CN105064447A - 一种光伏驱动管网叠压(无负压)变频供水设备 - Google Patents

一种光伏驱动管网叠压(无负压)变频供水设备 Download PDF

Info

Publication number
CN105064447A
CN105064447A CN201510435837.3A CN201510435837A CN105064447A CN 105064447 A CN105064447 A CN 105064447A CN 201510435837 A CN201510435837 A CN 201510435837A CN 105064447 A CN105064447 A CN 105064447A
Authority
CN
China
Prior art keywords
water
negative pressure
controller
water supply
photovoltaic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510435837.3A
Other languages
English (en)
Inventor
路文强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Yuhu Pump Co Ltd
Original Assignee
Shanghai Yuhu Pump Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Yuhu Pump Co Ltd filed Critical Shanghai Yuhu Pump Co Ltd
Priority to CN201510435837.3A priority Critical patent/CN105064447A/zh
Publication of CN105064447A publication Critical patent/CN105064447A/zh
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种光伏驱动管网叠压(无负压)变频供水设备及供水方法,供水设备包括分布式太阳能发电系统、光伏供水调度控制系统、水泵机组、无负压供水系统和送水系统;供水方法包括:(1)太能光伏组件将太阳能转化为电能,汇流箱将太能光伏组件转换后的电能进行汇流,并将汇流后的电能输送给配电箱进行存储,配电箱将存储的电能分配给控制器;(2)控制器对配电箱输送来的电能进行分配(3)水泵机组工作时,可通过无负压稳流罐可与负压抑制器相配合对市政自来水供水管水压进行接力增压,从而将水从楼底送往高处的高位调储水箱内;(4)高位调储水箱将水泵机组输送来的自来水一部分存储起来,用于紧急使用,将另一部分自来水直接输送给用户使用。本发明节能、环保和大大降低了使用成本。

