CN105061732A - 一种含碲导电高分子复合纳米线及其制备方法 - Google Patents

一种含碲导电高分子复合纳米线及其制备方法 Download PDF

Info

Publication number
CN105061732A
CN105061732A CN201510621941.1A CN201510621941A CN105061732A CN 105061732 A CN105061732 A CN 105061732A CN 201510621941 A CN201510621941 A CN 201510621941A CN 105061732 A CN105061732 A CN 105061732A
Authority
CN
China
Prior art keywords
tellurium
electric
conducting high
polymer
polymer composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510621941.1A
Other languages
English (en)
Other versions
CN105061732B (zh
Inventor
卢晓峰
迟茂强
王策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201510621941.1A priority Critical patent/CN105061732B/zh
Publication of CN105061732A publication Critical patent/CN105061732A/zh
Application granted granted Critical
Publication of CN105061732B publication Critical patent/CN105061732B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

一种含碲导电高分子复合纳米线及其一步氧化还原制备的方法,属于导电高分子复合纳米材料可控制备技术领域。本发明以导电高分子单体(3,4-乙烯二氧噻吩、吡咯、苯胺等)作为还原剂,含碲化合物作为氧化剂,酸性溶液作为反应环境,采用简单的油浴加热方法,一步制备出核为碲棒、壳为导电高分子的核壳结构纳米复合材料。含碲化合物具备一定的氧化性,在酸性条件下可使导电高分子单体氧化聚合,同时自身被还原为碲单质。碲单质在水溶液中很容易成为纳米结晶并延某一方向生长成为纳米棒,被氧化生成的导电高分子聚合物会包覆在纳米棒上,形成相容性良好的核壳纳米复合结构。该复合纳米线可作为前驱体来制备含其它元素的导电高分子复合纳米线。

