)在商业上可通过根据以下总反应的电化学工艺制造:Sodium chlorate (NaClO 3 ) is produced commercially by an electrochemical process according to the following overall reaction:
NaCl+3H2O=>NaClO3+3H2(1)NaCl+3H 2 O=>NaClO 3 +3H 2 (1)
在阴极侧如下发生氢气放出(H2):Hydrogen evolution (H 2 ) occurs on the cathode side as follows:
2H2O+2e-=>2OH-+H2(2)2H 2 O+2e - =>2OH - +H 2 (2)
并且在阳极侧通过一系列反应形成氯酸根(ClO3 -):And on the anode side chlorate (ClO 3 - ) is formed through a series of reactions:
2Cl-=>Cl2+2e- 2Cl - =>Cl 2 +2e -
Cl2+H2O=>HClO+Cl-+H+ Cl 2 +H 2 O=>HClO+Cl - +H +
HClO=>ClO-+H+ HClO=>ClO - +H +
2HClO+ClO-=>ClO3 -+2Cl-+2H+(3)2HClO+ClO - =>ClO 3 - +2Cl - +2H + (3)
在阴极侧,氢气电流效率(CE)定义为氢气流速(JH2)和施加至电化学电解槽(池,cell)的总电流之间的比率:On the cathode side, the hydrogen current efficiency (CE) is defined as the ratio between the hydrogen flow rate (J H2 ) and the total current applied to the electrochemical cell (cell):
CE=JH2/(I/2F)(4)CE=J H2 /(I/2F)(4)
其中I为施加的电流,且F为法拉第常数。where I is the applied current and F is Faraday's constant.
对于阴极,通常使用具有低的碳含量的软钢,并且使用尺寸稳定的阳极(DSA)作为阳极。实际上,电化学反应经常发生在使用单极或双极构型的无隔膜电解槽(undividedcell)中。在双极构型中,阳极部与阴极部处于物理和电接触并且结果,当阴极保护不再得其所(inplace)时在关停期间可发生严重的电偶腐蚀问题。For the cathode, mild steel with a low carbon content is generally used, and a dimensionally stable anode (DSA) is used as the anode. In practice, electrochemical reactions often take place in undivided cells using monopolar or bipolar configurations. In a bipolar configuration, the anode portion is in physical and electrical contact with the cathode portion and as a result, severe galvanic corrosion problems can occur during shutdown when cathodic protection is no longer in place.
典型的电解质溶液包括约550g/l的NaClO3、110g/l的NaCl和1-3g/l的NaClO。工艺典型地在约6.5的pH、60℃-85℃的温度和2-4kA/m2的电流密度下发生。A typical electrolyte solution comprises about 550 g/l NaClO 3 , 110 g/l NaCl and 1-3 g/l NaClO. The process typically takes place at a pH of about 6.5, a temperature of 60°C-85°C, and a current density of 2-4 kA/m 2 .
若干副反应可导致降低的CE,例如在阴极侧次氯酸根和氯酸根的还原:Several side reactions can lead to reduced CE, such as the reduction of hypochlorite and chlorate on the cathode side:
ClO-+H2O+2e-=>Cl-+2OH-(5)ClO - +H 2 O+2e - =>Cl - +2OH - (5)
ClO3 -+3H2O+6e-=>Cl-+6OH-(6)ClO 3 - +3H 2 O+6e - =>Cl - +6OH - (6)
可为重要的(尤其是在启动期间)另一寄生反应是在钢阴极上铁氧化物的还原,这导致从电解槽爆发性释放氧气:Another parasitic reaction that can be important (especially during start-up) is the reduction of iron oxides on the steel cathode, which leads to an explosive release of oxygen from the cell:
MO+2e-=>M+O2-(阴极)(7)MO+2e - =>M+O 2- (cathode)(7)
O2-=>1/2O+2e-(阳极)O 2- =>1/2O+2e - (anode)
氧气也可根据如下通过次氯酸根的阳极氧化而产生:Oxygen can also be generated by anodic oxidation of hypochlorite according to:
OCl-+H2O=>O2+2H++Cl-+2e-(8)OCl - +H 2 O=>O 2 +2H++Cl - +2e - (8)
并且其也可如下由次氯酸根的分解形成:And it can also be formed from the decomposition of hypochlorite as follows:
2OCl-=>2Cl-+O2(9)2OCl - =>2Cl - +O 2 (9)
2HClO=>O2+2HCl(10)2HClO=>O 2 +2HCl(10)
电解质中Ni、Co或Cu离子杂质的存在可加速次氯酸根的分解。在1ppm水平含量下,Ni、Co和Cu可导致在70℃和3kA/m2电流密度下电解槽气体中的O2分别增加2.0%、1.0%和0.7%。因此,在可为电化学电解槽或者电极的部分的各种元素之中,常常特别避免Ni。The presence of Ni, Co, or Cu ionic impurities in the electrolyte can accelerate the decomposition of hypochlorite. At 1ppm level content, Ni, Co, and Cu can lead to an increase of 2.0%, 1.0%, and 0.7% O2 in the electrolyzer gas at 70°C and 3kA/ m2 current density, respectively. Therefore, among the various elements that may be part of an electrochemical cell or electrode, Ni is often particularly avoided.
为了减少前面提及的阴极寄生反应并且提高氢气CE,工业通常以3-8g/l的浓度向电解质添加重铬酸盐(Na2Cr2O7)。在阴极极化期间,铬(VI)被还原为铬(III)并且氢氧化铬(III)的薄膜在阴极表面上形成。该多孔膜有助于保护阴极免受腐蚀,阻碍阴离子向电极表面的迁移并且抑制不希望的副反应,同时仍然允许析氢反应发生。In order to reduce the aforementioned cathode parasitic reactions and increase the hydrogen CE, the industry typically adds dichromate (Na 2 Cr 2 O 7 ) to the electrolyte at a concentration of 3-8 g/l. During cathodic polarization, chromium (VI) is reduced to chromium (III) and a thin film of chromium (III) hydroxide forms on the cathode surface. The porous membrane helps protect the cathode from corrosion, hinders the migration of anions to the electrode surface and suppresses unwanted side reactions, while still allowing the hydrogen evolution reaction to occur.
Cr2O7 -2+8H++6e-=>2Cr(OH)3+H2O(11)Cr 2 O 7 -2 +8H + +6e - =>2Cr(OH) 3 +H 2 O(11)
铬酸盐还充当pH缓冲剂并且其使氧气副产物的产生减少。由于六价铬的毒性(这使工艺处理成本增加),希望找到该实践的替代者或者代替者。因此,期望找到这样的无毒性的涂覆材料:其一旦被沉积在阴极的表面上,就会抑制次氯酸根和氯酸根的还原和改善CE。Chromate also acts as a pH buffer and it reduces the production of oxygen by-products. Due to the toxicity of hexavalent chromium, which adds to the processing costs, it is desirable to find a replacement or replacement for this practice. Therefore, it is desirable to find non-toxic coating materials that, once deposited on the surface of the cathode, inhibit the reduction of hypochlorite and chlorate and improve CE.
所述电解质是高度腐蚀性的并且铁阴极在不存在阴极保护时在这样的环境中容易腐蚀。腐蚀使阴极的寿命缩短并且还使所述电解质被铁杂质所污染。取决于操作条件和关停频率,阴极寿命可短达五年。由于该原因,一些工业使用较厚的阴极并且以较大的电极间间隔操作以避免由腐蚀产物引起的短路。此外,已经发现铁氧化物催化氯酸根还原和降低CE。不过,铁阴极便宜,它们具有相对低的阴极过电位并且它们的表面随着每次发生长时间的供电中断时腐蚀层的除去而被更新。因此,在关停事件之后,电解槽电压通常是较低的,但是CE还是有效的,直到氢氧化铬膜在表面上再次形成。The electrolyte is highly corrosive and iron cathodes are susceptible to corrosion in such environments in the absence of cathodic protection. Corrosion shortens the lifetime of the cathode and also contaminates the electrolyte with iron impurities. Depending on operating conditions and shutdown frequency, cathode life can be as short as five years. For this reason, some industries use thicker cathodes and operate with larger inter-electrode separations to avoid short circuits caused by corrosion products. Furthermore, iron oxides have been found to catalyze chlorate reduction and lower CE. However, iron cathodes are cheap, they have a relatively low cathodic overpotential and their surface is renewed as the corrosion layer is removed each time a prolonged power interruption occurs. Therefore, after a shutdown event, the cell voltage is usually lower, but CE is still active until the chromium hydroxide film forms again on the surface.
氯酸钠制造领域中的另一挑战是阴极上的腐蚀,特别是当使用铁阴极时。Another challenge in the field of sodium chlorate manufacture is corrosion on the cathode, especially when iron cathodes are used.
为了使阴极上的腐蚀作用最小化,可考虑使用不锈钢阴极代替铁,但是不锈钢通常由于该合金中的铬而具有高得多的阴极过电位。纯铬的过电位比纯铁的过电位高至少100mV。此外,300系列的奥氏体不锈钢也含有Ni,其可如前面所提及地影响氧气副产物的产生。在不存在重铬酸盐的情况下,氯酸根还原的速率和CE强烈取决于电极材料的本质和性质。对于过去的二十到三十年,用于找到铁阴极的代替物的研究一直在进行,但是仍然在使用铁阴极。因此,期望这样的新的阴极材料:其是电活性的、高度耐腐蚀的并且几乎与DSA阴极一样惰性(noble)以使双极构型中的电偶腐蚀最小化。To minimize corrosive effects on the cathode, stainless steel cathodes can be considered instead of iron, but stainless steel generally has a much higher cathodic overpotential due to the chromium in the alloy. The overpotential of pure chromium is at least 100 mV higher than that of pure iron. In addition, the 300 series austenitic stainless steels also contain Ni, which can affect the production of oxygen by-products as mentioned previously. In the absence of dichromate, the rate and CE of chlorate reduction strongly depend on the nature and properties of the electrode material. For the last twenty to thirty years, research to find a replacement for iron cathodes has been ongoing, but iron cathodes are still in use. Therefore, new cathode materials are desired that are electroactive, highly corrosion resistant and almost as noble as DSA cathodes to minimize galvanic corrosion in bipolar configurations.
氯酸钠制造领域中的另一挑战涉及电解质杂质。在电解期间,当电解质杂质镀或者沉积在电极上并且蒙蔽或者毒害电催化活性时,观察到电解槽电压的逐渐升高。在电场的作用下,带正电的杂质例如Ca2+和Mg2+被朝着阴极吸引,而负电荷杂质例如硫酸根离子朝着阳极移动。B.V.Tilak等发表在1999年的ElectrochemicalSocietyProceedings,vol.99-21中的题为“Electrolyticsodiumchloratetechnology:currentstatus”的论文提及,阴极上通常发现的沉积物为钙和镁的氢氧化物。B.V.Tilak等表明,在1ppm水平下的Ca+2杂质可导致每月约50-75mV的电压升高,和在1.5ppm水平下可导致每月约100mV的电压升高。在20ppb水平下,在两年操作中,电压升高为仅50mV。由于大多数制造厂在ppm钙水平下操作,因此它们通常每年使用酸洗涤来清洁它们的电解槽数次以除去这些蒙蔽性沉积物。Another challenge in the field of sodium chlorate manufacturing involves electrolyte impurities. During electrolysis, a gradual increase in cell voltage is observed when electrolyte impurities plate or deposit on the electrodes and cloud or poison the electrocatalytic activity. Under the action of an electric field, positively charged impurities such as Ca 2+ and Mg 2+ are attracted towards the cathode, while negatively charged impurities such as sulfate ions move towards the anode. The paper entitled "Electrolyticsodium chloride technology: current status" published in Electrochemical Society Proceedings, vol. 99-21 by BV Tilak et al. in 1999 mentioned that the deposits usually found on the cathode are hydroxides of calcium and magnesium. BV Tilak et al. showed that Ca +2 impurity at a level of 1 ppm can lead to a voltage increase of about 50-75 mV per month, and at a level of 1.5 ppm can cause a voltage increase of about 100 mV per month. At the 20ppb level, the voltage rise was only 50mV over two years of operation. Since most manufacturing plants operate at ppm calcium levels, they typically clean their electrolytic cells several times a year using acid washes to remove these masking deposits.
最近,已经报道了呈现出比铁的过电位低约200mV的过电位的新型阴极。Schulz等的加拿大专利No.2687129和加拿大专利申请No.2778865描述了类型Fe3Al(Ru)和Fe3AlTa(Ru)的新的阴极材料,其可用于在相对于铁改善的情况下制造氯酸钠。这些材料具有在铁铝化物金属基体内的催化性物种(Ru)。尽管它们对于析氢反应的效率,但是不幸地,这些新的阴极材料也受钙杂质影响。在一些情况下,高于ppm分数的钙杂质可对电极性能具有负面影响。Recently, novel cathodes exhibiting an overpotential approximately 200 mV lower than that of iron have been reported. Canadian Patent No. 2687129 and Canadian Patent Application No. 2778865 to Schulz et al. describe new cathode materials of the type Fe3Al(Ru) and Fe3AlTa (Ru) which can be used to make chlorine with improved conditions relative to iron Sodium acid. These materials have catalytic species (Ru) within an iron aluminide metal matrix. Despite their efficiency for the hydrogen evolution reaction, unfortunately, these new cathode materials are also affected by calcium impurities. In some cases, calcium impurities above ppm fractions can have a negative impact on electrode performance.