Description

一种光伏驱动管网叠压(无负压)变频供水设备
技术领域
本发明涉及一种供水设备,具体涉及一种光伏驱动管网叠压(无负压)变频供水设备及供水方法。
背景技术
管网叠压(无负压)变频供水设备,在不对自来水管网产生负压的情况下叠加城市自来水管网原有的压力,利用公共电网市电带动变频泵组接力增压后供给用户。
现有的管网叠压变频供水设备存在如下问题:
1、耗电量大,水泵需维持管网系统的压力,主要依靠公共电网电能带动电机工作,设备常处于变频运行状态,停机时间非常少,长期运行耗能大;
2、当公共电网停电时住户吃不上水;
3、应用户不同的取水量,水泵的运行曲线不断发生变化调节,水泵不在最高效率点运行;
4、系统直接连接管网,无储水功能,遇自来水维修,或停水时小区住户吃不上水;
5、由于在自来水管网上直接取水、高峰期对自来水管网的依赖性大,该设备对城市自来水公司水厂水泵压力、城市管网有必须的要求,市政自来水的负担大,对城市自来水管路细,压力低或者经常停电,自来水维修或其他原因停水或定时供水地区的用户不适宜、存在缺陷。
发明内容
本发明为了解决上述问题,从而提供一种光伏驱动管网叠压变频供水设备。
为达到上述目的,本发明的技术方案如下:
一种光伏驱动管网叠压变频供水设备,所述光伏驱动管网叠压变频供水设备包括分布式太阳能发电系统、光伏供水调度控制系统、水泵机组、无负压供水系统和送水系统,所述光伏供水调度控制系统与分布式太阳能发电系统配合连接,所述水泵机组与光伏供水调度控制系统连接,所述无负压供水系统和送水系统分别与水泵机组连接。
在本发明的一个优选实施例中,所述分布式太阳能发电系统包括太能光伏组件、汇流箱和配电箱,所述太能光伏组件与汇流箱连接,所述汇流箱与配电箱连接,所述配电箱与光伏供水调度控制系统连接。
在本发明的一个优选实施例中,所述光伏供水调度控制系统包括控制器、变压器和电流转换器,所述控制器与配电箱连接,所述变压器与控制器连接,所述电流转换器与控制器连接,水泵机组与电流转换器连接。
在本发明的一个优选实施例中,所述无负压供水系统由无负压稳流罐和负压抑制器组成,水泵机组连接无负压稳流罐,无负压稳流罐连接市政自来水供水管,所述负压抑制器与无负压稳流罐配合连接,所述无负压稳流罐的进水管路和出水管路上分别设有一压力传感器,压力传感器分别与控制器配合连接。
在本发明的一个优选实施例中,所述水泵机组上设有一压力罐。
在本发明的一个优选实施例中,所述送水系统包括一高位调储水箱,所述高位调储水箱内设有液位控制器,所述液位控制器与控制器连接。
一种光伏驱动管网叠压变频供水设备的供水方法,所述供水方法包括如下步骤:
(1)将太能光伏组件放置在楼层屋顶上,太能光伏组件吸收日照辐射能量,将太阳能转化为电能,汇流箱将太能光伏组件转换后的电能进行汇流,并将汇流后的电能输送给配电箱,配电箱将汇流箱输送来的电能分配给控制器;
(2)压力传感器检测自来水供水管的水压,并将检测到的水压值发送给控制器,控制器将检测到的压力值与设定的压力值进行对比,从而确定水泵机组需增加的压力值和水泵机组需消耗的电能;
(3)将无负压稳流罐连接市政自来水供水管,将水泵机组连接无负压稳流罐,将负压抑制器连接无负压稳流罐,水泵机组工作时,可通过无负压稳流罐可与负压抑制器相配合对市政自来水供水管水压进行接力增压,从而将水从楼底送往高处的高位调储水箱内;
(4)当高位调储水箱内的液位控制器检测到高位调储水箱内的液面小于液位控制器上设定的液位值时,控制器控制水泵机组工作,无负压稳流罐将水通过水泵机组输送到高位调储水箱内,此时分布式太阳能发电系统的发电功率等于水泵机组的耗电功率,分布式太阳能发电系统发电的功率全部被利用,全部自发自用,并且,当分布式太阳能发电系统所发电的电能不够时,控制器还可连接公共电网来补充调节;
(5)当高位调储水箱内的液位控制器检测到高位调储水箱内的液面大于液位控制器上设定的液位值时,此时高位调储水箱为满液位,水泵机组不需要工作,高位调储水箱内的水直接输送给用户,控制器将配电箱输送来的电能通过变压器220转换成380V市电,并将转换后的电能直接连入公共电网。
通过上述技术方案,本发明的有益效果是:
