CN105049828A - Three-dimensional image control method - Google Patents

Three-dimensional image control method Download PDF

Info

Publication number
CN105049828A
CN105049828A CN201510546957.0A CN201510546957A CN105049828A CN 105049828 A CN105049828 A CN 105049828A CN 201510546957 A CN201510546957 A CN 201510546957A CN 105049828 A CN105049828 A CN 105049828A
Authority
CN
China
Prior art keywords
sub
pixels
matrix
row
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510546957.0A
Other languages
Chinese (zh)
Inventor
廖仁伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AUO Corp
Original Assignee
AU Optronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AU Optronics Corp filed Critical AU Optronics Corp
Publication of CN105049828A publication Critical patent/CN105049828A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

本发明公开了一种三维影像控制方法,适用于显示装置。显示装置具有多个子像素。再者,显示装置定义有多个视角,每一个视角对应至少部分的子像素以提供视角影像。此外,显示装置定义有互相平行的多个可视区域,每一个可视区域对应其中一视角。三维影像控制方法包括下列步骤。首先,提供原始矩阵。其中,原始矩阵的每一元素对应其中一个视角影像中的其中一个子像素的亮度。再来,将原始矩阵与校正矩阵进行运算,以产生输出矩阵。显示装置则依据输出矩阵中的元素决定其中一个视角影像的其中一个子像素的亮度。

The invention discloses a three-dimensional image control method, which is suitable for display devices. A display device has multiple sub-pixels. Furthermore, the display device defines multiple viewing angles, and each viewing angle corresponds to at least part of the sub-pixels to provide a viewing angle image. In addition, the display device defines multiple viewing areas that are parallel to each other, and each viewing area corresponds to one of the viewing angles. The three-dimensional image control method includes the following steps. First, provide the original matrix. Among them, each element of the original matrix corresponds to the brightness of one of the sub-pixels in one of the viewing angle images. Next, the original matrix and the correction matrix are operated to produce an output matrix. The display device determines the brightness of one sub-pixel of one of the viewing angle images based on the elements in the output matrix.

Description

三维影像控制方法3D image control method

技术领域technical field

本发明关于一种三维影像控制方法,特别是关于一种裸视三维影像控制方法。The present invention relates to a three-dimensional image control method, in particular to a naked-view three-dimensional image control method.

背景技术Background technique

近年来,随着生活品质的提升,显示技术不断地进步。从早期的黑白电视、彩色电视,一直到现在的高画质、轻薄型、平面化电视,无不表示人们追求更逼真、更自然的影像品质。为了满足对更真实影像的需求,显示技术已从二维发展至三维,以提供立体空间的视觉感受。现今立体显示技术多采用两眼视差的方式来达成。因此要让人接收立体影像,必须使左、右眼分别接收到些微差异的影像。三维影像的显示技术大致可分为眼镜式及裸视式,其中,裸视式的三维影像显示技术因为不需额外配戴专用眼镜,对于使用者来说,便利性不言而喻。In recent years, with the improvement of the quality of life, the display technology has been continuously improved. From the early black and white TV and color TV to the current high-definition, thin and flat TV, all of them mean that people are pursuing more realistic and natural image quality. In order to meet the demand for more realistic images, display technology has evolved from two-dimensional to three-dimensional to provide a visual experience of three-dimensional space. Nowadays, the stereoscopic display technology mostly adopts the way of binocular parallax to achieve. Therefore, to allow people to receive stereoscopic images, the left and right eyes must receive slightly different images respectively. The 3D image display technology can be roughly divided into glasses type and naked-view type. Among them, the naked-view type 3D image display technology does not need to wear special glasses, which is self-evident for users.

然而,在裸视式三维影像显示技术日益进步的同时,其显示品质仍有极大的改善空间。因此,如何改进现有三维影像显示技术,以提升三维影像的画质,则为研发人员应解决的问题之一。However, while the naked-view 3D image display technology is improving day by day, its display quality still has great room for improvement. Therefore, how to improve the existing 3D image display technology to enhance the image quality of 3D images is one of the problems that researchers should solve.

发明内容Contents of the invention

本发明在于提供一三维影像控制方法,以提升三维影像的显示画质。The present invention provides a 3D image control method to improve the display quality of the 3D image.