Description

一种含碲导电高分子复合纳米线及其制备方法
技术领域
本发明属于导电高分子复合纳米材料可控制备技术领域,具体涉及一种含碲导电高分子复合纳米线及其一步氧化还原制备的方法。
背景技术
导电高分子是高分子材料领域中的一个重要部分,其较高的电导率、可逆的掺杂脱掺杂特性、优异的理化性能等优点引起了科学家的广泛关注。纳米材料是材料科学中的一个热点,将纳米概念引入到导电高分子中,可以大大提升材料的比表面积、导电性,同时其溶解性、加工性等也得以改善。目前,导电高分子纳米材料已经在纳电子器件、传感器、催化、环境、能源、生物医学等众多领域得到广泛应用。
将导电高分子与无机纳米材料复合,制备导电高分子/无机纳米粒子复合纳米材料,是近年来纳米复合材料领域的一个重要研究方向。这种材料集高分子自身的导电性与纳米颗粒的功能性于一体,具有极强的应用背景。同时,由于高分子与无机纳米粒子之间的协同作用,复合纳米材料往往可以表现出明显超出单一组分的性质。导电高分子复合纳米材料的制备方法对其性质有着极大的影响,合理的制备手段可以大大提升材料之间的相容性,使其协同作用更好地得以表现。
发明内容
本发明的目的是提供一种含碲导电高分子纳米线及其一步氧化还原的制备方法。
本发明以导电高分子单体(3,4-乙烯二氧噻吩、吡咯、苯胺等)作为还原剂,含碲化合物作为氧化剂,酸性溶液作为反应环境,采用简单的油浴加热方法,一步制备出核为碲棒、壳为导电高分子的核壳结构纳米复合材料。这种材料和制备方法的创新性是制备简单、碲棒与导电高分子复合良好,整体以纳米线形貌存在。该方法简单易行,易于推广。
本发明所述的一步法氧化还原制备含碲导电高分子复合纳米线的方法,其特征在于:将0.1~0.3g含碲化合物加入到20~40mL、浓度为0.5~2M的盐酸水溶液中,超声2~5min,然后加入0.03~0.1g导电高分子单体,在70~110℃油浴中磁力搅拌4~6h,离心分离,用水和乙醇洗涤,干燥后得到导电高分子和碲棒的复合纳米材料。
进一步地,含碲化合物为亚碲酸钠、亚碲酸钾中的一种。导电高分子单体为3,4-乙烯二氧噻吩、吡咯、苯胺中的一种。
本发明的机制可做如下理解:
含碲化合物具备一定的氧化性,在酸性条件下可使导电高分子单体氧化聚合,同时自身被还原为碲单质。碲单质在水溶液中很容易成为纳米结晶并延某一方向生长成为纳米棒,被氧化生成的导电高分子聚合物会包覆在纳米棒上,形成相容性良好的核壳纳米复合结构。该产品是一种性能良好的光电以及热电材料,同时也可作为前驱体,制备含其他元素单质的导电高分子复合材料。
附图说明
图1:含碲聚3,4-乙烯二氧噻吩复合纳米线的扫描电镜照片;
图2:含碲聚3,4-乙烯二氧噻吩复合纳米线的透射电镜照片;
图3:含碲聚3,4-乙烯二氧噻吩复合纳米线的X射线衍射谱图(XRD);
图4:含碲聚3,4-乙烯二氧噻吩复合纳米线的红外谱图。
如图1、2所示,实施例2所制得的含碲聚3,4-乙烯二氧噻吩复合纳米线的扫描电镜和透射电镜照片,可以看出本发明制得的含碲聚3,4-乙烯二氧噻吩复合纳米线形貌良好,成纤维线状结构。其中内部组分为碲棒,直径10nm左右。外部为聚3,4-乙烯二氧噻吩,厚度约5-15nm。
如图3所示,实施例2所制得的含碲聚3,4-乙烯二氧噻吩复合纳米线的X射线衍射谱图。可以看出材料表现出Te的(100),(101),(102),(111),(003),(201),(112),(202),(113),(104),(212)面的特征衍射峰,这与Te的PDF#01-0714卡片相对应,证明了生成的是Te单质。
如图4所示,实施例2所制得的含碲聚3,4-乙烯二氧噻吩复合纳米线的红外谱图,显示出了聚3,4-乙烯二氧噻吩的典型曲线。1541~1474cm-1处的吸收峰归因于EDOT单体中噻吩环Cα=Cβ的不对称伸缩振动。1384cm-1和1360cm-1处的吸收峰归因于Cβ=Cβ的伸缩振动。1239,1152,1074cm-1处的吸收峰归因于乙二氧基团C-O-C的伸缩振动。988,846和691cm-1处的吸收峰归属于C-S的伸缩振动。同时我们还在2850~2980cm-1处观察到了较弱的吸收峰,这归属于乙二氧基团的CH2伸缩振动。证明了复合材料中含有聚3,4-乙烯二氧噻吩。
具体实施方式
以下是本发明的几个实施例,进一步说明本发明,但是本发明不仅限于此。
实施例1
将0.2216gNa2TeO3加入到30mL1M的盐酸水溶液中,超声3min,使其溶解均匀。然后加入0.028g吡咯单体,在90℃油浴中磁力搅拌5h,离心分离,用水和乙醇分别洗涤三次,真空烘箱干燥后得到含碲聚吡咯复合纳米材料,最终得到产物质量为0.045g。
实施例2
将0.2216gNa2TeO3加入到30mL1M的盐酸水溶液中,超声3min,使其溶解均匀。然后加入0.06g3,4-乙烯二氧噻吩单体,在90℃油浴中磁力搅拌5h,离心分离,用水和乙醇分别洗涤三次,真空烘箱干燥后得到含碲聚3,4-乙烯二氧噻吩复合纳米材料,最终得到产物质量为0.068g。
实施例3
将0.2538gK2TeO3加入到30mL1M的盐酸水溶液中,超声3min,使其溶解均匀。然后加入0.06g3,4-乙烯二氧噻吩单体,在90℃油浴中磁力搅拌5h,离心分离,用水和乙醇分别洗涤三次,真空烘箱干燥后得到含碲聚3,4-乙烯二氧噻吩复合纳米材料,最终得到产物质量为0.062g。