1、由于采用新型绿色能源:太阳能发电系统,零耗电,同时减少能源的消耗,每年可大量减少二氧化碳的排放量,为改善空气、环境间接的做出贡献,利国、利民经济效益和社会效益可观,可持续发展;
2、公共电网做为备用电源,设备主要依靠太阳能发电系统向高位水箱储水,保证用户的不间断供水,实现供水零耗电,根据日照强度的变化当系统检测到太阳能不足时,设备可切换至市电供给,安全双保险;
3、太阳能光伏发电和管网叠压无负压供水特性的融合,以储水代替储电,水泵机组通过稳流罐与无负压抑制器和市政管网连接,保护了市政管网的压力,水泵机组将水提升至建筑物顶部设置的密闭高位调储水箱中,靠重力流向管道向用户供水,以储水代替储电,水泵大部分时间处于停机状态,多余的电量向电网送电,相比现有设备能耗极小;
4、当市政自来水停水时或停电时,设置在楼顶的高位调储水箱依然可以向用户不间断的供水;
5、利用了市政管网原有的压力,接力增压,大大降低了系统能耗;
6、水泵机组按最大小时量选定,电机的容量小,水泵始终工作在高效期间,利用高位调储水箱的重力流供水,节能效果显著;
7、低位与市政管网直接连接,高位设置密闭的调储水箱,保证了供水的水质;
8、由于采用高位调储水箱,设备对市政自来水现有设备及管道系统减轻负担、管网的依赖性降低,同时避免了高峰期对自来水管网的过度抽吸产生负压。改善和减轻了供水公司供水压力和运营成本,方便了调度管理;
9、市政停电、停水的情况下依然可以保持供水,供水的安全性极高。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的结构示意图。
具体实施方式
为了使本发明实现的技术手段、创作特征、达成目的与功效易于明白了解,下面结合具体图示,进一步阐述本发明。
参见图1,本发明提供的光伏驱动管网叠压变频供水设备,其包括分布式太阳能发电系统、光伏供水调度控制系统、水泵机组300、无负压供水系统和送水系统组成。
分布式太阳能发电系统,其是用于将太阳能转换为电能,并将转换后的电能输送给光伏供水调度控制系统进行分配。
分布式太阳能发电系统具体由依次连接的太能光伏组件110、汇流箱120和配电箱130组成。
太能光伏组件110,其具体由多块太阳电池组件串联或并联而成,其是用于吸收日照辐射能量,将太阳能转化为电能。
汇流箱120,其与太能光伏组件110连接,其是用于对太能光伏组件110转换后的电能进行汇流,这样可防止太能光伏组件110转换后的电能泄漏。
配电箱130,其与汇流箱120连接,其是用于将汇流箱120汇流后的电能,其输送给光伏供水调度控制系统。
光伏供水调度控制系统,其包括控制器210、变压器220和电流转换器,控制器210可将配电箱130发送来的电能,其中一部分通过电流转换器将直流电转换为交流电,转换后的交流电可直接控制水泵机组300工作。
控制器210还可将剩余的电能通过变压器220转换成380V市电,并将转后的电能输送给楼层用户使用,或者卖给供电公司,并且还可根据日照强度的变化实时地调节输出频率,实现最大功率点跟踪,最大限度地利用太阳能。
光伏供水调度控制系统还可根据分布式太阳能发电系统的发电情况和供水设备300供水的实际情况,切换发电、用电的状态。
水泵机组300,其工作时,可通过无负压供水系统从市政自来水供水管400取水,并将水输送给送水系统。
无负压供水系统其由无负压稳流罐510、负压抑制器520、压力传感器组530和压力传感器组540组成,水泵机组300连接无负压稳流罐510,无负压稳流罐510连接市政自来水供水管400,负压抑制器520与无负压稳流罐510配合连接,负压抑制器520可对市政自来水供水管400输送进无负压稳流罐510的自来水进行调压,压力传感器组530和压力传感器组540分别设置在自来水供水管400的进水口和出水口,它们用于检测自来水供水管400的水压,并将检测到的水压值发送给控制器210,控制器210将检测到的压力值与设定的压力值进行对比,从而确定水泵机组300需增加的压力值和水泵机组300需消耗的电能。
另外,在水泵机组300上还设有一压力罐310。
