CN105069225B - 应用高斯和声搜索的振动筛优化设计方法 - Google Patents

应用高斯和声搜索的振动筛优化设计方法 Download PDF

Info

Publication number
CN105069225B
CN105069225B CN201510477889.7A CN201510477889A CN105069225B CN 105069225 B CN105069225 B CN 105069225B CN 201510477889 A CN201510477889 A CN 201510477889A CN 105069225 B CN105069225 B CN 105069225B
Authority
CN
China
Prior art keywords
mrow
individual
optimization design
msubsup
gone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510477889.7A
Other languages
English (en)
Other versions
CN105069225A (zh
Inventor
郭肇禄
岳雪芝
杨火根
鄢化彪
叶坤涛
谢霖铨
李康顺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangxi University of Science and Technology
Original Assignee
Jiangxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangxi University of Science and Technology filed Critical Jiangxi University of Science and Technology
Priority to CN201510477889.7A priority Critical patent/CN105069225B/zh
Publication of CN105069225A publication Critical patent/CN105069225A/zh
Application granted granted Critical
Publication of CN105069225B publication Critical patent/CN105069225B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种应用高斯和声搜索的振动筛优化设计方法,本发明在和声搜索算法中设计了高斯音调调整策略,利用当前和声库中的优秀个体和随机个体的搜索信息,并结合高斯随机数产生函数来产生新个体,在保持和声库多样性的同时尽可能加快收敛速度。此外,利用来差分变异策略来进行局部搜索,增强算法的局部搜索能力,加快振动筛优化设计的收敛速度;在计算过程中得到的最优个体,即为振动筛优化设计的结果;与同类方法相比,本发明能够加快振动筛优化设计的收敛速度,提高振动筛优化设计的精度。

