CN105066934A - 一种片状矿物水化膜厚度的测量方法 - Google Patents

一种片状矿物水化膜厚度的测量方法 Download PDF

Info

Publication number
CN105066934A
CN105066934A CN201510488730.5A CN201510488730A CN105066934A CN 105066934 A CN105066934 A CN 105066934A CN 201510488730 A CN201510488730 A CN 201510488730A CN 105066934 A CN105066934 A CN 105066934A
Authority
CN
China
Prior art keywords
shaped minerals
thickness
minerals
shaped
ore pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510488730.5A
Other languages
English (en)
Other versions
CN105066934B (zh
Inventor
赵云良
宋少先
贾菲菲
李宏亮
刘佳
陈天星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SDIC XINJIANG LUOBUPO POTASH CO Ltd
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201510488730.5A priority Critical patent/CN105066934B/zh
Publication of CN105066934A publication Critical patent/CN105066934A/zh
Application granted granted Critical
Publication of CN105066934B publication Critical patent/CN105066934B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/24AFM [Atomic Force Microscopy] or apparatus therefor, e.g. AFM probes

Abstract

本发明具体涉及一种片状矿物水化膜厚度测量的方法。其技术方案是:先用原子力扫描电镜测得片状矿物的平均长度a和平均厚度c,计算得平均径厚比R,根据式计算得固有粘度f(R);再用流变仪测定不同体积浓度片状矿物矿浆的粘度和纯水的粘度,计算得不同体积浓度矿浆的相对粘度,以矿浆体积浓度为横坐标、相对粘度为纵坐标绘制散点图,并控制纵坐标截距为1进行线性拟合,得拟合直线的斜率k;最后将k、c和f(R)代入式