这样,水泵机组300工作时,可通过负压抑制器520与无负压稳流罐510相配合对市政自来水供水管400原有的水压进行接力增压输送给送水系统,保护了市政管网的压力。
送水系统,其包括一高位调储水箱600,高位调储水箱600为密封式的,其与水泵机组300连接,其是用于将水泵机组300输送来的自来水一部分存储起来,用于紧急使用,当停水时,可为用户继续供水,高位调储水箱600将另一部分自来水直接输送给用户使用。
在高位调储水箱600内设有液位控制器,液位控制器与控制器210连接,液位控制器用于检测高位调储水箱600内的液位值,并将检测到的液位值发送给控制器210,控制器210将液位控制器发送来的液位值与设定的液位值进行对比,从而控制水泵机组300的工作状态。
下面是本发明的具体工作方法:
(1)将太能光伏组件110放置在楼层屋顶上,太阳能光伏组件110吸收日照辐射能量,将太阳能转化为电能,汇流箱120将太阳能光伏组件110转换后的电能进行汇流,并将汇流后的电能输送给配电箱130,配电箱130将汇流箱输送来的电能分配给控制器210;
(2)压力传感器530检测自来水供水管400的水压,并将检测到的水压值发送给控制器210,控制器210将检测到的压力值与设定的压力值进行对比,从而确定水泵机组300需增加的压力值和水泵机组300需消耗的电能;
(3)将无负压稳流罐510连接市政自来水供水管,将水泵机组300连接无负压稳流罐510,将负压抑制器520连接无负压稳流罐510,水泵机组300工作时,可通过无负压稳流罐510与负压抑制器520相配合对市政自来水供水管400水压进行接力增压,从而将水从楼底送往高处的高位调储水箱600内;
(4)当高位调储水箱600内的液位控制器检测到高位调储水箱600内的页面小于液位控制器210上设定的液位值时,控制器210控制水泵机组300工作,无负压稳流罐510将水通过水泵机300组输送到高位调储水箱600内,此时分布式太阳能发电系统的发电功率等于水泵机组300的耗电功率,分布式太阳能发电系统发电的功率全部被利用,全部自发自用,并且,当分布式太阳能发电系统所发电的电能不够时,控制器210还可连接公共电网来补充调节;
(5)当高位调储水箱600内的液位控制器检测到高位调储水箱600内的页面大于液位控制器210上设定的液位值时,此时高位调储水箱600为满液位,水泵机组300不需要工作,高位调储水箱600内的水直接输送给用户,控制器210将配电箱输送来的电能通过变压器220转换成360V市电,并将转后的电能直接连入公共电网。
本发明由于采用新型绿色能源:太阳能发电系统,零耗电,同时减少能源的消耗,每年可大量减少二氧化碳的排放量,为改善空气、环境间接的做出贡献,利国、利民经济效益和社会效益可观,可持续发展;
本发明将公共电网做为备用电源,设备主要依靠太阳能发电系统向高位调储水箱600蓄水,保证用户的不间断供水,实现供水零耗电,根据日照强度的变化当系统检测到太阳能不足时,设备可切换至市电供给,安全双保险;
本发明将太阳能光伏发电和管网叠压(无负压)供水特性的融合,以储水代替储电,水泵机组300通过无负压稳流罐510与无负压抑制器520和市政自来水供水管400连接,保护了市政管网的压力,水泵机组300将水提升至建筑物顶部设置的密闭高位调储水箱600中,靠重力流向管道向用户供水,以储水代替储电,水泵300大部分时间处于停机状态,多余的电量向电网送电,相比现有设备能耗极小,当自来水停水时或停电时,设置在楼顶的高位调储水箱600依然可以向用户不间断的供水;
本发明利用了市政管网原有的压力,接力增压,大大降低了系统能耗;
本发明将水泵机组300按最大小时量选定,电机的容量小,水泵300始终工作在高效期间,利用高位调储水箱600的重力流供水,节能效果显著;
本发明由于采用高位调储水箱600,设备对市政自来水现有设备及管道系统减轻负担、管网的依赖性降低,同时避免了高峰期对自来水管网的过度抽吸产生负压,改善和减轻了供水公司供水压力和运营成本,方便了调度管理;
本发明在市政停电、停水的情况下依然可以保持供水,供水的安全性极高。
以上显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其等效物界定。