Description

应用高斯和声搜索的振动筛优化设计方法
技术领域
本发明涉及振动筛优化设计领域,尤其是涉及一种应用高斯和声搜索的振动筛优化设计方法。
背景技术
振动筛是工业加工和制造中的一种常用机械设备,它在工业生产中具有非常广泛的应用。振动筛优化设计的一般过程是首先根据待优化设计的振动筛的物理机械特性建立起优化目标函数,然后确定其所需优化设计的变量,并确定振动筛优化设计所需满足的约束条件。通常,振动筛的优化设计结果是否合理常常会影响振动筛的最终筛分效果。因此,振动筛的优化设计方法对于振动筛的最终筛分效果是至关重要的。
传统的振动筛优化设计方法往往都是利用优化目标函数的数学特性来求解的,例如梯度下降法、共轭梯度法等。传统的振动筛优化设计方法往往要求优化目标函数需要满足连续、可导等特性。然而,在工业生产中实际所需的振动筛是多种多样,形式各异的,它们的优化目标函数往往不一定能满足连续、可导等特性。针对这种情形,研究人员将智能优化算法应用到振动筛优化设计中。例如,李智提出了一种基于粒子群算法的往复振动筛运动参数优化设计方法(李智.基于粒子群算法的往复振动筛运动参数优化设计[J].粮食与饲料工业,2004,04:12-13);高瞩提出了一种基于遗传算法的圆形振动筛减振弹簧的优化设计方法(高瞩.基于遗传算法的圆形振动筛减振弹簧的优化设计[J].轻工机械,2005,04:68-71.);王苗等提出了一种基于粒子群优化算法的圆振动筛的优化设计(王苗,段志善.基于粒子群优化算法的圆振动筛的优化设计[J].煤矿机械,2011,12:16-18)。
和声搜索算法是一种近几年提出来的现代智能优化算法,它已经成功地解决了许多工程优化问题。但是传统和声搜索算法应用于振动筛优化设计时往往存在着收敛速度慢,易于陷入局部最优的缺点。
发明内容
本发明主要是解决现有技术所存在的技术问题;针对传统和声搜索算法应用于振动筛优化设计时往往存在着收敛速度慢,易于陷入局部最优的缺点,提出一种应用高斯和声搜索的振动筛优化设计方法。本发明能够加快振动筛优化设计的收敛速度,提高振动筛优化设计的精度。
本发明的技术方案:一种应用高斯和声搜索的振动筛优化设计方法,包括以下步骤:
步骤1,根据待优化设计的振动筛的物理机械特性建立以下形式的最小化优化目标的数学模型:
最小化振动筛的优化设计目标函数f(X),并满足优化设计约束条件:gk(X)≤0,k=1,2,...,M,其中X=[x1 x2 ... xD]为振动筛的优化设计变量组成的向量;D为振动筛待优化设计的变量个数;gk(X)≤0为第k个优化设计约束条件,M为优化设计约束条件个数;
步骤2,用户初始化参数,所述初始化参数包括振动筛待优化设计的变量个数D,和声库大小Popsize,记忆库学习率HMCR,音调调整率PAR,最大评价次数MAX_FEs;
步骤3,当前演化代数t=0,当前评价次数FEs=0;
步骤4,随机产生初始和声库其中:个体下标i=1,...,Popsize,并且为和声库Pt中的第i个个体,其随机初始化公式为:
其中下标j=1,...,D,并且D表示振动筛有多少个要优化设计的变量;为在和声库Pt中的第i个个体,存储了D个优化设计变量的值,rand(0,1)为在[0,1]之间服从均匀分布的随机实数产生函数,Loj和Upj分别为第j个优化设计变量的取值范围的下界和上界;
步骤5,采用演化优化领域中常用的惩罚函数法计算和声库Pt中每个个体的适应值其中个体下标i=1,...,Popsize,个体的适应值的计算公式如下:
其中pow为幂函数,abs为取绝对值函数,exp为指数函数,max为取最大值函数;
步骤6,当前评价次数FEs=FEs+Popsize;
步骤7,保存和声库Pt中适应值最小的个体为最优个体Bestt
步骤8,结合高斯音调调整策略产生一个试验个体Ut,并计算试验个体Ut的适应值Fit(Ut),具体步骤如下:
步骤8.1,令计数器j=1;
步骤8.2,在[0,1]之间随机产生一个实数r1,如果r1小于记忆库学习率HMCR,则转到步骤8.3,否则转到步骤8.11;
步骤8.3,在[1,Popsize]之间随机产生一个正整数RI1;