在其中使用高度多孔性的膜或隔膜将阳极液和阴极液室隔开的氯碱技术的情况下,钙杂质也可具有负面影响。处于ppm水平的钙杂质可相当容易地堵塞这些膜并且由于该原因,已经开发了将钙杂质降低至ppb水平的方法。Darlington的美国专利No.4,176,022于1979年描述了这样的方法。在除去微粒之后,通常通过如下开始:将盐水用苏打灰处理以使大部分钙以碳酸钙的形式沉淀,通过过滤或者其它物理分离方法将碳酸钙从电解质分离。这通常使钙达到2-3ppm水平。之后,可使电解质通过离子交换柱以获得包含少于约0.5ppm(500ppb)钙的盐水。最后,美国专利No.4,176,022提出了向碱性的盐水添加磷酸根以形成据信为基本上不溶于盐水的钙磷灰石的钙磷酸盐化合物并且之后将所述化合物从电解质分离。在所述化合物的形成期间保持该盐水的pH高于10并且保持温度高于40℃以进一步降低其在该盐水中的溶解度。他们还提出向电解质添加种子例如磷酸钙(Ca3(PO4)2)或者氢氧化钙以使沉淀反应容易。最终的钙杂质水平为约十亿分之20份。典型地,添加至该盐水的磷酸根的浓度为约0.1-约1重量%。作为实例,他们分别向一升盐水添加0.44g和2.24g磷酸(85%的H3PO4)以将钙减少至200ppb和20ppb水平。新近,在2008年,加拿大专利申请No.2655726提出了类似方法来从盐水除去钙。该申请教导了将2g的Na2HPO4添加至60ml电解质以将钙杂质水平降低至低于ppm水平。这样的参考文献公开了添加相对高的量的磷酸根,目的是使钙离子从本体溶液沉淀出来以获得目标的最终钙杂质水平。Calcium impurities can also have a negative impact in the case of chlor-alkali technology where a highly porous membrane or membrane is used to separate the anolyte and catholyte compartments. Calcium impurities at ppm levels can clog these membranes fairly easily and for this reason, methods have been developed to reduce calcium impurities to ppb levels. Such a method is described in US Patent No. 4,176,022 to Darlington in 1979. After removal of particulates, it typically begins by treating the brine with soda ash to precipitate most of the calcium as calcium carbonate, which is separated from the electrolyte by filtration or other physical separation methods. This usually brings calcium to a level of 2-3ppm. Thereafter, the electrolyte can be passed through an ion exchange column to obtain a brine containing less than about 0.5 ppm (500 ppb) calcium. Finally, US Patent No. 4,176,022 proposes adding phosphate groups to alkaline brines to form calcium phosphate compounds believed to be calcium apatite which are substantially insoluble in brines and then separating the compounds from the electrolyte. The pH of the brine was kept above 10 and the temperature above 40°C during the formation of the compound to further reduce its solubility in the brine. They also proposed adding seeds such as calcium phosphate (Ca 3 (PO 4 ) 2 ) or calcium hydroxide to the electrolyte to facilitate the precipitation reaction. The final calcium impurity level was about 20 parts per billion. Typically, the concentration of phosphate added to the brine is from about 0.1 to about 1% by weight. As an example, they added 0.44g and 2.24g phosphoric acid (85% H3PO4 ) to a liter of brine to reduce calcium to 200ppb and 20ppb levels, respectively. More recently, in 2008, Canadian Patent Application No. 2655726 proposed a similar method to remove calcium from brine. This application teaches adding 2g of Na2HPO4 to 60ml of electrolyte to reduce calcium impurity levels to below ppm levels. Such references disclose the addition of relatively high amounts of phosphate for the purpose of precipitating calcium ions from the bulk solution to achieve a targeted final calcium impurity level.
在美国专利No.4,004,988中,Mollard等提出了使用如下方法:在用于制造氯酸钠的无隔膜电解槽中,向电解质添加磷酸或者这些酸的碱金属盐用于络合钙。Mollard等公开了,络合剂将大部分钙在电解过程期间以能容易过滤的沉淀物的形式除去。在实施例中,Mollard等向1kg包含60ppm-100ppm钙的盐水添加0.5-2g三聚磷酸钠(Na5P3O10),这相当于约0.7g-2.6g/升。在通过电解槽之后,将溶液过滤并且发现其包含5ppm-10ppm钙。如在先前描述的参考文献中那样,磷酸根添加剂的浓度在克/升盐水的范围内,其意味着在1000ppm范围内。In U.S. Patent No. 4,004,988, Mollard et al. propose the use of phosphoric acid or alkali metal salts of these acids to the electrolyte for complexing calcium in a diaphragmless electrolyzer for the manufacture of sodium chlorate. Mollard et al. disclose that complexing agents remove most of the calcium during the electrolysis process in the form of easily filterable precipitates. In an example, Mollard et al. added 0.5-2 g sodium tripolyphosphate (Na 5 P 3 O 10 ) to 1 kg brine containing 60 ppm-100 ppm calcium, which corresponds to about 0.7 g-2.6 g/liter. After passing through the electrolysis cell, the solution was filtered and found to contain 5 ppm-10 ppm calcium. As in the previously described references, the concentration of the phosphate additive was in the range of grams per liter of brine, which means in the range of 1000 ppm.
UK专利申请No.2039959公开了类似的方法,但是代替将磷酸直接添加至盐水,将磷酸与定期地添加至盐水用于平衡pH的次氯酸混合。在实施例中,对于包含约35ppm钙和2ppmFe的盐水,在一种情况下,他们添加1g-2g磷酸(85%的H3PO4)/kg所产生的氯酸钠,和在第二种情况下添加0.15g酸/升电解质。这些量相对高并且在与其它参考文献中先前公开的范围类似的范围中。UK Patent Application No. 2039959 discloses a similar approach, but instead of adding phosphoric acid directly to the brine, the phosphoric acid is mixed with hypochlorous acid which is periodically added to the brine for pH balancing. In the examples, for a brine containing about 35ppm calcium and 2ppm Fe, in one case they added 1g-2g phosphoric acid (85% of H3PO4 ) /kg of sodium chlorate produced, and in the second In this case 0.15 g acid/liter electrolyte was added. These amounts are relatively high and in ranges similar to those previously disclosed in other references.
N.Krstajic等的美国专利申请No.2008/0230381A1也公开了向氯化钠盐水添加至少1g/l的磷酸根离子以充当缓冲剂。作为阴极,Krstajic等提出了涂覆有厚度为10μm-50μm的电沉积的Fe-Mo合金层的低碳钢基底。在添加磷酸根的情况下,Krstajic等提及,使用该类型的活化的涂层所观察到的电压降低可在2.5-3kA/m2的常用电流密度下达到高达500mV的值,而使用已知盐水,该降低限于100-150mV。Krstajic等还提出,可将电解质中的重铬酸盐浓度降低至0.1g/l或者完全消除,而不会大幅影响CE。US Patent Application No. 2008/0230381A1 by N. Krstajic et al also discloses the addition of at least 1 g/l of phosphate ions to sodium chloride brine to act as a buffer. As a cathode, Krstajic et al. proposed a low carbon steel substrate coated with an electrodeposited Fe-Mo alloy layer with a thickness of 10 μm-50 μm. With the addition of phosphate, Krstajic et al. mention that the voltage drop observed with this type of activated coating can reach values as high as 500 mV at the usual current densities of 2.5-3 kA/m 2 , while using known In saline, the drop is limited to 100-150 mV. Krstajic et al. also proposed that the concentration of dichromate in the electrolyte could be reduced to 0.1 g/l or eliminated completely without greatly affecting the CE.
采用已知方法的问题涉及以下事实:以除去电解质中的显著量的钙杂质为目的并且为了使钙杂质达到它们不再影响阴极的水平,添加提高量的磷酸根添加剂。当电解质中还存在铁杂质时,大量阴离子例如PO4 -3的添加可导致另外的问题。在题为“EffectsofElectrolyteinChlorateCells”的论文中,R.A.Kus提及,当铁和磷酸根杂质一起以显著的浓度水平存在时,由于影响阳极性能的在这些杂质之间的协同作用,观察到电压升高。由于该原因,工业目前倾向于不使用磷酸添加剂,因为它们几乎全部使用铁阴极并且因此在它们的电解质中除了钙杂质之外还具有铁杂质。The problem with known methods relates to the fact that increasing amounts of phosphate additives are added with the aim of removing significant amounts of calcium impurities in the electrolyte and in order to bring the calcium impurities to a level where they no longer affect the cathode. The addition of large amounts of anions such as PO 4 -3 can cause additional problems when iron impurities are also present in the electrolyte. In a paper titled "Effects of Electrolyte in Chlorate Cells," RAKus mentions that when iron and phosphate impurities are present together at significant concentration levels, a voltage increase is observed due to a synergistic effect between these impurities that affects anode performance. For this reason, the industry currently tends not to use phosphoric acid additives, since they almost all use iron cathodes and thus have iron impurities in their electrolytes in addition to calcium impurities.
鉴于氯酸钠制造领域中的各种挑战,对于提供至少一些解决方案的技术存在需要。Given the various challenges in the field of sodium chlorate manufacturing, there is a need for technologies that provide at least some solutions.
发明内容Contents of the invention
本发明通过提供用于制造氯化产物例如氯酸钠的增强的技术而对上述需要作出回应。The present invention responds to the above needs by providing enhanced technology for the manufacture of chlorinated products such as sodium chlorate.
在一些实施中,提供包括如下的电化学工艺:将阳极和阴极设置在包括包含钙离子的杂质的电解质中;在所述电解质中形成电解产物的条件下在所述阳极和所述阴极之间施加电压;和在所述电解质中以如下量提供磷酸根离子:所述量足以与至少一部分钙离子在所述阴极上形成保护性外层,所述保护性外层包括钙磷酸盐化合物,并且所述量足以基本上避免钙磷酸盐化合物在所述电解质中沉淀。应注意,提供磷酸根离子的步骤可在施加电压的步骤之前、之后或者期间进行。In some implementations, an electrochemical process is provided comprising: disposing an anode and a cathode in an electrolyte including impurities comprising calcium ions; between the anode and the cathode under conditions in which electrolysis products are formed in the electrolyte applying a voltage; and providing phosphate ions in the electrolyte in an amount sufficient to form a protective outer layer on the cathode with at least a portion of the calcium ions, the protective outer layer comprising a calcium phosphate compound, and The amount is sufficient to substantially avoid precipitation of calcium phosphate compounds in the electrolyte. It should be noted that the step of providing phosphate ions may be performed before, after or during the step of applying a voltage.
在一些实施中,所述磷酸根离子是以基于所述阴极的与所述电解质接触的表面区域的量添加的。In some implementations, the phosphate ions are added in an amount based on the surface area of the cathode in contact with the electrolyte.
在一些实施中,所述工艺进一步包括在将所述阴极浸在所述电解质中之前在催化性中间层上施加所述保护性外层。In some implementations, the process further includes applying the protective outer layer over the catalytic intermediate layer prior to immersing the cathode in the electrolyte.
在一些实施中,施加所述保护性外层的步骤包括溅涂、浸涂、溶胶-凝胶、电化学沉积、仿生涂覆、热等压涂覆、或者等离子体喷涂。In some implementations, applying the protective outer layer comprises sputtering, dipping, sol-gel, electrochemical deposition, biomimetic coating, hot isobaric coating, or plasma spraying.
在一些实施中,所述工艺进一步包括在将所述阴极浸在所述电解质中之后在催化性中间层上形成所述保护性外层。In some implementations, the process further includes forming the protective outer layer on the catalytic intermediate layer after dipping the cathode in the electrolyte.
在一些实施中,形成所述保护性外层的步骤包括:在所述电解质中提供磷酸根离子;保证在所述电解质中存在足够的钙离子;和提供足以导致所述保护性外层的形成的电解条件。In some implementations, the step of forming the protective outer layer includes: providing phosphate ions in the electrolyte; ensuring sufficient calcium ions are present in the electrolyte; and providing sufficient calcium ions to cause formation of the protective outer layer. conditions of electrolysis.
在一些实施中,所述保护性外层的形成包括:使Ca(OH)2与H3PO4反应以产生Ca3(PO4)2和水;和使Ca(OH)2与Ca3(PO4)2反应以产生Ca10(PO4)6(OH)2,其中Ca10(PO4)6(OH)2形成所述保护性外层的至少一部分。In some implementations, the formation of the protective outer layer includes: reacting Ca(OH) 2 with H 3 PO 4 to produce Ca 3 (PO 4 ) 2 and water; and reacting Ca(OH) 2 with Ca 3 ( PO 4 ) 2 reacts to produce Ca 10 (PO 4 ) 6 (OH) 2 , wherein Ca 10 (PO 4 ) 6 (OH) 2 forms at least part of the protective outer layer.
在一些实施中,在所述电解质中以最高达约75ppm、或者约5ppm-约50ppm的磷酸根浓度提供磷酸根离子。In some implementations, phosphate ions are provided in the electrolyte at a phosphate concentration of up to about 75 ppm, or about 5 ppm to about 50 ppm.
在一些实施中,磷酸根浓度足够低以防止在所述阳极上铁磷酸盐化合物或者沉积物的形成、所述电解质中O2水平的升高、和/或在电压要求方面的提高。In some implementations, the phosphate concentration is low enough to prevent the formation of iron phosphate compounds or deposits on the anode, an increase in O2 levels in the electrolyte, and/or an increase in voltage requirements.
在一些实施中,磷酸根离子至少部分地由H3PO4的添加所提供。磷酸根离子也可至少部分地由在所述电解质中的固有存在所提供。钙离子也可至少部分地由在所述电解质中的固有存在所提供。In some implementations, the phosphate ions are provided at least in part by the addition of H 3 PO 4 . Phosphate ions may also be provided, at least in part, by their inherent presence in the electrolyte. Calcium ions may also be provided, at least in part, by their inherent presence in the electrolyte.