Claims (4)

1.一种一步法氧化还原制备含碲导电高分子复合纳米线的方法,其特征在于:将0.1~0.3g含碲化合物加入到20~40mL、浓度为0.5~2M的盐酸水溶液中,超声2~5min,然后加入0.03~0.1g导电高分子单体,在70~110℃油浴中磁力搅拌4~6h,离心分离,用水和乙醇洗涤,干燥后得到导电高分子和碲棒的复合纳米材料。
2.如权利要求1所述的一种一步法氧化还原制备含碲导电高分子复合纳米线的方法,其特征在于:含碲化合物为亚碲酸钠、亚碲酸钾中的一种。
3.如权利要求1所述的一种一步法氧化还原制备含碲导电高分子复合纳米线的方法,其特征在于:导电高分子单体为3,4-乙烯二氧噻吩、吡咯、苯胺中的一种。
4.一种含碲导电高分子复合纳米线,其特征在于:由权利要求1~3任何一项方法制备得到。
CN201510621941.1A 2015-09-28 2015-09-28 一种含碲导电高分子复合纳米线及其制备方法 Expired - Fee Related CN105061732B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510621941.1A CN105061732B (zh) 2015-09-28 2015-09-28 一种含碲导电高分子复合纳米线及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510621941.1A CN105061732B (zh) 2015-09-28 2015-09-28 一种含碲导电高分子复合纳米线及其制备方法

Publications (2)

Publication Number Publication Date
CN105061732A true CN105061732A (zh) 2015-11-18
CN105061732B CN105061732B (zh) 2018-01-09

Family

ID=54491275

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510621941.1A Expired - Fee Related CN105061732B (zh) 2015-09-28 2015-09-28 一种含碲导电高分子复合纳米线及其制备方法

Country Status (1)

Country Link
CN (1) CN105061732B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板
CN106750195A (zh) * 2016-12-30 2017-05-31 天津工业大学 一种3,4‑乙烯二氧噻吩纳米线的制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092749A (zh) * 2007-05-25 2007-12-26 南京大学 聚苯胺纳米管的可控模板合成方法
CN101113199A (zh) * 2007-08-28 2008-01-30 厦门大学 一种制备聚苯胺纳米线的方法
CN101338031A (zh) * 2008-08-08 2009-01-07 中国科学院山西煤炭化学研究所 一种制备长径比大的聚苯胺纳米线的方法
CN101376745A (zh) * 2008-10-13 2009-03-04 复旦大学 氧化钼-聚苯胺复合单晶纳米线的合成方法
CN102583267A (zh) * 2012-02-21 2012-07-18 合肥工业大学 一种水热法制备电子自旋共振标准物的方法
CN102910595A (zh) * 2012-10-31 2013-02-06 中国科学技术大学 一种超细碲纳米线的宏量制备方法
CN103469272A (zh) * 2013-09-04 2013-12-25 浙江大学 三氧化钨/聚苯胺核壳纳米线阵列变色薄膜及其制备方法
CN104555952A (zh) * 2013-10-22 2015-04-29 浙江理工大学 一种纳米级棒状碲化铋纳米材料的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101092749A (zh) * 2007-05-25 2007-12-26 南京大学 聚苯胺纳米管的可控模板合成方法
CN101113199A (zh) * 2007-08-28 2008-01-30 厦门大学 一种制备聚苯胺纳米线的方法
CN101338031A (zh) * 2008-08-08 2009-01-07 中国科学院山西煤炭化学研究所 一种制备长径比大的聚苯胺纳米线的方法
CN101376745A (zh) * 2008-10-13 2009-03-04 复旦大学 氧化钼-聚苯胺复合单晶纳米线的合成方法
CN102583267A (zh) * 2012-02-21 2012-07-18 合肥工业大学 一种水热法制备电子自旋共振标准物的方法
CN102910595A (zh) * 2012-10-31 2013-02-06 中国科学技术大学 一种超细碲纳米线的宏量制备方法
CN103469272A (zh) * 2013-09-04 2013-12-25 浙江大学 三氧化钨/聚苯胺核壳纳米线阵列变色薄膜及其制备方法
CN104555952A (zh) * 2013-10-22 2015-04-29 浙江理工大学 一种纳米级棒状碲化铋纳米材料的制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板
US10505152B2 (en) 2016-02-01 2019-12-10 Boe Technology Group Co., Ltd. Quantum rod, method of manufacturing quantum rod and display panel
CN106750195A (zh) * 2016-12-30 2017-05-31 天津工业大学 一种3,4‑乙烯二氧噻吩纳米线的制备方法
CN106750195B (zh) * 2016-12-30 2019-01-18 天津工业大学 一种3,4-乙烯二氧噻吩纳米线的制备方法