步骤8.4,令
步骤8.5,在[0,1]之间随机产生一个实数r2,如果r2小于音调调整率PAR,则转到步骤8.6,否则转到步骤8.12;
步骤8.6,令优秀个体数量pBestN=max(2,Popsize×r3),实数r3为[0.01,0.2]之间随机产生的一个实数;
步骤8.7,从当前和声库的前pBestN个优秀个体中随机选择出一个个体
步骤8.8,令随机权值RW=rand(0,1);
步骤8.9,令均值并令方差
步骤8.10,其中NormalRand(MeanV,SDV)表示以MeanV为均值,SDV为方差的高斯随机数产生函数;然后转到步骤8.12;
步骤8.11,令
步骤8.12,令计数器j=j+1,如果计数器j小于或等于D,则转到步骤8.2,否则转到步骤8.13;
步骤8.13,计算试验个体Ut的适应值Fit(Ut),转到步骤9;
步骤9,令当前评价次数FEs=FEs+1;
步骤10,找到当前和声库中适应值最差个体的下标WorstI;
步骤11,按以下公式在当前和声库中的最差个体与个体Ut两者之间选择出更优个体进入下一代和声库:
步骤12,随机选择出一个个体,然后对选择出来的个体执行差分变异局部搜索操作得到个体DUt,具体步骤如下:
步骤12.1,在[1,Popsize]之间随机产生一个正整数RI2;
步骤12.2,令计数器i=1,并令差分变异局部搜索最大次数DSN=max(5,D/5),其中max为取最大值函数;
步骤12.3,如果计数器i小于或等于DSN,则转到步骤12.4,否则转到步骤13;
步骤12.4,在[1,Popsize]之间随机产生两个互不相等,并且也不等于RI2的正整数RI3和RI4;
步骤12.5,令计数器j=1;
步骤12.6,如果计数器j小于或等于D,则转到步骤12.7,否则转到步骤12.9;
步骤12.7,令
步骤12.8,令计数器j=j+1,转到步骤12.6;
步骤12.9,计算差分变异局部搜索操作得到的个体DUt的适应值,并令当前评价次数FEs=FEs+1;
步骤12.10,如果个体DUt的适应值比个体的适应值更优,则在当前和声库中用个体DUt替换个体并转到步骤13,否则转到步骤12.11;
步骤12.11,令计数器i=i+1,转到步骤12.3;
步骤13,保存和声库Pt中适应值最小的个体为最优个体Bestt
步骤14,当前演化代数t=t+1;
步骤15,重复步骤8至步骤14直至当前评价次数FEs达到MAX_FEs后结束,执行过程中得到的最优个体Bestt即为振动筛优化设计的结果。
本发明在和声搜索算法中设计了高斯音调调整策略,利用当前和声库中的优秀个体和随机个体的搜索信息,并结合高斯随机数产生函数来产生新个体,在保持和声库的多样性的同时尽可能加快收敛速度。此外,利用来差分变异策略来进行局部搜索,增强算法的局部搜索能力,加快振动筛优化设计的收敛速度;与同类方法相比,本发明能够加快振动筛优化设计的收敛速度,提高振动筛优化设计的精度。
附图说明
图1为本发明的流程图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。
实施例:
本实施例基于文献(王苗,段志善.基于粒子群优化算法的圆振动筛的优化设计[J].煤矿机械,2011,32(12),16-18.)中的圆振动筛的优化设计问题为例,本发明的具体实施步骤如下:
步骤1,根据待优化设计的圆振动筛的物理机械特性建立以下形式的最小化优化目标的数学模型:
最小化圆振动筛的优化设计目标函数:
并满足优化设计约束条件:
其中X=[x1 x2 ... xD]为圆振动筛的优化设计变量组成的向量,x1为圆振动筛的振幅,x2为圆振动筛的抛射强度,x3为圆振动筛的筛面倾角;D=3为圆振动筛的优化设计变量个数;gk(X)≤0,k=1,2,...,M,为第k个优化设计约束条件,M=6为优化设计约束条件个数;
步骤2,用户初始化参数,所述初始化参数包括圆振动筛的优化设计变量个数D=3,和声库大小Popsize=50,记忆库学习率HMCR=0.95,音调调整率PAR=0.3,最大评价次数MAX_FEs=100000;