Description

一种片状矿物水化膜厚度的测量方法
技术领域
本发明属于矿物表面化学技术领域,具体涉及一种片状矿物水化膜厚度的测量方法。
背景技术
当矿物颗粒在水中时,水分子会在其表面附近形成定向排列,这种在矿物颗粒表面形成的有序边界层称做水化膜。在矿物浮选过程中,通过增强颗粒表面的水化膜厚度,提高颗粒间的水化排斥作用,可是矿物颗粒处于稳定分散的状态,从而避免各种矿物间相互混杂和矿泥覆盖,是矿物达到有效的选择分离。水化膜还与疏水絮凝浮选密切相关,疏水絮凝需要通过加入化学药剂,破解矿物表面的水化膜。在矿浆沉降过程中,矿物表面形成较强的水化膜,使得颗粒间产生很强的水化排斥力,不能凝聚沉降,大大增加了沉降时间。矿物颗粒表面的水化膜对浮选过程和固液分离过程具有重要影响。因此,测量矿物颗粒表面水化膜的厚度对控制浮选和固液分离过程具有十分重要的意义。
在公开的论文中(PengC,SongS.DeterminationofthicknessofhydrationlayersonmicainaqueoussolutionsbyAFM[J].SurfaceReview&Letters,2004,11(6):485-489),彭昌盛等用原子力显微镜在接触模式下用二氧化硅作为探针,云母作为基底平板,测得了二氧化硅探针水化膜和云母水化膜的厚度之和。该方法仅能测量探针和基底形成水化膜的厚度之和,由于片状矿物不可能作为原子力显微镜的探针,因此利用该方法不能测定片状矿物的水化膜。在公开的博士学位论文中(刘令云.煤泥水中高岭石颗粒表面水化作用机理研究[D].淮南:安徽理工大学,2013),作者基于粘度法测量了高岭石颗粒的水化参数f,用来定性的反映颗粒表面的水化膜厚度,但是水化参数f并不能反映高岭石颗粒表面水化膜的实际厚度。当前,对片状矿物水化膜厚度的测量还处于空白。
发明内容
本发明所要解决的技术问题是针对上述现有技术而提出一种片状矿物水化膜厚度的测量方法,旨在填补片状矿物水化膜厚度测量的空白。
为实现上述目的,本发明采用的技术方案是:一种片状矿物水化膜厚度的测量方法,包括有以下步骤:
先取0.1-0.5g片状矿物置于0.5-2.5L纯水中制成矿浆,矿浆在200-1000rev/min条件下搅拌2-8h后,移取1-5mL矿浆滴在云母片上,将云母片置于干燥器中干燥至恒重后,用双面胶将带有片状矿物的云母片粘在原子力显微镜的试样台上,用原子力显微镜测得n个片状矿物颗粒的长度a1、a2、…、an-1、an和厚度c1、c2、…、cn-1、cn,根据式(1)和(2),计算得n个片状矿物颗粒的平均长度a和平均厚度c:
a = Σ i = 1 n a i n - - - ( 1 )
c = Σ i = 1 n c i n - - - ( 2 )
将式(1)除以式(2)计算得平均径厚比R:
R = Σ i = 1 n a i Σ i = 1 n c i - - - ( 3 )
将式(3)的计算结果代入式(4)中计算得片状矿物的固有粘度f(R):
f ( R ) = 16 15 · R tan - 1 R - - - ( 4 )
再配制m个不同体积浓度的片状矿物矿浆,在剪切速率为r、温度为t的条件下,用流变仪测得纯水的粘度η0和不同体积浓度片状矿物矿浆的粘度η1、η2、…、ηm-1、ηm,将不同体积浓度片状矿物矿浆的粘度η1、η2、…、ηm-1、ηm分别除以纯水的粘度η0,计算可得不同体积浓度片状矿物矿浆的相对粘度ηr0、ηr1、ηr2、…、ηr(m-1)、ηrm,以矿浆体积浓度为横坐标、相对粘度为纵坐标绘制散点图,并对图中的m+1个点进行线性拟合,得拟合直线的斜率k;
最后将k、c和f(R)代入式(5)中:
h = c 2 [ k f ( R ) - 1 ] - - - ( 5 )
计算得片状矿物水化膜厚度h。
按上述方案,所述的片状矿物包括蒙脱石、云母、绿泥石、石墨、伊利石或滑石。
按上述方案,所述的n个片状矿物颗粒中n的取值为50~200,颗粒的厚度小于100nm。
按上述方案,所述的m个不同体积浓度片状矿物矿浆中m的取值为5~10,体积浓度小于0.5%。
按上述方案,所述的剪切速率r的范围为400~1000s-1,温度t的范围为5~40℃。
按上述方案,所述的纯水的电阻率大于10MΩ·cm。
按上述方案,所述的线性拟合的纵坐标截距为1。
由于采用上述技术方案,本发明利用原子力显微镜测定片状矿物的平均长度a和平均厚度c,并计算出平均径厚比R,再根据片状矿物颗粒的固有粘度f(R)的计算公式,计算得固有粘度f(R)。对于稀浓度下矿浆的相对粘度ηr的计算公式为:
ηr=f(R)φ+1(6)
式(6)中,φ为体积分数。矿浆中的颗粒在水中会形成水化膜,使得颗粒的体积分数φ增大。对于片状颗粒,设其长度、宽度和厚度分别为a、b和c,其中a>>c,b>>c。
对于单个片状矿物颗粒而言,形成水化膜前的体积V和形成水化膜后的体积Vh分别为:
V=a·b·c(7)
Vh=a·b·(c+2h)(8)
则矿浆中片状矿物颗粒形成水化膜后的体积分数为:
φ h = V h V · φ = ( 1 + 2 h c ) · φ - - - ( 9 )
则片状矿物颗粒矿浆中的相对粘度ηrh为:
η r h = f ( R ) ( 1 + 2 h c ) φ + 1 - - - ( 10 )
由式(10)可知,体积分数φ与相对粘度ηrh的关系曲线为截距为1的直线。通过流变仪测定不同体积浓度片状矿物矿浆的粘度和纯水的粘度,计算得不同体积浓度矿浆的相对粘度,以矿浆体积浓度为横坐标、相对粘度为纵坐标绘制散点图,并控制纵坐标截距为1进行线性拟合,得拟合直线的斜率k。根据式(10)可知,k为:
k = f ( R ) ( 1 + 2 h c ) - - - ( 11 )
将式(11)转换,则可获得水化膜厚度的表达式:
h = c 2 [ k f ( R ) - 1 ] - - - ( 12 )
最后将k、c和f(R)代入式(12),计算得片状矿物水化膜厚度h。
本发明基于片状矿物的结构特征及矿浆粘度测量的基本原理,利用原子力显微镜及流变仪测定的结果,通过计算和拟合转换,得出片状矿物的水化膜厚度。填补了片状矿物水化膜厚度测量的空白。
附图说明
图1是片状矿物颗粒形成水化膜的正视图;
图2是片状矿物水化膜厚度测量的方法的流程图;
图3是原子力显微镜测量蒙脱石颗粒的长度和厚度图;
图4是体积浓度蒙脱石矿浆与其相对粘度的线性拟合图。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
一种片状矿物水化膜厚度测量的方法。用该方法测定片状矿物蒙脱石的水化膜厚度,该蒙脱石为经过“搅拌分散-离心除杂-超声分散-离心除杂”提纯后的样品。
本实施例测定蒙脱石矿物水化膜厚度的步骤如下:
先取0.2g蒙脱石样品置于1L纯水中制成矿浆,矿浆在400rev/min条件下搅拌4h后,移取2mL矿浆滴在云母片上,将云母片置于干燥器中干燥至恒重后,用双面胶将带有蒙脱石的云母片粘在原子力显微镜的试样台上,用原子力显微镜测定并统计200个蒙脱石颗粒的长度和厚度(如说明书附图3所示),计算得平均厚度为1nm,平均长度为100nm。
代入平均径厚比R计算公式:
R = Σ i = 1 n a i Σ i = 1 n c i = 100 - - - ( 13 )
将式(13)结果代入片状矿物的固有粘度f(R)计算公式:
f ( R ) = 16 15 · R tan - 1 R = 68.15 - - - ( 14 )
再配制0.5%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%和0.4%共8个不同体积浓度的蒙脱石矿浆,在剪切速率为700s-1、温度为25℃的条件下,用流变仪测得纯水的粘度为0.949mPa·s和0.5%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%和0.4%体积浓度蒙脱石矿浆的粘度分别为1.11mPa·s、1.23mPa·s、1.38mPa·s、1.52mPa·s、1.69mPa·s、1.89mPa·s、1.95mPa·s和2.11mPa·s,将其分别除以纯水的粘度,计算可得0%、0.5%、0.1%、0.15%、0.2%、0.25%、0.3%、0.35%和0.4%体积浓度蒙脱石矿浆的相对粘度分别为1、1.18、1.30、1.46、1.60、1.78、1.99、2.06和2.23,以矿浆体积浓度为横坐标、相对粘度为纵坐标绘制散点图,并控制纵坐标截距为1进行线性拟合(如说明书附图4所示),得拟合直线的斜率为310.45。
最后将k=310.45、c=1nm和f(R)=68.15代入水化膜厚度的计算式:
h = c 2 [ k f ( R ) - 1 ] = 1.86 n m - - - ( 15 )
计算得片状矿物水化膜厚度h=1.86nm。
利用该方法填补了片状矿物蒙脱石水化膜厚度测量的空白。
上述实施例详细说明了本发明的技术方案和实施要点,并非是对本发明的保护范围进行限制,凡根据本发明精神实质所作的任何简单修改及等效结构变换或修饰,均应涵盖在本发明的保护范围之内。