在一些实施中,所述电解质包括用于与磷酸根离子反应以在所述阴极上形成钙磷酸盐化合物的第一部分钙离子,和在所述电解质中保持未反应的第二部分钙。In some implementations, the electrolyte includes a first portion of calcium ions for reacting with phosphate ions to form a calcium phosphate compound on the cathode, and a second portion of calcium that remains unreacted in the electrolyte.
在一些实施中,所述工艺用于制造氯化产物。所述氯化产物可包括氯酸钠和/或次氯酸钠。In some implementations, the process is used to produce chlorinated products. The chlorination products may include sodium chlorate and/or sodium hypochlorite.
在一些实施中,提供磷酸根离子在用于在包括钙离子的电解质中制造氯化产物的电化学工艺中的用途,其中磷酸根离子是以足以与至少一部分钙离子在阴极上形成包括钙磷酸盐化合物的保护性外层并且足以避免钙磷酸盐化合物在所述电解质中沉淀的量提供的。In some implementations, there is provided the use of phosphate ions in an electrochemical process for producing chloride products in an electrolyte comprising calcium ions, wherein the phosphate ions are present in an amount sufficient to form with at least a portion of the calcium ions at the cathode comprising calcium phosphate A protective outer layer of salt compounds is provided in an amount sufficient to avoid precipitation of calcium phosphate compounds in the electrolyte.
在一些实施中,提供包括如下的电化学系统:用于包含电解质的电解室,其中所述电解质包括钙离子和磷酸根离子;位于所述电解室中的阳极;位于所述电解室中的阴极;和离子调节器,其配置成调节所述电解质中的离子水平,使得所述电解质包括足以与至少一部分钙离子在所述阴极上形成包括钙磷酸盐化合物的保护性外层并且足以避免钙磷酸盐化合物在所述电解质中沉淀的量的磷酸根离子。In some implementations, an electrochemical system is provided comprising: an electrolysis chamber for containing an electrolyte, wherein the electrolyte includes calcium ions and phosphate ions; an anode located in the electrolysis chamber; a cathode located in the electrolysis chamber and an ion regulator configured to regulate the level of ions in the electrolyte such that the electrolyte comprises sufficient calcium ions to form a protective outer layer comprising calcium phosphate compounds on the cathode and sufficient to avoid calcium phosphate The amount of phosphate ions in which the salt compound precipitates in the electrolyte.
在一些实施中,所述离子调节器包括用于将所述量的磷酸根离子提供到所述电解室中的与所述电解室流体连通的入口。所述离子调节器可进一步包括用于测量所述电解质中的磷酸根离子、铁离子和/或钙离子的浓度的至少一个测量装置。所述离子调节器还可包括用于响应于来自所述测量装置的读数而控制磷酸根离子的输入量的连接至所述测量装置和所述入口的控制器。所述系统可配置为用于制造氯化产物例如氯酸钠和/或次氯酸钠。In some implementations, the ion regulator includes an inlet in fluid communication with the electrolysis chamber for providing the amount of phosphate ions into the electrolysis chamber. The ion regulator may further comprise at least one measuring device for measuring the concentration of phosphate ions, iron ions and/or calcium ions in the electrolyte. The ion regulator may also include a controller connected to the measuring device and the inlet for controlling the input amount of phosphate ions in response to a reading from the measuring device. The system may be configured for the production of chlorinated products such as sodium chlorate and/or sodium hypochlorite.
在一些实施中,提供包括如下的电化学工艺:将阳极和阴极设置在包括包含钙离子和铁离子的杂质的电解质中;在所述电解质中形成电解产物的条件下在所述阳极和所述阴极之间施加电压;和在所述电解质中以如下量提供磷酸根离子:所述量足以与至少一部分钙离子在所述阴极上形成保护性外层,所述保护性外层包括钙磷酸盐化合物,并且所述量足以基本上避免铁磷酸盐化合物在所述电解质中沉淀。In some implementations, an electrochemical process is provided comprising: disposing an anode and a cathode in an electrolyte comprising impurities including calcium ions and iron ions; applying a voltage across the cathodes; and providing phosphate ions in the electrolyte in an amount sufficient to form a protective outer layer on the cathode with at least a portion of the calcium ions, the protective outer layer comprising calcium phosphate compound, and the amount is sufficient to substantially avoid precipitation of iron phosphate compounds in the electrolyte.
以上工艺还可具有如在本文中描述的其它实施中描述的一个或多个特征。The above process may also have one or more features as described in other implementations described herein.
在一些实施中,提供磷酸根离子在用于在包括钙离子和铁离子的电解质中制造氯化产物的电化学工艺中的用途,其中磷酸根离子是以足以与至少一部分钙离子在阴极上形成包括钙磷酸盐化合物的保护性外层并且足以避免铁磷酸盐化合物在所述电解质中沉淀的量提供的。In some implementations, there is provided the use of phosphate ions in an electrochemical process for producing chloride products in an electrolyte comprising calcium ions and iron ions, wherein the phosphate ions are formed in an amount sufficient to form with at least a portion of the calcium ions at the cathode comprising a protective outer layer of calcium phosphate compound and provided in an amount sufficient to prevent precipitation of iron phosphate compound in said electrolyte.
在一些实施中,提供包括如下的电化学系统:用于包含电解质的电解室,其中所述电解质包括钙离子、铁离子和磷酸根离子;位于所述电解室中的阳极;位于所述电解室中的阴极;和离子调节器,其配置成调节所述电解质中的离子水平,使得所述电解质包括足以与至少一部分钙离子在所述阴极上形成包括钙磷酸盐化合物的保护性外层并且足以避免铁磷酸盐化合物在所述电解质中沉淀的量的磷酸根离子。In some implementations, an electrochemical system is provided comprising: an electrolysis chamber for containing an electrolyte, wherein the electrolyte includes calcium ions, iron ions, and phosphate ions; an anode located in the electrolysis chamber; an anode located in the electrolysis chamber; and an ion regulator configured to regulate the level of ions in the electrolyte such that the electrolyte comprises sufficient calcium ions to form a protective outer layer comprising a calcium phosphate compound on the cathode and sufficient Amounts of phosphate ions in which iron phosphate compounds precipitate in the electrolyte are avoided.
在一些实施中,提供包括如下的电化学工艺:将阳极和阴极设置在包括包含钙离子的杂质的电解质中,所述阴极具有与所述电解质接触的表面区域;在所述电解质中形成电解产物的条件下在所述阳极和所述阴极之间施加电压;和在所述电解质中以基于所述阴极的所述表面区域的如下预定量提供磷酸根离子:所述预定量使得磷酸根离子和至少一部分钙离子在覆盖所述阴极的与所述电解质接触的表面区域的保护性外层的形成中被消耗。In some implementations, an electrochemical process is provided comprising: disposing an anode and a cathode in an electrolyte including impurities comprising calcium ions, the cathode having a surface area in contact with the electrolyte; forming an electrolysis product in the electrolyte A voltage is applied between the anode and the cathode under conditions of ; and phosphate ions are provided in the electrolyte in a predetermined amount based on the surface area of the cathode: the predetermined amount is such that the phosphate ions and At least a portion of the calcium ions are consumed in the formation of a protective outer layer covering the surface area of the cathode in contact with the electrolyte.
在一些实施中,所述预定量的磷酸根离子为约0.025mg/cm2阴极-约0.2mg/cm2阴极、或者约0.05mg/cm2阴极-约0.15mg/cm2阴极。In some implementations, the predetermined amount of phosphate ions is about 0.025 mg/cm 2 cathode to about 0.2 mg/cm 2 cathode, or about 0.05 mg/cm 2 cathode to about 0.15 mg/cm 2 cathode.
在一些实施中,所述电解质进一步包括铁离子,并且磷酸根离子进一步地是以避免铁磷酸盐化合物在所述电解质中沉淀的量添加的。磷酸根离子可进一步地是以避免额外的钙磷酸盐化合物在所述电解质中沉淀的量添加的。In some implementations, the electrolyte further includes iron ions, and phosphate ions are further added in an amount to avoid precipitation of iron phosphate compounds in the electrolyte. Phosphate ions may further be added in an amount to avoid precipitation of additional calcium phosphate compounds in the electrolyte.
在一些实施中,所述预定量的磷酸根离子是基于待获得的保护性外层的目标厚度计算的。In some implementations, the predetermined amount of phosphate ions is calculated based on a target thickness of the protective outer layer to be obtained.
以上工艺还可具有如在本文中描述的其它实施中描述的一个或多个特征。The above process may also have one or more features as described in other implementations described herein.
在一些实施中,提供磷酸根离子在用于在包括钙离子的电解质中制造氯化产物的电化学工艺中的用途,其中磷酸根离子是以基于所述阴极的表面区域的如下预定量提供的:所述预定量使得磷酸根离子和至少一部分钙离子在覆盖所述阴极的与所述电解质接触的表面区域的保护性外层的形成中被消耗。In some implementations, there is provided the use of phosphate ions in an electrochemical process for producing chloride products in an electrolyte comprising calcium ions, wherein the phosphate ions are provided in a predetermined amount based on the surface area of the cathode as follows : said predetermined amount is such that phosphate ions and at least a portion of calcium ions are consumed in the formation of a protective outer layer covering the surface area of said cathode in contact with said electrolyte.
在一些实施中,提供包括如下的电化学系统:用于包含电解质的电解室,其中所述电解质包括钙离子和磷酸根离子;位于所述电解室中的阳极;位于所述电解室中的阴极;和离子调节器,其配置成调节所述电解质中的离子水平,使得所述电解质包括基于所述阴极的表面区域的如下预定量的磷酸根:所述预定量使得磷酸根离子和至少一部分钙离子在覆盖所述阴极的与所述电解质接触的表面区域的保护性外层的形成中被消耗。In some implementations, an electrochemical system is provided comprising: an electrolysis chamber for containing an electrolyte, wherein the electrolyte includes calcium ions and phosphate ions; an anode located in the electrolysis chamber; a cathode located in the electrolysis chamber and an ion regulator configured to adjust the level of ions in the electrolyte such that the electrolyte includes a predetermined amount of phosphate based on the surface area of the cathode: the predetermined amount is such that phosphate ions and at least a portion of the calcium Ions are consumed in the formation of a protective outer layer covering the surface area of the cathode in contact with the electrolyte.
在一些实施中,提供预制阴极,其包括:基底;催化性中间层;和包括钙磷酸盐化合物的保护性外层。In some implementations, a prefabricated cathode is provided comprising: a substrate; a catalytic intermediate layer; and a protective outer layer comprising a calcium phosphate compound.
在一些实施中,所述基底包括不锈钢。所述不锈钢可为400系列不锈钢。所述基底可包括具有足以防止在电解槽的关停期期间铁离子进入电解质的耐腐蚀性的材料。In some implementations, the substrate includes stainless steel. The stainless steel may be 400 series stainless steel. The substrate may comprise a material having sufficient corrosion resistance to prevent ferric ions from entering the electrolyte during periods of shutdown of the electrolytic cell.
在一些实施中,所述催化性中间层是与所述基底的外表面毗邻的。In some implementations, the catalytic intermediate layer is adjacent to the outer surface of the substrate.
在一些实施中,所述催化性中间层包括掺杂有催化性化合物的金属基体。所述金属基体可为铁铝化物。所述催化性化合物包括Ru。In some implementations, the catalytic interlayer includes a metal matrix doped with a catalytic compound. The metal matrix can be iron aluminide. The catalytic compound includes Ru.
在一些实施中,所述钙磷酸盐化合物包括羟基钙磷酸盐化合物,例如羟基磷灰石。所述保护性外层可基本上由羟基磷灰石构成。In some implementations, the calcium phosphate compound comprises a hydroxy calcium phosphate compound, such as hydroxyapatite. The protective outer layer may consist essentially of hydroxyapatite.
在一些实施中,所述保护性外层具有约0.25微米-约1.5微米的厚度。所述保护性外层可具有约0.5微米-约1微米的厚度。In some implementations, the protective outer layer has a thickness of about 0.25 microns to about 1.5 microns. The protective outer layer may have a thickness of from about 0.5 micron to about 1 micron.
在一些实施中,所述保护性外层设置成覆盖所述催化性中间层的整个外表面以防止所述催化性中间层与所述电解质中的钙杂质直接接触。可将所述所述保护性外层溅涂、浸涂、溶胶-凝胶施加、电化学沉积、仿生涂覆、热等压涂覆、或者等离子体喷涂到所述催化性中间层上。In some implementations, the protective outer layer is configured to cover the entire outer surface of the catalytic intermediate layer to prevent direct contact of the catalytic intermediate layer with calcium impurities in the electrolyte. The protective outer layer may be sputter coated, dip coated, sol-gel applied, electrochemically deposited, biomimetic coated, hot isobaric coated, or plasma sprayed onto the catalytic intermediate layer.
在一些实施中,所述保护性外层具有网状组织结构。所述保护性外层可具有蜂窝结构。In some implementations, the protective outer layer has a network structure. The protective outer layer may have a honeycomb structure.
在一些实施中,所述保护性外层具有使得析氢反应能够在其下发生,同时防止钙杂质毒害所述中间催化性层(催化层)的结构。In some implementations, the protective outer layer has a structure that enables the hydrogen evolution reaction to occur thereunder while preventing calcium impurities from poisoning the intermediate catalytic layer (catalytic layer).