步骤3,当前演化代数t=0,当前评价次数FEs=0;
步骤4,随机产生初始和声库其中:个体下标i=1,...,Popsize,并且为和声库Pt中的第i个个体,其随机初始化公式为:
其中下标j=1,...,D,并且D表示圆振动筛有多少个要优化设计的变量;为在和声库Pt中的第i个个体,存储了D个优化设计变量的值,rand(0,1)为在[0,1]之间服从均匀分布的随机实数产生函数,Lo=[0.003 2.5 0.2618],Up=[0.006 4 0.4363],Loj和Upj分别为第j个优化设计变量的取值范围的下界和上界;
步骤5,采用演化优化领域中常用的惩罚函数法计算和声库Pt中每个个体的适应值其中个体下标i=1,...,Popsize,个体的适应值的计算公式如下:
其中pow为幂函数,abs为取绝对值函数,exp为指数函数,max为取最大值函数;
步骤6,当前评价次数FEs=FEs+Popsize;
步骤7,保存和声库Pt中适应值最小的个体为最优个体Bestt
步骤8,结合高斯音调调整策略产生一个试验个体Ut,并计算试验个体Ut的适应值Fit(Ut),具体步骤如下:
步骤8.1,令计数器j=1;
步骤8.2,在[0,1]之间随机产生一个实数r1,如果r1小于记忆库学习率HMCR,则转到步骤8.3,否则转到步骤8.11;
步骤8.3,在[1,Popsize]之间随机产生一个正整数RI1;
步骤8.4,令
步骤8.5,在[0,1]之间随机产生一个实数r2,如果r2小于音调调整率PAR,则转到步骤8.6,否则转到步骤8.12;
步骤8.6,令优秀个体数量pBestN=max(2,Popsize×r3),实数r3为[0.01,0.2]之间随机产生的一个实数;
步骤8.7,从当前和声库的前pBestN个优秀个体中随机选择出一个个体
步骤8.8,令随机权值RW=rand(0,1);
步骤8.9,令均值并令方差
步骤8.10,其中NormalRand(MeanV,SDV)表示以MeanV为均值,SDV为方差的高斯随机数产生函数;然后转到步骤8.12;
步骤8.11,令
步骤8.12,令计数器j=j+1,如果计数器j小于或等于D,则转到步骤8.2,否则转到步骤8.13;
步骤8.13,计算试验个体Ut的适应值Fit(Ut),转到步骤9;
步骤9,令当前评价次数FEs=FEs+1;
步骤10,找到当前和声库中适应值最差个体的下标WorstI;
步骤11,按以下公式在当前和声库中的最差个体与个体Ut两者之间选择出更优个体进入下一代和声库:
步骤12,随机选择出一个个体,然后对选择出来的个体执行差分变异局部搜索操作得到个体DUt,具体步骤如下:
步骤12.1,在[1,Popsize]之间随机产生一个正整数RI2;
步骤12.2,令计数器i=1,并令差分变异局部搜索最大次数DSN=max(5,D/5),其中max为取最大值函数;
步骤12.3,如果计数器i小于或等于DSN,则转到步骤12.4,否则转到步骤13;
步骤12.4,在[1,Popsize]之间随机产生两个互不相等,并且也不等于RI2的正整数RI3和RI4;
步骤12.5,令计数器j=1;
步骤12.6,如果计数器j小于或等于D,则转到步骤12.7,否则转到步骤12.9;
步骤12.7,令
步骤12.8,令计数器j=j+1,转到步骤12.6;
步骤12.9,计算差分变异局部搜索操作得到的个体DUt的适应值,并令当前评价次数FEs=FEs+1;
步骤12.10,如果个体DUt的适应值比个体的适应值更优,则在当前和声库中用个体DUt替换个体并转到步骤13,否则转到步骤12.11;
步骤12.11,令计数器i=i+1,转到步骤12.3;
步骤13,保存和声库Pt中适应值最小的个体为最优个体Bestt
步骤14,当前演化代数t=t+1;
步骤15,重复步骤8至步骤14直至当前评价次数FEs达到MAX_FEs后结束,执行过程中得到的最优个体Bestt即为圆振动筛的优化设计结果。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (1)