Claims (7)

1.一种光伏驱动管网叠压(无负压)变频供水设备,其特征在于,所述光伏驱动管网叠压变频供水设备包括分布式太阳能发电系统、光伏供水调度控制系统、水泵机组、无负压供水系统和送水系统,所述光伏供水调度控制系统与分布式太阳能发电系统配合连接,所述水泵机组与光伏供水调度控制系统连接,所述无负压供水系统和送水系统分别与水泵机组连接。
2.根据权利要求1所述的一种光伏驱动管网叠压(无负压)变频供水设备,其特征在于,所述分布式太阳能发电系统包括太能光伏组件、汇流箱和配电箱,所述太能光伏组件与汇流箱连接,所述汇流箱与配电箱连接,所述配电箱与光伏供水调度控制系统连接。
3.根据权利要求1所述的一种光伏驱动管网叠压(无负压)变频供水设备,其特征在于,所述光伏供水调度控制系统包括控制器、变压器和电流转换器,所述控制器与配电箱连接,所述变压器与控制器连接,所述电流转换器与控制器连接,水泵机组与电流转换器连接。
4.根据权利要求3所述的一种光伏驱动管网叠压(无负压)变频供水设备,其特征在于,所述无负压供水系统由无负压稳流罐和负压抑制器组成,水泵机组连接无负压稳流罐,无负压稳流罐连接市政自来水供水管,所述负压抑制器与无负压稳流罐配合连接,所述无负压稳流罐的进水管路和出水管路上分别设有一压力传感器,压力传感器分别与控制器配合连接。
5.根据权利要求3所述的一种光伏驱动管网叠压(无负压)变频供水设备,其特征在于,所述水泵机组上设有一压力罐。
6.根据权利要求3所述的一种光伏驱动管网(无负压)叠压变频供水设备,其特征在于,所述送水系统包括一高位调储水箱,所述高位调储水箱内设有液位控制器,所述液位控制器与控制器连接。
7.一种光伏驱动管网叠压变频供水设备的供水方法,其特征在于,所述供水方法包括如下步骤:
(1)将太能光伏组件放置在楼层屋顶上,太能光伏组件吸收日照辐射能量,将太阳能转化为电能,汇流箱将太能光伏组件转换后的电能进行汇流,并将汇流后的电能输送给配电箱,配电箱将汇流箱输送来的电能分配给控制器;
(2)压力传感器检测自来水供水管的水压,并将检测到的水压值发送给控制器,控制器将检测到的压力值与设定的压力值进行对比,从而确定水泵机组需增加的压力值和水泵机组需消耗的电能;
(3)将无负压稳流罐连接市政自来水供水管,将水泵机组连接无负压稳流罐,将负压抑制器连接无负压稳流罐,水泵机组工作时,可通过无负压稳流罐可与负压抑制器相配合对市政自来水供水管水压进行接力增压,从而将水从楼底送往高处的高位调储水箱内;
(4)当高位调储水箱内的液位控制器检测到高位调储水箱内的液面小于液位控制器上设定的液位值时,控制器控制水泵机组工作,无负压稳流罐将水通过水泵机组输送到高位调储水箱内,此时分布式太阳能发电系统的发电功率等于水泵机组的耗电功率,分布式太阳能发电系统发电的功率全部被利用,全部自发自用,并且,当分布式太阳能发电系统所发电的电能不够时,控制器还可连接公共电网来补充调节;
(5)当高位调储水箱内的液位控制器检测到高位调储水箱内的液面大于液位控制器上设定的液位值时,此时高位调储水箱为满液位,水泵机组不需要工作,高位调储水箱内的水直接输送给用户,控制器将配电箱输送来的电能通过变压器220转换成380V市电,并将转换后的电能直接连入公共电网。
CN201510435837.3A 2015-07-22 2015-07-22 一种光伏驱动管网叠压(无负压)变频供水设备 Pending CN105064447A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510435837.3A CN105064447A (zh) 2015-07-22 2015-07-22 一种光伏驱动管网叠压(无负压)变频供水设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510435837.3A CN105064447A (zh) 2015-07-22 2015-07-22 一种光伏驱动管网叠压(无负压)变频供水设备

Publications (1)

Publication Number Publication Date
CN105064447A true CN105064447A (zh) 2015-11-18

Family

ID=54493934

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510435837.3A Pending CN105064447A (zh) 2015-07-22 2015-07-22 一种光伏驱动管网叠压(无负压)变频供水设备

Country Status (1)