在一些实施中,所述保护性外层具有使得能够阻止氯酸根和次氯酸根离子到达所述中间催化性层的表面以减少或避免以下反应的结构:ClO-+H2O+2e-=>Cl-+2OH-;和/或ClO3 -+3H2O+6e-=>Cl-+6OH-。In some implementations, the protective outer layer has a structure that prevents chlorate and hypochlorite ions from reaching the surface of the intermediate catalytic layer to reduce or avoid the following reaction: ClO − +H 2 O + 2e − = >Cl − +2OH − ; and/or ClO 3 − +3H 2 O+6e − =>Cl − +6OH − .
在一些实施中,提供如本文中定义的预制阴极在用于制造氯化产物例如氯酸钠和/或次氯酸钠的电解槽中的用途。In some implementations there is provided the use of a prefabricated cathode as defined herein in an electrolysis cell for the manufacture of chlorinated products such as sodium chlorate and/or sodium hypochlorite.
在一些实施中,提供包括如下的电化学工艺:将阳极和如本文中定义的预制阴极设置在包括包含钙离子的杂质的电解质中;和在所述电解质中形成电解产物的条件下在所述阳极和所述预制阴极之间施加电压。该工艺还可包括如本文中描述的特征的一个或多个。In some implementations, an electrochemical process is provided comprising: disposing an anode and a prefabricated cathode as defined herein in an electrolyte comprising impurities comprising calcium ions; A voltage is applied between the anode and the prefabricated cathode. The process may also include one or more of the features as described herein.
在一些实施中,提供用于制造用在氯化产物的制造中的预制阴极的方法,包括:提供基底;在所述基底的顶上提供催化性中间层;和将保护性外层施加到所述催化性中间层上,其中保护性外层包括钙磷酸盐化合物。In some implementations, there is provided a method for making a prefabricated cathode for use in the manufacture of chlorinated products, comprising: providing a substrate; providing a catalytic intermediate layer atop the substrate; and applying a protective outer layer to the on the catalytic intermediate layer, wherein the protective outer layer comprises a calcium phosphate compound.
可进行所述方法以制造具有如本文中描述的一个或多个特征的预制阴极。The method can be performed to produce a prefabricated cathode having one or more features as described herein.
在一些实施中,施加所述保护性外层的步骤包括溅涂、浸涂、溶胶-凝胶方法、电化学沉积、仿生涂覆方法、热等压涂覆和/或等离子体喷涂。In some implementations, the step of applying the protective outer layer comprises sputtering, dipping, sol-gel methods, electrochemical deposition, biomimetic coating methods, hot isobaric coating, and/or plasma spraying.
在一些实施中,提供包括如下的电化学工艺:将阳极和阴极设置在包括包含钙离子的杂质的电解质中,其中所述阴极包括由耐腐蚀的材料组成的基底、和催化性中间层;对于电解期,进行电解,其包括于在所述电解质中形成电解产物的条件下在所述阳极和所述阴极之间施加电压;周期性地对于关停期将所述电解关停,其包括终止所述电压,其中所述基底的耐腐蚀材料防止在所述关停期的每一个期间铁离子释放到所述电解质中;和在所述电解质中以如下量提供磷酸根离子:所述量足够使得在各电解期期间,磷酸根离子与至少一部分钙离子在所述阴极的催化性中间层上形成或者重新形成保护性外层,所述保护性外层包括钙磷酸盐化合物。In some implementations, an electrochemical process is provided comprising disposing an anode and a cathode in an electrolyte comprising impurities comprising calcium ions, wherein the cathode comprises a substrate composed of a corrosion-resistant material, and a catalytic intermediate layer; for an electrolysis period, performing electrolysis comprising applying a voltage between the anode and the cathode under conditions in which electrolysis products are formed in the electrolyte; periodically shutting down the electrolysis for a shutdown period comprising terminating said voltage, wherein the corrosion-resistant material of said substrate prevents iron ions from being released into said electrolyte during each of said shutdown periods; and providing phosphate ions in said electrolyte in an amount sufficient Such that during each electrolysis phase, the phosphate ions and at least a portion of the calcium ions form or reform a protective outer layer comprising a calcium phosphate compound on the catalytic intermediate layer of the cathode.
以上工艺还可具有如在本文中描述的其它实施中描述的一个或多个特征。The above process may also have one or more features as described in other implementations described herein.
在一些实施中,提供包括如下的电化学工艺:将阳极和阴极设置在包括包含碱土金属离子的杂质的电解质中;在所述电解质中形成电解产物的条件下在所述阳极和所述阴极之间施加电压;和在所述电解质中以如下量提供磷酸根离子:所述量足以与至少一部分碱土金属离子在所述阴极上形成保护性外层,所述保护性外层包括碱土金属磷酸盐化合物,并且所述量足以基本上避免碱土金属磷酸盐化合物在所述电解质中沉淀。所述碱土金属可为钙。还注意,本文中描述的工艺的各种实施可对于不同于具体的钙的通常的碱土金属进行。In some implementations, an electrochemical process is provided comprising: disposing an anode and a cathode in an electrolyte that includes impurities comprising alkaline earth metal ions; and providing phosphate ions in the electrolyte in an amount sufficient to form a protective outer layer on the cathode with at least a portion of the alkaline earth metal ions, the protective outer layer comprising an alkaline earth metal phosphate compound, and the amount is sufficient to substantially avoid precipitation of the alkaline earth metal phosphate compound in the electrolyte. The alkaline earth metal may be calcium. Note also that various implementations of the processes described herein can be performed with general alkaline earth metals other than specifically calcium.
在一些实施中,提供包括如下的电化学工艺:将阳极和阴极设置在包括杂质的电解质中;在所述电解质中形成电解产物的条件下在所述阳极和所述阴极之间施加电压;和保证在所述电解质中存在如下的足够的磷酸根离子和钙离子:其使得磷酸根离子与至少一部分钙离子在所述阴极上形成保护性外层,所述保护性外层包括钙磷酸盐化合物,并且其基本上避免钙磷酸盐化合物在所述电解质中沉淀、在所述电解质中存在铁离子时基本上避免铁磷酸盐化合物在所述电解质中沉淀、和/或在所述保护性外层的形成中消耗基本上所有的磷酸根离子。In some implementations, providing an electrochemical process comprising: disposing an anode and a cathode in an electrolyte that includes an impurity; applying a voltage between the anode and the cathode under conditions such that an electrolysis product is formed in the electrolyte; and ensuring that sufficient phosphate ions and calcium ions are present in the electrolyte such that the phosphate ions and at least a portion of the calcium ions form a protective outer layer on the cathode, the protective outer layer comprising a calcium phosphate compound , and it substantially avoids the precipitation of calcium phosphate compounds in the electrolyte, substantially avoids the precipitation of iron phosphate compounds in the electrolyte when iron ions are present in the electrolyte, and/or in the protective outer layer Essentially all the phosphate ions are consumed in the formation of .
还注意,将在以下描述中更详细描述的工艺、系统、用途、阴极以及制造阴极的方法的一个或多个进一步的任选的特征、方面和实施可与以上描述的各种实施组合。Note also that one or more further optional features, aspects and implementations of the processes, systems, uses, cathodes and methods of making cathodes which will be described in more detail in the following description may be combined with the various implementations described above.
附图说明Description of drawings
图1为用于制造氯酸钠的电解系统的示意图。Figure 1 is a schematic diagram of an electrolysis system for the manufacture of sodium chlorate.
图2为O2含量、电压和效率对时间的图。效率曲线为顶部曲线;电压曲线为中间曲线;和O2含量为底部曲线。Figure 2 is a graph of O2 content, voltage and efficiency versus time. The efficiency curve is the top curve; the voltage curve is the middle curve; and the O2 content is the bottom curve.
图3为来自阴极表面的x-射线扫描的计数(任意单位)对2θ(度)的图。Figure 3 is a plot of counts (arbitrary units) versus 2Θ (degrees) from an x-ray scan of the cathode surface.
图4为对于添加有钙的氯酸根电解槽,电压对时间的图。Figure 4 is a graph of voltage versus time for a chlorate electrolyzer with calcium addition.
图5为在电解和将钙和磷酸添加至电解质之后来自阴极表面的x-射线衍射光谱的计数(任意单位)对2θ(度)的图,插图为显示阴极表面上存在的元素的EDX光谱。Figure 5 is a graph of counts (arbitrary units) versus 2Θ (degrees) from an x-ray diffraction spectrum of the cathode surface after electrolysis and addition of calcium and phosphoric acid to the electrolyte, inset is an EDX spectrum showing the elements present on the cathode surface.
图6为O2含量、电压和效率对时间的另一图。效率曲线为顶部曲线;电压曲线为中间曲线;和O2含量为底部曲线。Figure 6 is another graph of O2 content, voltage and efficiency versus time. The efficiency curve is the top curve; the voltage curve is the middle curve; and the O2 content is the bottom curve.
图7a和7b为阴极结构体的横截面的扫描电子显微镜照片。7a and 7b are scanning electron micrographs of a cross-section of a cathode structure.
图8为阴极结构体的横截面的一对扫描电子显微镜照片。FIG. 8 is a pair of scanning electron micrographs of a cross section of a cathode structure.
图9为保护性外层的一对显微照相化学图(map)。Figure 9 is a pair of photomicrographic chemical maps (maps) of the protective outer layer.
图10为在向电解质添加的不同量的钙的情况下,电压对时间的图。Figure 10 is a graph of voltage versus time with different amounts of calcium added to the electrolyte.
图11为在添加钙离子,之后添加磷酸的情况下,电压对时间的图。Figure 11 is a graph of voltage versus time for the addition of calcium ions followed by phosphoric acid.
图12为在添加磷酸,之后添加钙离子的情况下,电压对时间的图。Figure 12 is a graph of voltage versus time with the addition of phosphoric acid followed by the addition of calcium ions.
图13为在添加磷酸的情况下,电压对时间的图。Figure 13 is a graph of voltage versus time with the addition of phosphoric acid.
图14为框图。Figure 14 is a block diagram.
具体实施方式Detailed ways
本文中对于电解所描述的各种技术支持在电解系统中使用相对少量的磷酸根在阴极上形成保护性层。进一步的技术提供用于电解制造氯化产物例如氯酸钠(NaClO3或ClO3 -)(其为在纸漂白应用中使用的化合物)或者次氯酸钠(NaClO或ClO-)(其为水处理剂)中的具有包括钙磷酸盐化合物的保护性层的预制阴极。应理解,虽然本文中将关于制造氯酸钠讨论各种实施和方面,但是这样的技术可适合于制造其它氯化产物例如次氯酸钠等。The various techniques described herein for electrolysis support the use of relatively small amounts of phosphate to form a protective layer on the cathode in an electrolysis system. A further technology provides for the electrolytic production of chlorinated products such as sodium chlorate (NaClO or ClO 3 − ) , which is a compound used in paper bleaching applications, or sodium hypochlorite (NaClO or ClO − ), which is a water treatment agent. A prefabricated cathode with a protective layer comprising a calcium phosphate compound in . It should be understood that while various implementations and aspects will be discussed herein with respect to the manufacture of sodium chlorate, such techniques may be adapted for the manufacture of other chlorination products such as sodium hypochlorite and the like.
在一些实施中,通过电解制造氯酸钠通过如下而得以增强:向阴极提供包括钙磷酸盐化合物的保护性外层,其是通过以如下量添加磷酸根离子而形成的:所述量导致在阴极的表面处形成钙磷酸盐化合物,同时防止可对电解具有有害影响的铁磷酸盐化合物和/或钙磷酸盐化合物的沉淀。为了形成所述保护性外层,可以基于阴极的表面区域的量提供磷酸根。In some implementations, the production of sodium chlorate by electrolysis is enhanced by providing the cathode with a protective outer layer comprising a calcium phosphate compound formed by adding phosphate ions in an amount that results in Calcium phosphate compounds are formed at the surface of the cathode while preventing precipitation of iron phosphate compounds and/or calcium phosphate compounds which could have a detrimental effect on electrolysis. To form the protective outer layer, phosphate may be provided in an amount based on the surface area of the cathode.
虽然其它方法已经强调了以使钙离子从电解质沉淀出来为目的来添加较高水平的磷酸根离子,但是本文中描述的各种技术提供了足以在阴极表面上形成保护性层的减少量的磷酸根离子的有利添加。在一些情形中,可以显著低的水平提供磷酸根离子以形成保护性层,这不仅使得尽管电解质中残留钙离子也实现电解改善的运行,而且减少或者防止可对电解具有负面影响的铁磷酸盐化合物的形成。因此,虽然电解质可具有多种杂质例如钙离子和铁离子,但是所述保护性外层可提供免受电解质杂质影响的保护并且保持有效的电解操作。While other approaches have emphasized the addition of higher levels of phosphate ions for the purpose of precipitating calcium ions from the electrolyte, the various techniques described herein provide reduced amounts of phosphoric acid sufficient to form a protective layer on the cathode surface Favorable addition of root ions. In some cases, phosphate ions can be provided at significantly low levels to form a protective layer, which not only enables improved operation of the electrolysis despite residual calcium ions in the electrolyte, but also reduces or prevents iron phosphate, which can have a negative impact on electrolysis. compound formation. Thus, although the electrolyte may have various impurities such as calcium ions and iron ions, the protective outer layer may provide protection from electrolyte impurities and maintain efficient electrolytic operation.
在一些情况下,磷酸根添加剂的有益方面可以这样的磷酸根浓度实现:其比以前使用的浓度低一个或更多个量级。代替以使钙杂质沉淀为目的来根据电解质中的钙离子浓度添加磷酸根,可以如下为目的来提供磷酸根:形成钙磷酸盐保护性层以抵消在无隔膜的氯酸钠电解槽中钙对阴极表面上的负面影响。In some cases, the beneficial aspects of phosphate additives can be achieved at phosphate concentrations that are one or more orders of magnitude lower than previously used. Instead of adding phosphate according to the concentration of calcium ions in the electrolyte with the aim of precipitating calcium impurities, phosphate can be provided with the aim of forming a calcium phosphate protective layer to counteract the effect of calcium on the electrolyte in sodium chlorate cells without a diaphragm. negative impact on the cathode surface.