1.一种应用高斯和声搜索的振动筛优化设计方法,其特征在于,包括以下步骤:
步骤1,根据待优化设计的振动筛的物理机械特性建立以下形式的最小化优化目标的数学模型:
最小化振动筛的优化设计目标函数f(X),并满足优化设计约束条件:gk(X)≤0,k=1,2,...,M,其中X=[x1x2...xD]为振动筛的优化设计变量组成的向量;D为振动筛待优化设计的变量个数;gk(X)≤0为第k个优化设计约束条件,M为优化设计约束条件个数;
步骤2,用户初始化参数,所述初始化参数包括振动筛待优化设计的变量个数D,和声库大小Popsize,记忆库学习率HMCR,音调调整率PAR,最大评价次数MAX_FEs;
步骤3,当前演化代数t=0,当前评价次数FEs=0;
步骤4,随机产生初始和声库其中:个体下标i=1,...,Popsize,并且为和声库Pt中的第i个个体,其随机初始化公式为:
<mrow> <msubsup> <mi>B</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> </mrow> <mi>t</mi> </msubsup> <mo>=</mo> <msub> <mi>Lo</mi> <mi>j</mi> </msub> <mo>+</mo> <mi>r</mi> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>Up</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>Lo</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> </mrow>
其中下标j=1,...,D,并且D表示振动筛有多少个要优化设计的变量;为在和声库Pt中的第i个个体,存储了D个优化设计变量的值,rand(0,1)为在[0,1]之间服从均匀分布的随机实数产生函数,Loj和Upj分别为第j个优化设计变量的取值范围的下界和上界;
步骤5,采用演化优化领域中常用的惩罚函数法计算和声库Pt中每个个体的适应值其中个体下标i=1,...,Popsize,个体的适应值的计算公式如下:
<mrow> <mi>F</mi> <mi>i</mi> <mi>t</mi> <mrow> <mo>(</mo> <msubsup> <mi>B</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>=</mo> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>B</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>+</mo> <mi>p</mi> <mi>o</mi> <mi>w</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>a</mi> <mi>b</mi> <mi>s</mi> <mo>(</mo> <mrow> <mi>f</mi> <mrow> <mo>(</mo> <msubsup> <mi>B</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> </mrow> <mo>)</mo> <mo>,</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mi>M</mi> </munderover> <mrow> <mo>(</mo> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>exp</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <mi>max</mi> <mo>(</mo> <mn>0</mn> <mo>,</mo> <msub> <mi>g</mi> <mi>k</mi> </msub> <mo>(</mo> <msubsup> <mi>B</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>)</mo> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>B</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>&gt;</mo> <mn>0</mn> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>0</mn> <mo>,</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>B</mi> <mi>i</mi> <mi>t</mi> </msubsup> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mn>0</mn> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>)</mo> </mrow> </mrow>
其中pow为幂函数,abs为取绝对值函数,exp为指数函数,max为取最大值函数;
步骤6,当前评价次数FEs=FEs+Popsize;
步骤7,保存和声库Pt中适应值最小的个体为最优个体Bestt
步骤8,结合高斯音调调整策略产生一个试验个体Ut,并计算试验个体Ut的适应值Fit(Ut),具体步骤如下:
步骤8.1,令计数器j=1;
步骤8.2,在[0,1]之间随机产生一个实数r1,如果r1小于记忆库学习率HMCR,则转到步骤8.3,否则转到步骤8.11;
步骤8.3,在[1,Popsize]之间随机产生一个正整数RI1;
步骤8.4,令
步骤8.5,在[0,1]之间随机产生一个实数r2,如果r2小于音调调整率PAR,则转到步骤8.6,否则转到步骤8.12;
步骤8.6,令优秀个体数量pBestN=max(2,Popsize×r3),实数r3为[0.01,0.2]之间随机产生的一个实数;
步骤8.7,从当前和声库的前pBestN个优秀个体中随机选择出一个个体
步骤8.8,令随机权值RW=rand(0,1);
步骤8.9,令均值并令方差
步骤8.10,其中NormalRand(MeanV,SDV)表示以MeanV为均值,SDV为方差的高斯随机数产生函数;然后转到步骤8.12;
步骤8.11,令
步骤8.12,令计数器j=j+1,如果计数器j小于或等于D,则转到步骤8.2,否则转到步骤8.13;
步骤8.13,计算试验个体Ut的适应值Fit(Ut),转到步骤9;
步骤9,令当前评价次数FEs=FEs+1;
步骤10,找到当前和声库中适应值最差个体的下标WorstI;
步骤11,按以下公式在当前和声库中的最差个体与个体Ut两者之间选择出更优个体进入下一代和声库:
步骤12,随机选择出一个个体,然后对选择出来的个体执行差分变异局部搜索操作得到个体DUt,具体步骤如下:
步骤12.1,在[1,Popsize]之间随机产生一个正整数RI2;
步骤12.2,令计数器i=1,并令差分变异局部搜索最大次数DSN=max(5,D/5),其中max为取最大值函数;
步骤12.3,如果计数器i小于或等于DSN,则转到步骤12.4,否则转到步骤13;
步骤12.4,在[1,Popsize]之间随机产生两个互不相等,并且也不等于RI2的正整数RI3和RI4;
步骤12.5,令计数器j=1;
步骤12.6,如果计数器j小于或等于D,则转到步骤12.7,否则转到步骤12.9;
步骤12.7,令
步骤12.8,令计数器j=j+1,转到步骤12.6;
步骤12.9,计算差分变异局部搜索操作得到的个体DUt的适应值,并令当前评价次数FEs=FEs+1;
步骤12.10,如果个体DUt的适应值比个体的适应值更优,则在当前和声库中用个体DUt替换个体并转到步骤13,否则转到步骤12.11;
步骤12.11,令计数器i=i+1,转到步骤12.3;
步骤13,保存和声库Pt中适应值最小的个体为最优个体Bestt
步骤14,当前演化代数t=t+1;
步骤15,重复步骤8至步骤14直至当前评价次数FEs达到MAX_FEs后结束,执行过程中得到的最优个体Bestt即为振动筛优化设计的结果。
CN201510477889.7A 2015-08-07 2015-08-07 应用高斯和声搜索的振动筛优化设计方法 Expired - Fee Related CN105069225B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510477889.7A CN105069225B (zh) 2015-08-07 2015-08-07 应用高斯和声搜索的振动筛优化设计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510477889.7A CN105069225B (zh) 2015-08-07 2015-08-07 应用高斯和声搜索的振动筛优化设计方法