Claims (7)

1.一种片状矿物水化膜厚度的测量方法,包括有以下步骤:
先取0.1-0.5g片状矿物置于0.5-2.5L纯水中制成矿浆,矿浆在200-1000rev/min条件下搅拌2-8h后,移取1-5mL矿浆滴在云母片上,将云母片置于干燥器中干燥至恒重后,用双面胶将带有片状矿物的云母片粘在原子力显微镜的试样台上,用原子力显微镜测得n个片状矿物颗粒的长度a1、a2、…、an-1、an和厚度c1、c2、…、cn-1、cn,根据式(1)和(2),计算得n个片状矿物颗粒的平均长度a和平均厚度c:
a = Σ i = 1 n a i n - - - ( 1 )
c = Σ i = 1 n c i n - - - ( 2 )
将式(1)除以式(2)计算得平均径厚比R:
R = Σ i = 1 n a i Σ i = 1 n c i - - - ( 3 )
将式(3)的计算结果代入式(4)中计算得片状矿物的固有粘度f(R):
f ( R ) = 16 15 · R tan - 1 R - - - ( 4 )
再配制m个不同体积浓度的片状矿物矿浆,在剪切速率为r、温度为t的条件下,用流变仪测得纯水的粘度η0和不同体积浓度片状矿物矿浆的粘度η1、η2、…、ηm-1、ηm,将不同体积浓度片状矿物矿浆的粘度η1、η2、…、ηm-1、ηm分别除以纯水的粘度η0,计算可得不同体积浓度片状矿物矿浆的相对粘度ηr0、ηr1、ηr2、…、ηr(m-1)、ηrm,以矿浆体积浓度为横坐标、相对粘度为纵坐标绘制散点图,并对图中的m+1个点进行线性拟合,得拟合直线的斜率k;
最后将k、c和f(R)代入式(5)中:
h = c 2 [ k f ( R ) - 1 ] - - - ( 5 )
计算得片状矿物水化膜厚度h。
2.根据权利要求1所述的片状矿物水化膜厚度测量的方法,其特征在于所述的片状矿物包括蒙脱石、云母、绿泥石、石墨、伊利石或滑石。
3.根据权利要求1所述的片状矿物水化膜厚度测量的方法,其特征在于所述的n个片状矿物颗粒中n的取值为50~200,颗粒的厚度小于100nm。
4.根据权利要求1所述的片状矿物水化膜厚度测量的方法,其特征在于所述的m个不同体积浓度片状矿物矿浆中m的取值为5~10,体积浓度小于0.5%。
5.根据权利要求1所述的片状矿物水化膜厚度测量的方法,其特征在于所述的剪切速率r的范围为400~1000s-1,温度t的范围为5~40℃。
6.根据权利要求1所述的片状矿物水化膜厚度测量的方法,其特征在于所述的纯水的电阻率大于10MΩ·cm。
7.根据权利要求1所述的片状矿物水化膜厚度测量的方法,其特征在于所述的线性拟合的纵坐标截距为1。
CN201510488730.5A 2015-09-15 2015-09-15 一种片状矿物水化膜厚度的测量方法 Active CN105066934B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510488730.5A CN105066934B (zh) 2015-09-15 2015-09-15 一种片状矿物水化膜厚度的测量方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510488730.5A CN105066934B (zh) 2015-09-15 2015-09-15 一种片状矿物水化膜厚度的测量方法

Publications (2)

Publication Number Publication Date
CN105066934A true CN105066934A (zh) 2015-11-18
CN105066934B CN105066934B (zh) 2017-10-24

Family

ID=54496362

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510488730.5A Active CN105066934B (zh) 2015-09-15 2015-09-15 一种片状矿物水化膜厚度的测量方法

Country Status (1)

Country Link
CN (1) CN105066934B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705915A (zh) * 2017-01-04 2017-05-24 中国石油大学(华东) 一种有机液体罐壁沾湿试验装置
CN109490152A (zh) * 2018-11-21 2019-03-19 航天科工武汉磁电有限责任公司 片状粉体径厚比的测量方法
CN110186738A (zh) * 2018-02-22 2019-08-30 中国科学院宁波材料技术与工程研究所 一种片状粉末断面样品的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398397A1 (en) * 2001-06-15 2004-03-17 Asahi Glass Company Ltd. Fluorine containing cation exchange membrane and electroytic soda process
CN101602602A (zh) * 2009-07-06 2009-12-16 西安建筑科技大学 一种抗水化的MgO—CaO系耐火材料及其制备方法
JP2011089154A (ja) * 2009-10-20 2011-05-06 Sumitomo Light Metal Ind Ltd 成形加工用金属材、その製造方法、潤滑皮膜付成形加工用金属材、及び金属成形加工方法
CN102887573A (zh) * 2012-10-19 2013-01-23 安徽理工大学 交变电场弱化煤泥颗粒间水化斥力促进团聚的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398397A1 (en) * 2001-06-15 2004-03-17 Asahi Glass Company Ltd. Fluorine containing cation exchange membrane and electroytic soda process
CN101602602A (zh) * 2009-07-06 2009-12-16 西安建筑科技大学 一种抗水化的MgO—CaO系耐火材料及其制备方法
JP2011089154A (ja) * 2009-10-20 2011-05-06 Sumitomo Light Metal Ind Ltd 成形加工用金属材、その製造方法、潤滑皮膜付成形加工用金属材、及び金属成形加工方法
CN102887573A (zh) * 2012-10-19 2013-01-23 安徽理工大学 交变电场弱化煤泥颗粒间水化斥力促进团聚的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANGSHENG PENG ETAL: "Determination of the solvation film thickness of dispersed particles with the method of Einstein viscosity equation", 《JOURNAL OF UNIVERSITY OF SCIENCE AND TECHNOLOGY BEIJING》 *
彭陈亮等: "微细矿物颗粒表面水化膜研究现状及进展综述", 《矿物学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106705915A (zh) * 2017-01-04 2017-05-24 中国石油大学(华东) 一种有机液体罐壁沾湿试验装置
CN110186738A (zh) * 2018-02-22 2019-08-30 中国科学院宁波材料技术与工程研究所 一种片状粉末断面样品的制备方法
CN110186738B (zh) * 2018-02-22 2021-11-02 宁波新材料测试评价中心有限公司 一种片状粉末断面样品的制备方法
CN109490152A (zh) * 2018-11-21 2019-03-19 航天科工武汉磁电有限责任公司 片状粉体径厚比的测量方法
CN109490152B (zh) * 2018-11-21 2020-06-23 航天科工武汉磁电有限责任公司 片状粉体径厚比的测量方法