当与包括基底例如不锈钢、以及催化活性涂层例如掺杂有催化性物种如Ru的金属基体的阴极组合使用时,提供这样的保护性层可为特别有利的。在析氢反应(方程式2)过程中钙杂质可干扰这样的催化活性涂层并且形成氢氧化钙,导致电解槽电压随着该蒙蔽性沉积物的累积而逐渐升高。可靠近阴极表面提供导致不溶性钙磷酸盐化合物例如羟基磷灰石的沉积的条件。即使本体电解质中的平均pH保持在6.5附近,由于根据方程式2形成羟基,阴极表面附近的pH也高得多,例如远高于10。局部升高的pH使钙磷酸盐化合物的局部溶解性降低并且导致沉积层的形成。另外,氢氧化钙自然地形成于阴极的表面上并且氢氧化钙的这些簇可充当用于磷酸钙(Ca3(PO4)2)的形成的种子。当在阴极表面附近存在少量磷酸时,发生以下反应:Providing such a protective layer may be particularly advantageous when used in combination with a cathode comprising a substrate, such as stainless steel, and a catalytically active coating, such as a metal matrix doped with a catalytic species such as Ru. Calcium impurities can interfere with such a catalytically active coating and form calcium hydroxide during the hydrogen evolution reaction (Eq. 2), causing a gradual increase in cell voltage as this masking deposit builds up. Conditions that result in the deposition of an insoluble calcium phosphate compound such as hydroxyapatite may be provided close to the cathode surface. Even though the average pH in the bulk electrolyte remains around 6.5, the pH near the cathode surface is much higher, eg, well above 10, due to the formation of hydroxyl groups according to Equation 2. A locally elevated pH reduces the local solubility of calcium phosphate compounds and leads to the formation of deposited layers. In addition, calcium hydroxide naturally forms on the surface of the cathode and these clusters of calcium hydroxide can act as seeds for the formation of calcium phosphate (Ca 3 (PO 4 ) 2 ). When a small amount of phosphoric acid is present near the cathode surface, the following reaction occurs:
3Ca(OH)2+2H3PO4=>Ca3(PO4)2+6H2O(12)3Ca(OH) 2 +2H 3 PO 4 =>Ca 3 (PO 4 ) 2 +6H 2 O(12)
这些磷酸钙分子进一步根据以下与氢氧化钙反应以在阴极表面上形成羟基磷灰石:These calcium phosphate molecules further react with calcium hydroxide to form hydroxyapatite on the cathode surface according to the following:
Ca(OH)2+3Ca3(PO4)2=>Ca10(PO4)6(OH)2(13)Ca(OH) 2 +3Ca 3 (PO 4 ) 2 =>Ca 10 (PO 4 ) 6 (OH) 2 (13)
作为氯酸根操作之特征的高温(约60℃-约85℃)也有利于该沉积,因为温度越高,钙磷酸盐化合物的溶解度越低。实际上,提供用于在阴极表面上的羟基磷灰石的非均相(异质,heterogeneous)形成的条件,即使它们可不适合于在电解质的本体中磷酸盐化合物的沉淀。本文中描述的各种技术支持将这样的条件用于预定添加磷酸根以在阴极表面上的钙磷酸盐保护性层的形成中被基本上完全消耗。还注意,一种或多种其它钙磷酸盐化合物例如Ca3(PO4)2也可存在并且具有有益的保护性质。The high temperature (about 60°C to about 85°C) that is characteristic of chlorate operation also favors this deposition, since the higher the temperature, the lower the solubility of the calcium phosphate compound. Indeed, conditions are provided for the heterogeneous formation of hydroxyapatite on the cathode surface, even though they may not be suitable for the precipitation of phosphate compounds in the bulk of the electrolyte. Various techniques described herein support the use of conditions for the intended addition of phosphate to be substantially completely consumed in the formation of a calcium phosphate protective layer on the cathode surface. Note also that one or more other calcium phosphate compounds such as Ca 3 (PO 4 ) 2 may also be present and have beneficial protective properties.
以下将描述本发明的各种方面,包括用于制造氯酸钠的系统和工艺、预制阴极和用途以及制造预制阴极的方法。Various aspects of the invention are described below, including systems and processes for making sodium chlorate, prefabricated cathodes and uses, and methods of making prefabricated cathodes.
用于氯酸钠制造的电解系统Electrolysis system for sodium chlorate manufacture
图1示意性地说明用于制造氯酸钠的系统10。系统10包括电解槽12,电解槽12具有电解室14,电解室14填充有电解质溶液16(在本文中也称作电解质)。系统10还包括阳极18和阴极20,其可能的结构和组成将在下文中进一步讨论。阴极20可具有包括基底22、中间催化性层24和保护性外层26的结构。Figure 1 schematically illustrates a system 10 for producing sodium chlorate. The system 10 includes an electrolysis cell 12 having an electrolysis chamber 14 filled with an electrolytic solution 16 (also referred to herein as an electrolyte). System 10 also includes an anode 18 and a cathode 20, the possible structure and composition of which will be discussed further below. Cathode 20 may have a structure including substrate 22 , intermediate catalytic layer 24 and protective outer layer 26 .
仍然参照图1,电解槽12产生富含氯酸钠的溶液28,其被从电解室14取出并且可被供应至下游单元30例如沉降器、过滤器、蒸发器、结晶器和干燥器用于进一步加工以产生固体和/或浓缩形式的氯酸钠32。Still referring to FIG. 1 , the electrolysis cell 12 produces a sodium chlorate-rich solution 28 that is withdrawn from the electrolysis chamber 14 and may be supplied to downstream units 30 such as settlers, filters, evaporators, crystallizers, and dryers for further Processing to produce sodium chlorate 32 in solid and/or concentrated form.
阴极20(其也可称作阴极结构体)可包括三个或更多个层。在一些情形中,所述阴极结构体具有包括如下的三层:基底22,直接设置在基底22上的中间催化性层24,以及直接设置在中间催化性层24上的保护性外层26。也可想到在不同层中间提供一个或多个另外的层。Cathode 20 (which may also be referred to as a cathode structure) may include three or more layers. In some cases, the cathode structure has three layers comprising: substrate 22 , intermediate catalytic layer 24 disposed directly on substrate 22 , and protective outer layer 26 disposed directly on intermediate catalytic layer 24 . It is also conceivable to provide one or more further layers between different layers.
在一些实施中,基底22可由耐腐蚀材料例如可来自400系列的不锈钢组成。关于基底的更多内容将在下文中进一步描述。In some implementations, substrate 22 may be composed of a corrosion resistant material such as stainless steel, which may be from the 400 series. More about the substrate will be described further below.
在一些实施中,中间催化性层24可由高孔隙率高活性的催化材料例如Fe3Al(Ru)和Fe3AlTa(Ru)组成。关于中间催化性层的更多内容将在下文中进一步描述。In some implementations, the intermediate catalytic layer 24 may be composed of a highly porous and highly active catalytic material such as Fe3Al(Ru ) and Fe3AlTa (Ru). More about the intermediate catalytic layer will be described further below.
在一些实施中,保护性外层26包括钙磷酸盐化合物。关于保护性外层的形成和性质的更多内容将在下文中进一步描述。In some implementations, protective outer layer 26 includes a calcium phosphate compound. More on the formation and properties of the protective outer layer will be described further below.
磷酸根定量给料(dosing)和保护性层的形成Phosphate dosing and protective layer formation
所述保护性外层可以许多方式形成。在一种情形中,所述保护性外层是在电解槽内原位形成的。在其它情形中,所述保护性外层可异位(exsitu)形成以制造可用于电解系统中的预制阴极。关于预制阴极和异位方法的更多内容将在下文中进一步描述。The protective outer layer can be formed in a number of ways. In one instance, the protective outer layer is formed in situ within the electrolytic cell. In other cases, the protective outer layer can be formed exsitu to make a prefabricated cathode that can be used in an electrolysis system. More on the prefabricated cathode and the ex-situ method will be described further below.
如上所示,所述保护性外层可在电解槽内通过添加磷酸根离子和在一些情况下钙离子而原位形成。As indicated above, the protective outer layer can be formed in situ within the electrolytic cell by adding phosphate ions and in some cases calcium ions.
磷酸根离子可以足以形成所述保护性外层并且避免一种或多种其它反应例如钙或铁离子从本体电解质溶液沉淀和/或铁磷酸盐化合物在阳极处沉积的相对低的量添加。Phosphate ions may be added in relatively low amounts sufficient to form the protective outer layer and avoid one or more other reactions such as precipitation of calcium or iron ions from the bulk electrolyte solution and/or deposition of iron phosphate compounds at the anode.
就添加至电解质的磷酸根离子的量而言,这可取决于包括如下的许多因素:待保护的阴极的表面区域(表面积)、待形成的保护性层的厚度、电极的组成和结构、电解质的组成和性质等。In terms of the amount of phosphate ions added to the electrolyte, this can depend on a number of factors including: the surface area (surface area) of the cathode to be protected, the thickness of the protective layer to be formed, the composition and structure of the electrodes, the electrolyte composition and properties, etc.
在一些情形中,磷酸根是以足以形成具有约0.25微米-约1.5微米、约0.5微米-约1微米、或者约0.6微米-约0.9微米的厚度的保护性层的量添加的。图8说明形成于催化性中间层上并且具有通常范围为约0.5微米-约1微米的厚度的保护性层。In some cases, the phosphate is added in an amount sufficient to form a protective layer having a thickness of about 0.25 microns to about 1.5 microns, about 0.5 microns to about 1 micron, or about 0.6 microns to about 0.9 microns. Figure 8 illustrates a protective layer formed on the catalytic interlayer and having a thickness generally in the range of about 0.5 micron to about 1 micron.
另外,可遵循总的准则,由此添加至电解质的磷酸根的量至多足以形成具有约1微米厚度的保护性层。例如,在以下实施例部分中讨论的一种情形中,可添加约0.1mg磷酸根(PO4)/cm2阴极。因此应理解,待添加的磷酸根的量可基于阴极的表面区域而不是电解质的体积或者电解质中存在的钙离子的量确定。例如,待添加的磷酸根的量可为约0.025mg/cm2阴极-约0.2mg/cm2阴极、或者例如0.05mg/cm2阴极-约0.15mg/cm2阴极。Additionally, a general guideline can be followed whereby the amount of phosphate added to the electrolyte is at most sufficient to form a protective layer having a thickness of about 1 micron. For example, in one case discussed in the Examples section below, about 0.1 mg phosphate (PO 4 )/cm 2 cathode may be added. It will therefore be understood that the amount of phosphate to be added may be determined based on the surface area of the cathode rather than the volume of the electrolyte or the amount of calcium ions present in the electrolyte. For example, the amount of phosphate to be added may be from about 0.025 mg/cm 2 cathode to about 0.2 mg/cm 2 cathode, or, for example, from 0.05 mg/cm 2 cathode to about 0.15 mg/cm 2 cathode.
此外,待添加的磷酸根的量可通过计算和/或经验性试验而预先确定,如将从实施例领会的。在一个实例中,为了在阴极上形成保护性层,向电解质添加不超过75ppm、50ppm、30ppm、20ppm或15ppm的磷酸根离子。Furthermore, the amount of phosphate to be added may be predetermined by calculation and/or empirical testing, as will be appreciated from the examples. In one example, no more than 75 ppm, 50 ppm, 30 ppm, 20 ppm, or 15 ppm of phosphate ions are added to the electrolyte in order to form a protective layer on the cathode.
在一些情形中,所述电解质可最初不包含对于与磷酸根离子形成保护性层而言足够的钙离子。钙离子的添加可在磷酸根离子的添加之前、期间或者之后以对于容许形成保护性层而言足够的量进行。图11和12说明,为了使电压升高停止,钙离子和磷酸根离子可以多种顺序添加。In some cases, the electrolyte may initially not contain enough calcium ions to form a protective layer with the phosphate ions. The addition of calcium ions can be done before, during or after the addition of phosphate ions in an amount sufficient to allow the formation of a protective layer. Figures 11 and 12 illustrate that calcium and phosphate ions can be added in various orders in order to stop the voltage rise.
还应注意,磷酸根可作为一次剂量添加或者可周期性地以渐增的剂量添加。图13说明在一段时期内渐增地将多个磷酸根剂量向所述系统添加的情形。It should also be noted that the phosphate may be added as a single dose or may be added periodically in increasing doses. Figure 13 illustrates the incremental addition of multiple phosphate doses to the system over a period of time.
回过来参照图8,可看到保护性层为多孔的,具有网状组织状或者蜂窝结构,所述结构具有结构单元(structuralelements)和分散的空隙空间的网络。在一些情形中,保护性层的孔隙率和渗透性低到足以保护在下面的催化性层免受钙毒害并且高到足以避免阻碍析氢反应发生。Referring back to Figure 8, it can be seen that the protective layer is porous, having a reticular or honeycomb structure with a network of structural elements and dispersed void spaces. In some cases, the porosity and permeability of the protective layer are low enough to protect the underlying catalytic layer from calcium poisoning and high enough to avoid hindering the hydrogen evolution reaction from occurring.