Also Published As

Publication number Publication date
CN105061732B (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
Karimzadeh et al. Nanomaterial based PVA nanocomposite hydrogels for biomedical sensing: Advances toward designing the ideal flexible/wearable nanoprobes
Zhao et al. Conducting polymer composites for unconventional solid-state supercapacitors
Devadas et al. Effect of carbon dots on conducting polymers for energy storage applications
Aslam et al. Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites
Song et al. Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review
Zhu et al. State-of-the-art on the preparation, modification, and application of biomass-derived carbon quantum dots
Kazemi et al. Biosensing applications of polyaniline (PANI)-based nanocomposites: A review
Barhoum et al. Review of recent research on flexible multifunctional nanopapers
Chen et al. Flexible transparent supercapacitors based on hierarchical nanocomposite films
Goswami et al. Polyaniline and its composites engineering: A class of multifunctional smart energy materials
Vadiyar et al. Anchoring ultrafine ZnFe2O4/C nanoparticles on 3D ZnFe2O4 nanoflakes for boosting cycle stability and energy density of flexible asymmetric supercapacitor
Cai et al. Temperature-invariant superelastic multifunctional MXene aerogels for high-performance photoresponsive supercapacitors and wearable strain sensors
Huang et al. Extremely stable polypyrrole achieved via molecular ordering for highly flexible supercapacitors
Li et al. Multidimensional hierarchical fabric-based supercapacitor with bionic fiber microarrays for smart wearable electronic textiles
Veeramuthu et al. Recent progress in conducting polymer composite/nanofiber-based strain and pressure sensors
Park et al. Anisotropic growth control of polyaniline nanostructures and their morphology-dependent electrochemical characteristics
Das et al. Review on conducting polymers and their applications
Qin et al. Development and applications of MXene-based functional fibers
Athauda et al. Systematic study of the structure–property relationships of branched hierarchical TiO2/ZnO nanostructures
Pal et al. CNT yarn based solid state linear supercapacitor with multi-featured capabilities for wearable and implantable devices
Lee et al. Electroconductive cellulose nanocrystals—Synthesis, properties and applications: A review
Lakshmi et al. Novel 1D polyaniline nanorods for efficient electrochemical supercapacitors: A facile and green approach
Zhao et al. In situ synthesis of trifluoroacetic acid-doped polyaniline/reduced graphene oxide composites for high-performance all-solid-state supercapacitors
Abu Hassan Shaari et al. Synthesis and conductivity studies of poly (Methyl Methacrylate)(PMMA) by co-polymerization and blending with polyaniline (PANi)
Jyothibasu et al. Facile, scalable, eco-friendly fabrication of high-performance flexible all-solid-state supercapacitors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180109

CF01 Termination of patent right due to non-payment of annual fee