Also Published As

Publication number Publication date
CN105066934B (zh) 2017-10-24

Similar Documents

Publication Publication Date Title
Bentley et al. Nanoscale electrochemical mapping
Ferrari et al. Recent advances in portable heavy metal electrochemical sensing platforms
Wang et al. Fabrication of an effective electrochemical platform based on graphene and AuNPs for high sensitive detection of trace Cu2+
Galicia et al. Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy
Lu et al. Probing anisotropic surface properties of molybdenite by direct force measurements
Chen et al. Electrochemistry at nanometer-sized electrodes
Koh et al. The effect of particle shape and hydrophobicity in flotation
Wang et al. Electron transfer/ion transfer mode of scanning electrochemical microscopy (SECM): A new tool for imaging and kinetic studies
Qin et al. Synthesis of silver nanowires and their applications in the electrochemical detection of halide
Shen et al. Electrochemical detection of bisphenol A at graphene/melamine nanoparticle-modified glassy carbon electrode
Dahaghin et al. Determination of cadmium (II) using a glassy carbon electrode modified with a Cd-ion imprinted polymer
Karthick et al. Reliability and long-term evaluation of GO-MnO2 nano material as a newer corrosion monitoring sensor for reinforced concrete structures
Zhang et al. Electrochemical sensor based on f-SWCNT and carboxylic group functionalized PEDOT for the sensitive determination of bisphenol A
Black et al. Topological defects in electric double layers of ionic liquids at carbon interfaces
Zhu et al. Mapping surface charge of individual microdomains with scanning ion conductance microscopy
CN105066934A (zh) 一种片状矿物水化膜厚度的测量方法
Li et al. Oil-immersed scanning micropipette contact method enabling long-term corrosion mapping
Zhao et al. Study of H2O adsorption on sulfides surfaces and thermokinetic analysis
Lu et al. Face or Edge? Control of molybdenite surface interactions with divalent cations
Duan et al. Highly sensitive determination of bisphenol A based on MoCuSe nanoparticles decorated reduced graphene oxide modified electrode
Shan et al. Electrochemical sensor based on metal-free materials composed of graphene and graphene oxide for sensitive detection of cadmium ions in water
Basha et al. Preparation of submicron-/nano-carbon from heavy fuel oil ash and its corrosion resistance performance as composite epoxy coating
Jin et al. Fabrication and characterization of pseudo reference electrode based on graphene-cement composites for corrosion monitoring in reinforced concrete structure
Chen et al. In-situ growth of cerium-based metal organic framework on multi-walled carbon nanotubes for electrochemical detection of gallic acid
Zhu et al. All-sealed paper-based electrochemiluminescence platform for on-site determination of lead ions

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220615

Address after: No. 68, Jianshe West Road, Yizhou District, Hami City, Xinjiang Uygur Autonomous Region

Patentee after: SDIC XINJIANG LUOBUPO POTASH Co.,Ltd.

Address before: 430070 Hubei Province, Wuhan city Hongshan District Luoshi Road No. 122

Patentee before: WUHAN University OF TECHNOLOGY

TR01 Transfer of patent right