简要地回过来参照图1,可将磷酸根经由一个或者多个磷酸根添加管线34添加至电解质16,所述磷酸根添加管线34可为单独的管线或者可配置成将磷酸根添加至电解槽12的另一入口,例如,如所示的稀HCL入口。可手动或者自动添加磷酸根。其可为响应于关于电解系统所取得的测量结果或者读数而添加的。在此意义上,磷酸根管线34可为离子调节器的一部分,所述离子调节器可调节电解质中的磷酸根离子以及可能地钙离子的量以保证提供足以形成保护性层的少量的磷酸根。所述离子调节器可具有各种其它部件例如测量装置和控制器。Referring back briefly to FIG. 1 , phosphate may be added to electrolyte 16 via one or more phosphate addition lines 34, which may be separate lines or may be configured to add phosphate to the electrolytic cell Another inlet at 12, for example, a dilute HCL inlet as shown. Phosphate can be added manually or automatically. It may be added in response to measurements or readings taken about the electrolysis system. In this sense, the phosphate line 34 may be part of an ion regulator that regulates the amount of phosphate ions and possibly calcium ions in the electrolyte to ensure that a small amount of phosphoric acid sufficient to form a protective layer is provided. root. The ion conditioner may have various other components such as measurement devices and controllers.
在一些实施中,磷酸根是以磷酸H3PO4的形成添加的。然而,应注意,磷酸根可以其它形式例如酸或盐,以单磷酸盐或者多磷酸盐化合物或者以其它形式添加。 In some implementations, the phosphate is added in the form of phosphate H3PO4. It should be noted, however, that the phosphate groups may be added in other forms such as acids or salts, as monophosphate or polyphosphate compounds, or otherwise.
此外,可进行磷酸根的添加以促进在保护性层的形成中磷酸根的基本上完全消耗。例如,控制电解系统的条件(例如电解质的温度、pH、组成等)以支持在阴极表面上钙磷酸盐化合物的形成可限制或者防止任何其它涉及磷酸根的反应。该控制步骤可在电解操作开始处或者附近进行,使得保护性层能够尽可能快地形成。如将在以下进一步描述的,也可使用许多方法将阴极用保护性层异位涂覆,使得在开始电解操作时阴极具有保护性层。In addition, the addition of phosphate may be performed to facilitate substantially complete consumption of phosphate in the formation of the protective layer. For example, controlling the conditions of the electrolysis system (eg, temperature, pH, composition, etc. of the electrolyte) to support the formation of calcium phosphate compounds on the cathode surface can limit or prevent any other reactions involving phosphate. This control step can be performed at or near the start of the electrolytic operation so that the protective layer can be formed as quickly as possible. As will be described further below, the cathode can also be coated ex-situ with a protective layer using a number of methods so that the cathode has a protective layer at the start of the electrolytic operation.
预制阴极和异位制造Prefabricated cathodes and ex situ fabrication
所述预制阴极可包括基底、催化性层和保护性层。本文中描述的预制阴极可用于代替工业中目前使用的铁阴极,以提供耐腐蚀性、高的对析氢反应的活性、良好的氢气电流效率和低的氢过电位。在一些情况下,所述预制阴极不催化次氯酸根和氯酸根的还原并且不产生显著的氧气副产物。The prefabricated cathode can include a substrate, a catalytic layer, and a protective layer. The prefabricated cathodes described here can be used to replace iron cathodes currently used in industry to provide corrosion resistance, high activity for hydrogen evolution reaction, good hydrogen current efficiency, and low hydrogen overpotential. In some cases, the prefabricated cathode does not catalyze the reduction of hypochlorite and chlorate and does not produce significant oxygen by-products.
所述预制阴极可提供若干优点,例如在电解操作开始时提供催化性层的保护性涂层、以及提供对电解质杂质的耐受性,并且对抵消在阴极表面上钙杂质的负面作用作贡献。The prefabricated cathode can provide several advantages such as providing a protective coating of the catalytic layer at the start of the electrolysis operation and providing tolerance to electrolyte impurities and contributing to counteract the negative effects of calcium impurities on the cathode surface.
制造所述预制阴极的方法可包括通过溅涂、浸涂、溶胶-凝胶方法、电化学沉积、仿生涂覆、热等压涂覆、或者等离子体喷涂而施加所述保护性外层的步骤。可选择和实施施加所述保护性层的方法以获得所述保护性层的一些性质,例如在一些范围内的层厚、渗透性和孔隙率。The method of making said prefabricated cathode may comprise the step of applying said protective outer layer by sputtering, dipping, sol-gel methods, electrochemical deposition, biomimetic coating, hot isobaric coating, or plasma spraying . The method of applying the protective layer can be selected and implemented to achieve certain properties of the protective layer, such as layer thickness, permeability and porosity within certain ranges.
参照图14,可将可包括基底和催化性层的阴极结构体36供应至用于施加保护性层的异位预处理单元38。预处理单元38可配置成进行用于施加保护性层的上述方法的一种或多种,从而制造预制阴极20。然后将预制阴极20供应至用于制造氯酸钠的电解槽12。Referring to Figure 14, the cathode structure 36, which may include a substrate and a catalytic layer, may be supplied to an ex situ pretreatment unit 38 for applying a protective layer. Preprocessing unit 38 may be configured to perform one or more of the methods described above for applying the protective layer to produce prefabricated cathode 20 . The prefabricated cathode 20 is then supplied to the electrolytic cell 12 for the production of sodium chlorate.
在一些情形中,所述预制阴极可保持在电解槽中直至它们的工作寿命结束。如果预先施加的保护性涂层被破坏或者部分地除去,则可使用使所述保护性层再生的原位方法,例如如本文中描述的添加预定量的磷酸根。另外,在一些情况下,在一定时期的操作之后,可将电解质从电解槽12除去并且可通过如下对该电解槽进行清洁:引入弱酸(mildacid)液,其通常被提供在电解槽中约1小时。如果进行从所述阴极除去所述保护性外层的这样的清洁或者其它维护操作,则可原位重新施加所述保护性外层以在电解的下一阶段期间使得实现持续保护。In some cases, the prefabricated cathodes may remain in the electrolysis cell until the end of their working life. If a pre-applied protective coating is damaged or partially removed, in situ methods of regenerating the protective layer may be used, such as adding a predetermined amount of phosphate as described herein. Additionally, in some cases, after a certain period of operation, the electrolyte may be removed from the cell 12 and the cell may be cleaned by introducing a mild acid solution, which is typically provided in the cell for about 1 Hour. If such a cleaning or other maintenance operation is performed to remove the protective outer layer from the cathode, the protective outer layer can be reapplied in situ to enable continued protection during the next stage of electrolysis.
替代地,在一定时期的操作之后,可将用过的阴极40从电解槽12移出以进行清洁和/或维护。用过的阴极可例如在电解槽12的关停操作期间被移出。可将用过的阴极40提供至清洁单元42以检查和清洁所述阴极以产生经清洁的阴极44。清洁过程可从阴极结构体除去所述保护性层并且因此可将经清洁的阴极44供应至预处理单元38以重新施加所述保护性层,使得所述阴极可被再用在所述电解槽中。Alternatively, after a certain period of operation, the spent cathode 40 may be removed from the electrolysis cell 12 for cleaning and/or maintenance. The spent cathodes can be removed, for example, during shutdown operation of the electrolysis cell 12 . Spent cathodes 40 may be provided to cleaning unit 42 for inspection and cleaning of the cathodes to produce cleaned cathodes 44 . The cleaning process may remove the protective layer from the cathode structure and thus the cleaned cathode 44 may be supplied to the pretreatment unit 38 to reapply the protective layer so that the cathode may be reused in the electrolytic cell middle.
阴极基底和催化性层Cathode substrate and catalytic layer
在一些实施中,如之前所提及的,所述阴极具有包括基底和催化性层的结构。In some implementations, as previously mentioned, the cathode has a structure that includes a substrate and a catalytic layer.
所述基底可包括不含镍的稳定的耐腐蚀基底。所述基底可为400系列的不锈钢或者另外的具有抗腐蚀性质的材料。可使用400系列的不锈钢,尽管具有较高的阴极过电位。如列出了可从AKSteel公司获得的商业不锈钢的下表1中所示,这些合金具有与软钢的那些类似的非常低的碳含量并且没有镍。它们是在含氯离子的介质中高度耐腐蚀的。在电解操作中,当不存在阴极保护时在关停期间可出现腐蚀问题,并且软钢阴极可遭受劣化。钢上的腐蚀产物可在每次供电中断时将表面层除去。虽然仍然存在于电解质中的钙和磷酸根可导致所述保护性层的再生,但是另一有利特征是提供与软钢相比改善的基底。The substrate may comprise a nickel-free stable corrosion-resistant substrate. The substrate may be 400 series stainless steel or another material with corrosion resistant properties. 400 series stainless steels can be used, albeit with a higher cathodic overpotential. As shown in Table 1 below, which lists commercial stainless steels available from AK Steel Corporation, these alloys have very low carbon contents similar to those of mild steels and are nickel free. They are highly resistant to corrosion in media containing chloride ions. In electrolytic operations, corrosion problems can arise during shutdown when cathodic protection is not present, and mild steel cathodes can suffer from degradation. Corrosion products on steel remove the surface layer every time power is interrupted. While calcium and phosphate still present in the electrolyte can lead to regeneration of the protective layer, another advantageous feature is the provision of an improved substrate compared to mild steel.
表1:可从AKSteel公司获得的商业不锈钢Table 1: Commercial stainless steels available from AKSteel
所述催化层可包括掺杂有催化活性化合物的金属基体。例如,所述催化性层可包括Fe3Al(Ru)和Fe3AlTa(Ru),其可用于制造氯酸钠并且相对于铁具有改善。这些材料具有在铁铝化物金属基体内的催化性物种(Ru)。尽管它们对于析氢反应的效率,但是不幸地,这些新的阴极材料也受钙杂质影响。如图4中所示,在包含这些合金的电解槽中,在向电解质添加2ppm钙杂质之后,观察到60mV的电压升高。阴极上的钙沉积物倾向于毒害该电极并且降低催化性物种的活性。该电压升高在一小时的时间尺度而不是数月的时间尺度上发生,这比在常规阴极上快。其原因来自于如下事实:这些阴极是高度多孔性的。它们典型地具有为钢阴极的有效表面约100倍高的有效表面。因此,表面上的蒙蔽性沉积物可相当快地阻断位于催化结构体的孔内的大量催化位点。然而,包括钙磷酸盐化合物的保护性层的使用使得所述催化性层能够提供有益的操作而不被钙杂质所毒害。The catalytic layer may comprise a metal matrix doped with a catalytically active compound. For example, the catalytic layer may include Fe3Al(Ru ) and Fe3AlTa (Ru), which are useful in making sodium chlorate and are improved over iron. These materials have catalytic species (Ru) within an iron aluminide metal matrix. Despite their efficiency for the hydrogen evolution reaction, unfortunately, these new cathode materials are also affected by calcium impurities. As shown in Figure 4, in electrolytic cells containing these alloys, a voltage rise of 60 mV was observed after the addition of 2 ppm calcium impurity to the electrolyte. Calcium deposits on the cathode tend to poison the electrode and reduce the activity of catalytic species. This voltage increase occurs on a time scale of one hour rather than months, which is faster than on conventional cathodes. The reason for this comes from the fact that these cathodes are highly porous. They typically have an effective surface about 100 times higher than that of a steel cathode. Thus, masking deposits on the surface can fairly quickly block the large number of catalytic sites located within the pores of the catalytic structure. However, the use of a protective layer comprising a calcium phosphate compound enables the catalytic layer to provide beneficial operation without being poisoned by calcium impurities.
为了具有足够的寿命,阴极应该能够忍受供电中断。当不存在阴极电流保护时,最严峻的腐蚀条件经常在供电中断期间出现。In order to have sufficient lifetime, the cathode should be able to tolerate power interruptions. The most severe corrosion conditions often occur during power interruptions when cathodic current protection is not present.
在一些情形中,所述预制阴极具有可忍受多次电流中断的结构。In some cases, the prefabricated cathode has a structure that can withstand multiple current interruptions.
本文中描述的各种方面和实施提供例如如下的优点:减少的磷酸根需求、在电解槽清洁之间延长的操作时间、低电压水平的维护、阴极的增强保护、降低的对阳极的负面影响等。Various aspects and implementations described herein provide advantages such as: reduced phosphate demand, extended operating time between electrolyser cleaning, maintenance of low voltage levels, enhanced protection of the cathode, reduced negative impact on the anode wait.
实施例和实验Examples and experiments
现在将描述多种实施例和实验结果。Various examples and experimental results will now be described.
图2显示在用铁阴极和DSA阳极在70℃和2.5kA/m2操作的氯酸根电解槽中的一系列关停。电解质包含550g/l的NaClO3、110g/l的NaCl和3g/l的重铬酸盐。对以开路(断路)(OC)形式的电流中断达2、5、10和15分钟和之后的以短路(CC)形式的中断达15分钟进行观察。在开路中,阴极相对于DSA的电压相当快地达到位于1.08V处的其腐蚀电位。中断越长,氧气爆发性释放越大并且在关停之后的CE越低。当中断发生在CC条件(其相当于双极构型)下时,腐蚀如此严重以致于腐蚀产物的大的壳落在电解槽的底部并且结果,该事件之后的氧气释放是相对小的。Figure 2 shows a series of shutdowns in a chlorate electrolyzer operating at 70°C and 2.5kA/m2 with an iron cathode and a DSA anode. The electrolyte contained 550 g/l NaClO 3 , 110 g/l NaCl and 3 g/l dichromate. Observations were made for current interruptions in the form of open circuits (OC) for 2, 5, 10 and 15 minutes followed by interruptions in the form of short circuits (CC) for 15 minutes. In an open circuit, the voltage of the cathode relative to the DSA reaches its corrosion potential at 1.08V rather quickly. The longer the interruption, the greater the oxygen burst and the lower the CE after shutdown. When the interruption occurs under CC conditions (which correspond to a bipolar configuration), the corrosion is so severe that a large shell of corrosion product falls to the bottom of the cell and, as a result, the oxygen release after the event is relatively small.