Country Link
CN (1) CN105064447A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114575412A (zh) * 2022-03-16 2022-06-03 中国水利水电科学研究院 一种基于城市供水的社会水循环通路描述方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176353A (ja) * 1996-12-17 1998-06-30 Nippon Yoki Kogyo Kk 貯水槽
CN201933544U (zh) * 2010-08-10 2011-08-17 北京华夏源洁水务科技有限公司 超节能型双向给水系统
CN203559450U (zh) * 2013-10-29 2014-04-23 云南伏施特科技有限公司 一种太阳能光伏供水系统
CN203741938U (zh) * 2013-12-30 2014-07-30 青岛万力科技有限公司 管网增压节能供水设备
CN204311489U (zh) * 2014-11-08 2015-05-06 青岛万力科技有限公司 管网叠压二次供水控制系统
CN204311507U (zh) * 2014-11-10 2015-05-06 青岛万力科技有限公司 管网差压补量无负压叠压供水设备
CN204898771U (zh) * 2015-07-22 2015-12-23 上海玉壶泵业有限公司 一种光伏驱动管网叠压无负压变频供水设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176353A (ja) * 1996-12-17 1998-06-30 Nippon Yoki Kogyo Kk 貯水槽
CN201933544U (zh) * 2010-08-10 2011-08-17 北京华夏源洁水务科技有限公司 超节能型双向给水系统
CN203559450U (zh) * 2013-10-29 2014-04-23 云南伏施特科技有限公司 一种太阳能光伏供水系统
CN203741938U (zh) * 2013-12-30 2014-07-30 青岛万力科技有限公司 管网增压节能供水设备
CN204311489U (zh) * 2014-11-08 2015-05-06 青岛万力科技有限公司 管网叠压二次供水控制系统
CN204311507U (zh) * 2014-11-10 2015-05-06 青岛万力科技有限公司 管网差压补量无负压叠压供水设备
CN204898771U (zh) * 2015-07-22 2015-12-23 上海玉壶泵业有限公司 一种光伏驱动管网叠压无负压变频供水设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
严新平、徐立、袁成清: "《船舶清洁能源技术》", 31 May 2015 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114575412A (zh) * 2022-03-16 2022-06-03 中国水利水电科学研究院 一种基于城市供水的社会水循环通路描述方法

Similar Documents

Publication Publication Date Title
CN205046634U (zh) 罐式无负压稳压调蓄供水设备
CN211596928U (zh) 一种智慧节电型无负压供水设备
CN105089097A (zh) 一种根据实时流量自动匹配合适水泵的供水设备及方法
CN204919657U (zh) 一种根据实时流量自动匹配合适水泵的供水设备
CN201850583U (zh) 箱式叠压供水设备
CN102979138A (zh) 智能供水设备
CN204898771U (zh) 一种光伏驱动管网叠压无负压变频供水设备
CN102367675A (zh) 一种罐式低能耗管网叠压供水设备和方法
CN206233298U (zh) 全变频调控模块变量变压无负压管网叠压供水设备
CN105064447A (zh) 一种光伏驱动管网叠压(无负压)变频供水设备
CN204475438U (zh) 一种变频恒压供水控制机组
CN206753670U (zh) 供热一级网入口富余压力发电自用系统
CN201850584U (zh) 罐式叠压供水设备
CN204475434U (zh) 一种无负压给水设备
CN102383462A (zh) 一种变频恒压供水系统
CN101775827A (zh) 自动恒压变量增压供水器
CN205205908U (zh) 一种变频恒压供水系统
CN204849917U (zh) 一种高效节能的光伏驱动变频供水设备
CN204983011U (zh) 箱式联动增补压智能无负压给水设备
CN104846901A (zh) 高楼分区串接供水设备
CN103964549A (zh) 利用非并网风电的膜法海水淡化系统及其海水淡化方法
CN203833681U (zh) 利用非并网风电的膜法海水淡化系统
CN105064463A (zh) 一种高效节能的光伏驱动变频供水设备
CN205081564U (zh) 一种反渗透海水淡化设备供电系统
CN202338002U (zh) 一种罐式低能耗管网叠压供水设备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151118

RJ01 Rejection of invention patent application after publication