Publications (2)

Publication Number Publication Date
CN105069225A CN105069225A (zh) 2015-11-18
CN105069225B true CN105069225B (zh) 2017-09-29

Family

ID=54498591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510477889.7A Expired - Fee Related CN105069225B (zh) 2015-08-07 2015-08-07 应用高斯和声搜索的振动筛优化设计方法

Country Status (1)

Country Link
CN (1) CN105069225B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106023164B (zh) * 2016-05-12 2018-07-10 江西理工大学 应用混合和声搜索算法的椭圆检测方法
CN105930685B (zh) * 2016-06-27 2018-05-15 江西理工大学 高斯人工蜂群优化的稀土矿区地下水氨氮浓度预测方法
CN106339573B (zh) * 2016-07-24 2018-08-17 江西理工大学 人工蜂群优化的稀土矿区地下水总氮浓度软测量方法
CN107274375B (zh) * 2017-07-09 2020-04-14 江西理工大学 应用高斯反向和声搜索的图像增强方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145593A1 (en) * 2003-01-29 2004-07-29 Kathrin Berkner Resolution sensitive layout of document regions
CN104715490A (zh) * 2015-04-09 2015-06-17 江西理工大学 一种基于自适应步长和声搜索算法的脐橙图像分割方法
CN104809737A (zh) * 2015-05-13 2015-07-29 江西理工大学 一种基于双策略和声搜索算法的柚子图像分割方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040145593A1 (en) * 2003-01-29 2004-07-29 Kathrin Berkner Resolution sensitive layout of document regions
CN104715490A (zh) * 2015-04-09 2015-06-17 江西理工大学 一种基于自适应步长和声搜索算法的脐橙图像分割方法
CN104809737A (zh) * 2015-05-13 2015-07-29 江西理工大学 一种基于双策略和声搜索算法的柚子图像分割方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
和声搜索算法改进与应用;周雅兰 等;《计算机科学》;20140630;第41卷(第6A期);52-56,75 *

Also Published As

Publication number Publication date
CN105069225A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
CN105069225B (zh) 应用高斯和声搜索的振动筛优化设计方法
CN106598849B (zh) 一种基于ap-pso算法的组合测试用例生成方法
Bansal et al. Inertia weight strategies in particle swarm optimization
Chauhan et al. Novel inertia weight strategies for particle swarm optimization
Kaveh et al. Shape and size optimization of trusses with multiple frequency constraints using harmony search and ray optimizer for enhancing the particle swarm optimization algorithm
JP2021505993A5 (zh)
Kessentini et al. Particle swarm optimization with adaptive inertia weight
KR101963686B1 (ko) 타겟 시스템 제어
Liu et al. An adaptive fuzzy weight PSO algorithm
Ali et al. A modified cultural algorithm with a balanced performance for the differential evolution frameworks
Iranmanesh et al. A differential adaptive learning rate method for back-propagation neural networks
Chu et al. AHPS2: An optimizer using adaptive heterogeneous particle swarms
Feng et al. A new adaptive inertia weight strategy in particle swarm optimization
Fourie et al. Generalised adaptive harmony search: a comparative analysis of modern harmony search
Wu et al. A self-adaptive particle swarm optimization algorithm with individual coefficients adjustment
Chen et al. A guidable bat algorithm based on doppler effect to improve solving efficiency for optimization problems
Liu et al. An improved particle swarm optimization with mutation based on similarity
CN110378464A (zh) 人工智能平台的配置参数的管理方法和装置
Xia et al. Starch foam material performance prediction based on a radial basis function artificial neural network trained by bare‐bones particle swarm optimization with an adaptive disturbance factor
CN106156366A (zh) 一种基于聚类的牵制控制节点选择方法
Islam et al. Training neural network with chaotic learning rate
Zhao et al. An improved extreme learning machine with adaptive growth of hidden nodes based on particle swarm optimization
Gao et al. Improved Differential Evolution Algorithm with Random Migration Operator
Guo et al. A new class of hybrid particle swarm optimization algorithm
Soto et al. Online control of enumeration strategies via bat-inspired optimization

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170929

CF01 Termination of patent right due to non-payment of annual fee