图3显示在电解数月之后从阴极表面取得的x-射线扫描。除了氯酸钠之外,还观察到氢氧化钙(羟钙石)以及一些钙硫酸盐氢氧化物(钙钠矾)沉积物。Figure 3 shows an x-ray scan taken from the surface of the cathode after several months of electrolysis. In addition to sodium chlorate, deposits of calcium hydroxide (hydroxylite) and some calcium sulphate hydroxide (waltonite) were also observed.
这些蒙蔽性沉积物是造成在长期操作之后观察到的电解槽电压升高的原因。These masking deposits are responsible for the increase in cell voltage observed after long-term operation.
实施例1Example 1
在以下实验中观察非常少量的磷酸根添加剂的添加对阴极的有益影响。The beneficial effect of the addition of very small amounts of phosphate additives on the cathode was observed in the following experiments.
将包含550g/l的NaClO3、110g/l的NaCl和3g/l的重铬酸盐的350升氯酸钠电解质的浴液用于电解。将pH和温度分别保持在6.5和70℃。在实验中使用钢阴极和DSA阳极。在以2.5kA/m2连续电解74小时之后,电解槽电压为3.056伏特。然后以CaCl2形式向电解质添加4ppm钙杂质并且在仅1小时内,电压升至3.074,这意味着18mV的升高。进行没有阴极保护(即,开路–OC)的15分钟关停事件以导致阴极的一些腐蚀和在电解质中产生铁杂质并且在连续电解22小时后,电压达到3.060伏特。该电压接近原始值,这表明,阴极表面上的表面杂质和腐蚀产物的一部分通过该事件顺序(以OC的关停,之后氢气放出)而被除去。A bath of 350 liters of sodium chlorate electrolyte containing 550 g/l of NaClO 3 , 110 g/l of NaCl and 3 g/l of dichromate was used for electrolysis. The pH and temperature were maintained at 6.5 and 70°C, respectively. Steel cathodes and DSA anodes were used in the experiments. After 74 hours of continuous electrolysis at 2.5 kA/m 2 , the cell voltage was 3.056 volts. Then 4ppm calcium impurity was added to the electrolyte in the form of CaCl2 and in only 1 hour, the voltage rose to 3.074, which means a rise of 18mV. A 15 minute shutdown event without cathodic protection (ie, open circuit - OC) was performed to cause some corrosion of the cathode and generation of iron impurities in the electrolyte and after 22 hours of continuous electrolysis, the voltage reached 3.060 volts. This voltage is close to the original value, which indicates that part of the surface impurities and corrosion products on the cathode surface are removed by this sequence of events (shutdown with OC followed by hydrogen evolution).
之后,进行15分钟的以开路形式的第二次关停并且在该事件期间,将10ml磷酸(H3PO4–85%)添加至该350升电解质。考虑到电解质1.3g/l的密度和磷酸1.7g/l的密度,该添加对应于磷酸根离子(PO4 -3)对电解质为0.047g/l或36ppm。这也相当于电解质中15.3mg/l的磷。该非常少的磷酸根化合物添加导致在恒极化22小时之后62mV的大的电压下降,如汇总该系列实验的表2中所示。最后,在15分钟的另一关停事件期间进行10ml磷酸的第二次添加,并且在电解16小时之后观察到71mV的另外的电压下降。从在添加钙杂质之后观察到的值起的总的电压下降(3.074到2.927volt)为147mV。对于对应于小于0.1g/l或75ppm的非常少的磷酸根离子添加,这是大的下降。在电解质中磷酸根的这些非常低的水平下,不存在位于阳极上的铁磷酸盐化合物的沉淀(其如之前所提及的,可对电解槽的总体操作有害)。Afterwards, a second shutdown in open circuit was performed for 15 minutes and during this event 10 ml of phosphoric acid (H 3 PO 4 -85%) was added to the 350 liters of electrolyte. Taking into account the density of the electrolyte 1.3 g/l and phosphoric acid 1.7 g/l, this addition corresponds to 0.047 g/l or 36 ppm of phosphate ions (PO 4 −3 ) to the electrolyte. This also corresponds to 15.3 mg/l of phosphorus in the electrolyte. This very small addition of phosphate compound resulted in a large voltage drop of 62 mV after 22 hours of constant polarization, as shown in Table 2 summarizing this series of experiments. Finally, a second addition of 10 ml phosphoric acid was made during another shutdown event of 15 minutes, and an additional voltage drop of 71 mV was observed after 16 hours of electrolysis. The total voltage drop (3.074 to 2.927 volts) from the value observed after calcium impurity addition was 147 mV. This is a large drop for a very small addition of phosphate ions corresponding to less than 0.1 g/l or 75 ppm. At these very low levels of phosphate in the electrolyte, there is no precipitation of iron phosphate compounds on the anode (which, as mentioned before, can be detrimental to the overall operation of the electrolysis cell).
表2:作为电解实验的一部分进行的系列事件Table 2: Series of events performed as part of electrolysis experiments
在上述实验之后,对电解质进行杂质含量分析并且结果示于表3中。After the above experiment, the electrolyte was analyzed for impurity content and the results are shown in Table 3.
表3:实验之后浴液中的杂质含量Table 3: Impurity content in the bath after the experiment
由于将4ppm钙和总计30.6mg/l(15.3mg/l的量的两倍)的磷添加至电解质,表3显示,在实验结束时在电解质中仍然存在显著量的杂质。由于阴极表面上的保护性涂层,浴液中的残留钙杂质不再影响电解槽电压。Due to the addition of 4 ppm calcium and a total of 30.6 mg/l (twice the amount of 15.3 mg/l) of phosphorus to the electrolyte, Table 3 shows that there were still significant amounts of impurities in the electrolyte at the end of the experiment. Due to the protective coating on the cathode surface, residual calcium impurities in the bath no longer affect the cell voltage.
图5显示在实验结束时在将阴极从浴液移出之后该电极的表面的x-射线衍射光谱。在分析之前将该表面在空气中干燥。该光谱清楚地揭示了来自羟基磷灰石Ca10(PO4)6(OH)2脱水的磷酸氧化钙Ca10(PO4)6O的存在。这证明,在氯酸根电解槽中当在电解质中存在钙杂质和非常少量的磷酸根两者时在阴极的表面上存在羟基磷灰石的薄层。羟基磷灰石的该薄层保护阴极表面免受钙杂质的有害影响并且导致电解槽电压的显著降低。在低于0.1g/l或者75ppm的磷酸根浓度下,存在用于促进在阴极表面处的羟基磷灰石的形成的条件(包括高的pH、高温、和Ca(OH)2种子的存在),即使用于使钙磷酸盐化合物在电解质本体中沉淀的条件可不足。因此,钙离子可仍然以相当高的浓度存在于电解质中,但是它们对阴极的负面影响由于羟基磷灰石保护性层而被降低。此外,磷酸根离子浓度低到足以避免在阳极表面上形成铁磷酸盐化合物。Figure 5 shows the x-ray diffraction spectrum of the surface of the electrode after the cathode was removed from the bath at the end of the experiment. The surface was air dried prior to analysis. The spectrum clearly reveals the presence of calcium oxyphosphate Ca 10 (PO 4 ) 6 O from the dehydration of hydroxyapatite Ca 10 (PO 4 ) 6 (OH) 2 . This demonstrates the presence of a thin layer of hydroxyapatite on the surface of the cathode in a chlorate electrolysis cell when both calcium impurities and very small amounts of phosphate are present in the electrolyte. This thin layer of hydroxyapatite protects the cathode surface from the deleterious effects of calcium impurities and leads to a significant drop in the cell voltage. At phosphate concentrations below 0.1 g/l or 75 ppm, conditions exist to promote the formation of hydroxyapatite at the cathode surface (including high pH, high temperature, and the presence of Ca (OH) seeds) , even if the conditions for the precipitation of calcium phosphate compounds in the electrolyte bulk may be insufficient. Thus, calcium ions can still be present in the electrolyte in fairly high concentrations, but their negative impact on the cathode is reduced due to the protective layer of hydroxyapatite. Furthermore, the concentration of phosphate ions is low enough to avoid the formation of iron phosphate compounds on the anode surface.
实施例2Example 2
图6显示除了使用不锈钢阴极之外与图2中显示的电化学试验类似的电化学试验。具体地,图6显示在用400系列的不锈钢阴极和DSA阳极在70℃和2.5kA/m2下操作的氯酸根电解槽中的一系列关停。对以开路(OC)形式的电流中断达2、5、10和15分钟和之后的以短路(CC)形式的中断达15分钟进行观察。如可通过将图6与图2比较看出的,具有不锈钢阴极的电解槽具有比铁电解槽的电位高190mV的电位(4.42–4.23伏特)。如之前提及的,这是由于在不锈钢合金中存在铬而引起的。背景O2释放也略微高出0.4%(3.1%对2.7%)。但是令人惊讶地,不锈钢阴极的阴极电流效率高得多并且即使在电流中断期间也保持为高的。Figure 6 shows an electrochemical experiment similar to that shown in Figure 2 except using a stainless steel cathode. Specifically, Figure 6 shows a series of shutdowns in a chlorate electrolysis cell operated at 70°C and 2.5kA /m2 with 400 series stainless steel cathodes and DSA anodes. Observations were made for current interruptions in the form of open circuit (OC) for 2, 5, 10 and 15 minutes followed by interruptions in the form of short circuit (CC) for 15 minutes. As can be seen by comparing Figure 6 with Figure 2, the cell with the stainless steel cathode had a potential 190 mV higher than that of the iron cell (4.42 - 4.23 volts). As mentioned before, this is due to the presence of chromium in the stainless steel alloy. Background O2 release was also slightly higher by 0.4% (3.1% vs. 2.7%). Surprisingly, however, the cathodic current efficiency of the stainless steel cathode was much higher and remained high even during current interruptions.
这是由于即使在腐蚀条件下也是稳定的不锈钢表面引起的。在开路中,在不锈钢上形成非常稳定的钝化表面层。该钝化表面层与通过在电解质中添加重铬酸盐而形成并且提供高的阴极电流效率的氢氧化铬层类似。不锈钢合金中铬的存在因此始终提供高的电流效率,而在软钢阴极的情况下,每次在存在关停时,铁氧化物垢使电流效率显著降低。而且在图6上显著的是,不锈钢电解槽的开路电压比铁电解槽的开路电压低得多(0.35对1.08伏特),这表明,不锈钢比软钢更惰性并且结果,在双极或短路条件下的电偶腐蚀将显著减少。此外,不锈钢的高的耐腐蚀性使氯酸根电解质中的铁杂质的总量降低并且结果,降低在阳极上形成铁磷酸盐的可能性。This is due to the stainless steel surface which is stable even under corrosive conditions. In an open circuit, a very stable passivating surface layer forms on stainless steel. This passivating surface layer is similar to the chromium hydroxide layer formed by adding dichromate to the electrolyte and provides high cathodic current efficiency. The presence of chromium in stainless steel alloys therefore always provides a high current efficiency, whereas in the case of mild steel cathodes, the iron oxide scale reduces the current efficiency considerably every time there is a shutdown. Also noticeable on Figure 6 is that the open circuit voltage of the stainless steel electrolyzer is much lower than that of the iron electrolyzer (0.35 vs. 1.08 volts), which indicates that stainless steel is more noble than mild steel and as a result, under bipolar or short circuit conditions Under the galvanic corrosion will be significantly reduced. Furthermore, the high corrosion resistance of stainless steel reduces the total amount of iron impurities in the chlorate electrolyte and, as a result, reduces the possibility of iron phosphate formation on the anode.
为了克服不锈钢的过电位较高的缺点,可将该不锈钢基底用使方程式2中描述的析氢反应容易的薄的催化性层涂覆。这样的催化性层的实例为Fe3Al(Ru)和Fe3AlTa(Ru)合金。To overcome the high overpotential of stainless steel, the stainless steel substrate can be coated with a thin catalytic layer that facilitates the hydrogen evolution reaction described in Equation 2. Examples of such catalytic layers are Fe3Al(Ru ) and Fe3AlTa (Ru) alloys.
图7a和7b显示从包含400系列的不锈钢基底和之前描述的类型的薄的催化性顶部层的这样的阴极结构体的横截面拍摄的扫描电子显微镜照片。Figures 7a and 7b show scanning electron micrographs taken from a cross section of such a cathode structure comprising a 400 series stainless steel substrate and a thin catalytic top layer of the type previously described.
为了完成根据本发明一种实施方式的阴极结构体,在该双层的顶上添加保护该电极免受电解质中的杂质影响的涂层。该顶部表面层可为之前描述的羟基磷灰石保护性层。To complete the cathode structure according to one embodiment of the invention, a coating is added on top of the bilayer to protect the electrode from impurities in the electrolyte. The top surface layer may be the hydroxyapatite protective layer previously described.
整个阴极结构体的实例包括:(i)包含少量碳并且不含镍的400系列的不锈钢基底;(ii)催化性中间层例如基于掺杂有催化性元素例如Ru的铁-铝化物金属基体并且如在加拿大专利文件No.2687129和/或2778865中描述的催化性中间层;和(iii)在所述催化性中间层的表面上的包括羟基磷灰石或者基本上由羟基磷灰石构成以保护阴极免受电解质中存在的杂质影响的顶部层。Examples of overall cathode structures include: (i) a 400 series stainless steel substrate containing a small amount of carbon and containing no nickel; (ii) a catalytic interlayer such as based on an iron-aluminide metal matrix doped with a catalytic element such as Ru and A catalytic interlayer as described in Canadian Patent Document Nos. 2687129 and/or 2778865; and (iii) comprising or consisting essentially of hydroxyapatite on the surface of said catalytic interlayer and The top layer that protects the cathode from impurities present in the electrolyte.
如之前讨论的,在阴极表面上的羟基磷灰石的顶部层可通过在电解质中引入少量的含磷酸根的化合物(例如以少于0.1g/l或75ppm磷酸根离子(PO4 -3)的量)而原位形成。羟基磷灰石的该表面层也可通过如下而异位制备:在将电极组件用在电化学氯酸根电解槽中之前沉积该涂层。实际上,可通过包括如下的若干方法沉积羟基磷灰石的涂层:热喷雾、溅涂、浸涂、溶胶-凝胶、电化学和电泳沉积、仿生涂覆和热等压涂覆。制造羟基磷灰石涂层的最常用的方法是通过被归类为热喷雾技术的等离子体喷涂。As previously discussed, the top layer of hydroxyapatite on the cathode surface can be obtained by introducing small amounts of phosphate-containing compounds in the electrolyte (e.g. at less than 0.1 g/l or 75 ppm phosphate ion (PO 4 -3 ) amount) and formed in situ. This surface layer of hydroxyapatite can also be prepared ex situ by depositing the coating prior to use of the electrode assembly in an electrochemical chlorate electrolysis cell. Indeed, coatings of hydroxyapatite can be deposited by several methods including thermal spraying, sputtering, dipping, sol-gel, electrochemical and electrophoretic deposition, biomimetic coating and hot isobaric coating. The most common method of manufacturing hydroxyapatite coatings is by plasma spraying, which is classified as a thermal spray technique.
实施例3Example 3
图8显示从包含400系列的不锈钢基底、催化性中间层和薄的羟基磷灰石顶部层的阴极结构体的横截面拍摄的两张扫描电子显微镜照片。注意,在进行电子显微镜法之前在样品的顶上提供钨涂层以在处理期间保护样品。Figure 8 shows two scanning electron micrographs taken from a cross section of a cathode structure comprising a 400 series stainless steel substrate, a catalytic intermediate layer and a thin hydroxyapatite top layer. Note that a tungsten coating was provided on top of the sample prior to electron microscopy to protect the sample during processing.
图9显示羟基磷灰石层的化学图,其表明存在钙和磷元素。Figure 9 shows a chemical map of a hydroxyapatite layer showing the presence of calcium and phosphorus elements.
实施例4Example 4
在室温下,在向电解质添加的不同量的钙杂质的情况下对包含Fe3Al(Ru)型阴极的电解槽进行试验。可注意到,当添加1-2ppm钙时在仅1或2小时内升高100-150mV,表明钙对这样的电极的负面影响。图10显示这些试验的结果。Electrolyzers comprising cathodes of the Fe3Al(Ru) type were tested at room temperature with different amounts of calcium impurities added to the electrolyte. It can be noted that a 100-150 mV rise in only 1 or 2 hours when 1-2 ppm calcium is added indicates the negative effect of calcium on such electrodes. Figure 10 shows the results of these experiments.
实施例5Example 5
图11显示对于包含这样的催化增强的电极的电解槽在68℃的温度下随着时间流逝的电压。在电解约4分钟之后,向电解质添加2ppm的Ca+2离子。电压然后系统地升高。在电解约45分钟之后,以磷酸的形式添加磷酸根离子PO4-3。效果是使电解槽电压的升高立即停止。Figure 11 shows the voltage over time at a temperature of 68°C for an electrolysis cell containing such catalytically enhanced electrodes. After about 4 minutes of electrolysis, 2 ppm of Ca +2 ions were added to the electrolyte. The voltage is then systematically increased. After about 45 minutes of electrolysis, the phosphate ion PO4 −3 was added in the form of phosphoric acid. The effect is to immediately stop the increase in cell voltage.
实施例6Example 6
在如图2中报道的另一试验中,对于除了其中在添加钙离子之前将磷酸添加至电解质之外与实施例5中类似的电解槽,显示电压演变。在电解约2小时之后,添加2ppmCa+2。在钙的该添加之后未观察到电压的显著升高。In another experiment as reported in Figure 2, the voltage evolution was shown for an electrolyser similar to that in Example 5, except that phosphoric acid was added to the electrolyte prior to the addition of calcium ions. After about 2 hours of electrolysis, 2 ppm Ca +2 was added. No significant increase in voltage was observed after this addition of calcium.
实施例7Example 7
图13说明可防止由钙杂质导致的负(极)电压升高的磷酸根的低的水平。钙以约2ppm的量存在。Figure 13 illustrates that low levels of phosphate prevent negative (polar) voltage rises caused by calcium impurities. Calcium is present in an amount of about 2 ppm.
实施例8:对于磷酸根添加的计算估计Example 8: Calculation estimates for phosphate addition
如以上讨论的,可基于阴极的待通过保护性层覆盖的表面区域向电解质添加磷酸根或者以其它方式提供磷酸根。As discussed above, phosphate may be added to or otherwise provided to the electrolyte based on the surface area of the cathode to be covered by the protective layer.
在其中将磷酸根添加至电解质以形成保护性层的情况下,磷酸根的量可以许多方式确定。在一个实例中,磷酸根添加是基于计算方法学例如以下描述的计算方法学预先确定的。In cases where phosphate is added to the electrolyte to form a protective layer, the amount of phosphate can be determined in a number of ways. In one example, phosphate addition is predetermined based on a computational methodology, such as the computational methodology described below.
可测量或者从文献取得钙磷酸盐化合物的各种性质,例如:Various properties of calcium phosphate compounds can be measured or obtained from the literature, such as:
羟基磷灰石的分子式:Ca5(PO4)3OH;The molecular formula of hydroxyapatite: Ca 5 (PO 4 ) 3 OH;
羟基磷灰石的分子量:502.31g;The molecular weight of hydroxyapatite: 502.31g;
羟基磷灰石中磷酸根(PO4)的质量分数(284.91/502.31):56.7%;Mass fraction of phosphate (PO 4 ) in hydroxyapatite (284.91/502.31): 56.7%;
羟基磷灰石的计算密度(100%致密):3.156g/cc;和Calculated density of hydroxyapatite (100% dense): 3.156 g/cc; and
多孔羟基磷灰石可具有最高达90%的孔隙率(0.35g/cc=>89%,来自文献)。Porous hydroxyapatite can have a porosity of up to 90% (0.35 g/cc => 89%, from literature).
于是阴极上的最大磷酸根需求可如下计算:The maximum phosphate demand on the cathode can then be calculated as follows:
假定要获得约1微米厚的保护性层,因为已经发现该厚度足以提供保护性质;It is assumed that a protective layer of about 1 micron thickness is to be obtained, as this thickness has been found to be sufficient to provide protective properties;
对于1cm2的表面=>层的体积:10-4cm3;For a surface of 1 cm 2 => volume of the layer: 10 −4 cm 3 ;
每cm2阴极表面的磷酸根质量(100%致密)=>3.156g/ccx10-4ccx56.7%=0.179mg;Phosphate root mass (100% compact) per cm 2 cathode surface => 3.156g/ccx10-4ccx56.7% = 0.179mg;
因此,可提供小于0.18mg磷酸根(PO4)/cm2阴极表面;和Thus, less than 0.18 mg phosphate (PO4)/cm 2 cathode surface can be provided; and
如果具有45%孔隙率的1微米厚的羟基磷灰石表面层足以阻止钙毒害催化性中间层,则将需要0.18mgx(1-0.45)=0.1mg的磷酸根(PO4)/cm2阴极。If a 1 micron thick surface layer of hydroxyapatite with 45% porosity is sufficient to prevent calcium from poisoning the catalytic interlayer, then 0.18 mg x (1-0.45) = 0.1 mg of phosphate (PO 4 )/cm 2 cathode would be required .
Claims (114)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CA2013/050136 WO2014127448A1 (en) | 2013-02-22 | 2013-02-22 | Techniques for production of chlorated products and prefabricated cathode structures |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105074056A true CN105074056A (en) | 2015-11-18 |
Family
ID=51390426
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380073663.XA Pending CN105074056A (en) | 2013-02-22 | 2013-02-22 | Techniques and prefabricated cathode structures for the manufacture of chlorinated products |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150354073A1 (en) |
EP (1) | EP2959037A4 (en) |
CN (1) | CN105074056A (en) |
BR (1) | BR112015018942A2 (en) |
CA (1) | CA2898091A1 (en) |
WO (1) | WO2014127448A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107338452A (en) * | 2017-08-16 | 2017-11-10 | 江苏唯达水处理技术股份有限公司 | A kind of film covered cathode hypochlorite generator |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO345902B1 (en) * | 2019-08-22 | 2021-10-04 | Nat Oilwell Varco Norway As | Cathode coating for an electrochemical cell |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004988A (en) * | 1973-09-25 | 1977-01-25 | Produits Chimiques Ugine Kuhlmann | Method of preparing sodium chlorate by electrolysis |
JPH06128793A (en) * | 1992-10-15 | 1994-05-10 | Natl Inst For Res In Inorg Mater | Apatite film forming electrolyte |
JPH06166596A (en) * | 1992-11-27 | 1994-06-14 | Natl Inst For Res In Inorg Mater | Method for producing calcium-deficient apatite single crystal |
JP3140452B2 (en) * | 1990-07-05 | 2001-03-05 | 石福金属興業株式会社 | Surface treatment method for implantable material in vivo |
CN101880890A (en) * | 2010-07-08 | 2010-11-10 | 电子科技大学 | Electrochemical Method for Preparation of Hydroxyapatite/Zirconium Oxide Gradient Coating on Medical Titanium Surface |
US8062485B2 (en) * | 2007-05-14 | 2011-11-22 | Sanyo Electric Co., Ltd. | Water treatment device |
-
2013
- 2013-02-22 US US14/762,992 patent/US20150354073A1/en not_active Abandoned
- 2013-02-22 CA CA2898091A patent/CA2898091A1/en not_active Abandoned
- 2013-02-22 EP EP13875823.0A patent/EP2959037A4/en not_active Withdrawn
- 2013-02-22 WO PCT/CA2013/050136 patent/WO2014127448A1/en active Application Filing
- 2013-02-22 CN CN201380073663.XA patent/CN105074056A/en active Pending
- 2013-02-22 BR BR112015018942A patent/BR112015018942A2/en not_active IP Right Cessation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4004988A (en) * | 1973-09-25 | 1977-01-25 | Produits Chimiques Ugine Kuhlmann | Method of preparing sodium chlorate by electrolysis |
JP3140452B2 (en) * | 1990-07-05 | 2001-03-05 | 石福金属興業株式会社 | Surface treatment method for implantable material in vivo |
JPH06128793A (en) * | 1992-10-15 | 1994-05-10 | Natl Inst For Res In Inorg Mater | Apatite film forming electrolyte |
JPH06166596A (en) * | 1992-11-27 | 1994-06-14 | Natl Inst For Res In Inorg Mater | Method for producing calcium-deficient apatite single crystal |
US8062485B2 (en) * | 2007-05-14 | 2011-11-22 | Sanyo Electric Co., Ltd. | Water treatment device |
CN101880890A (en) * | 2010-07-08 | 2010-11-10 | 电子科技大学 | Electrochemical Method for Preparation of Hydroxyapatite/Zirconium Oxide Gradient Coating on Medical Titanium Surface |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107338452A (en) * | 2017-08-16 | 2017-11-10 | 江苏唯达水处理技术股份有限公司 | A kind of film covered cathode hypochlorite generator |
Also Published As
Publication number | Publication date |
---|---|
US20150354073A1 (en) | 2015-12-10 |
BR112015018942A2 (en) | 2017-07-18 |
WO2014127448A1 (en) | 2014-08-28 |
EP2959037A4 (en) | 2016-09-07 |
EP2959037A1 (en) | 2015-12-30 |
CA2898091A1 (en) | 2014-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8764963B2 (en) | Electrode | |
JP6397396B2 (en) | Alkaline water electrolysis method | |
EP2757179B1 (en) | Chlorine-generating positive electrode | |
KR101361651B1 (en) | A device using electrolyzer with a bipolar membrane and the method of producing hypochlorite solution and hydrogen gas thereby | |
JPS5949318B2 (en) | Electrolytic production method of alkali metal hypohalite salt | |
JP4090665B2 (en) | Electrolyzed water production method | |
US20080230381A1 (en) | System for the electrolytic production of sodium chlorate | |
JPH0375635B2 (en) | ||
CN105074056A (en) | Techniques and prefabricated cathode structures for the manufacture of chlorinated products | |
Lima et al. | Energy loss in electrochemical diaphragm process of chlorine and alkali industry–A collateral effect of the undesirable generation of chlorate | |
TWI529998B (en) | Membrane restoration process | |
JP6438744B2 (en) | Method for activating electrolysis cathode | |
US3849282A (en) | Metal electrodes and coatings therefor | |
US4609443A (en) | Procedure for the cathodic electrowinning of metals, with the corresponding acid generation, from its salt solution | |
JPS622036B2 (en) | ||
JP5665854B2 (en) | Cathode activation | |
CN112513334B (en) | Method for improving nickel electrode performance | |
WO2024127271A1 (en) | Process for the production of chlorates | |
CA2583827A1 (en) | Undivided electrolytic chlorate cells with coated cathodes | |
JPS6351971B2 (en) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151118 |