本发明所揭露的三维影像控制方法,适用于显示装置。显示装置具有多个子像素,这些子像素以多个行及多个列的方式排列。再者,显示装置定义有多个视角,每一个视角对应至少部分的子像素以提供视角影像。此外,显示装置定义有互相平行的多个可视区域,每一个可视区域对应其中一视角,且可视区域与子像素的列方向具有一夹角。三维影像控制方法包括下列步骤。首先,提供原始矩阵。其中,原始矩阵的每一元素对应其中一个视角影像中的其中一个子像素的亮度。再来,将原始矩阵与校正矩阵进行运算,以产生输出矩阵。显示装置则依据输出矩阵中的元素决定其中一个视角影像的其中一个子像素的亮度。The 3D image control method disclosed in the present invention is applicable to a display device. The display device has a plurality of sub-pixels arranged in a plurality of rows and a plurality of columns. Furthermore, the display device defines a plurality of viewing angles, and each viewing angle corresponds to at least a part of the sub-pixels to provide viewing angle images. In addition, the display device defines multiple viewable areas parallel to each other, each viewable area corresponds to one of the viewing angles, and the viewable area forms an included angle with the column direction of the sub-pixels. The three-dimensional image control method includes the following steps. First, the original matrix is provided. Wherein, each element of the original matrix corresponds to the brightness of one sub-pixel in one view image. Next, the original matrix is operated on with the correction matrix to generate an output matrix. The display device determines the brightness of one of the sub-pixels of one of the viewing angle images according to the elements in the output matrix.

根据上述本发明所揭露的三维影像控制方法,可降低子像素的亮度,以补偿其邻近子像素漏光造成的影响。因此,显示装置可利用输出矩阵决定各视角影像,并进而提供优化后的三维影像的显示。According to the 3D image control method disclosed in the present invention, the brightness of a sub-pixel can be reduced to compensate for the influence caused by the light leakage of its adjacent sub-pixels. Therefore, the display device can use the output matrix to determine images of each viewing angle, and then provide optimized display of 3D images.

以上关于本发明内容的说明及以下实施方式的说明是用以示范与解释本发明的原理,并且提供本发明的专利申请范围更进一步的解释。The above description of the content of the present invention and the following description of the implementation are used to demonstrate and explain the principle of the present invention, and to provide further explanation of the patent application scope of the present invention.

附图说明Description of drawings

图1为用以说明本发明一实施例所适用显示装置的结构示意图。FIG. 1 is a schematic diagram illustrating the structure of a display device applicable to an embodiment of the present invention.

图2为本发明一实施例的三维影像控制方法的流程图。FIG. 2 is a flowchart of a 3D image control method according to an embodiment of the present invention.

图3为另一显示装置的结构示意图,用以说明本发明另一实施例的三维影像控制方法。FIG. 3 is a schematic structural diagram of another display device for illustrating a 3D image control method according to another embodiment of the present invention.

图4为又一显示装置的结构示意图,用以说明本发明又一实施例的三维影像控制方法。FIG. 4 is a schematic structural diagram of another display device for illustrating a 3D image control method according to another embodiment of the present invention.

图5为再一显示装置的结构示意图,用以说明本发明再一实施例的三维影像控制方法。FIG. 5 is a schematic structural diagram of yet another display device for illustrating a 3D image control method according to yet another embodiment of the present invention.

图6为又一显示装置的结构示意图,用以说明本发明又一实施例的三维影像控制方法。FIG. 6 is a schematic structural diagram of another display device for illustrating a 3D image control method according to another embodiment of the present invention.

其中,附图标记:Among them, reference signs:

1、3、4、5、6显示装置1, 3, 4, 5, 6 display devices

10、30、40、50、60子像素10, 30, 40, 50, 60 sub-pixels

12、32、42、52、62可视区域12, 32, 42, 52, 62 viewing area

14分光元件14 splitting elements

θ、ψ1、ψ2、ψ3、ψ4夹角θ, ψ 1 , ψ 2 , ψ 3 , ψ 4 included angle

100、300、302、304、400、402、404子像素100, 300, 302, 304, 400, 402, 404 sub-pixels

500、502、504、506、508子像素500, 502, 504, 506, 508 sub-pixels

601、602、603、604、605子像素601, 602, 603, 604, 605 sub-pixels

具体实施方式Detailed ways

以下结合附图和具体实施例对本发明进行详细描述,但不作为对本发明的限定。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments, but not as a limitation of the present invention.

请参照图1,为用以说明本发明一实施例所适用显示装置的结构示意图。显示装置1具有多个子像素10,这些子像素10以多个行及多个列的方式排列。且显示装置1定义有多个视角,每一个视角对应至少部分的子像素10以提供一个视角影像。于实务上,可利用多个分光元件14产生不同的视角,分光元件14可为柱状凸透镜,惟不以此为限。此外,显示装置1定义有互相平行的多个可视区域12,每一个可视区域12对应其中一个视角。利用将分光元件14以倾斜方式设置,可使这些可视区域12与子像素10排列的列方向形成一夹角θ。Please refer to FIG. 1 , which is a schematic diagram illustrating the structure of a display device applicable to an embodiment of the present invention. The display device 1 has a plurality of sub-pixels 10 arranged in a plurality of rows and a plurality of columns. Moreover, the display device 1 defines a plurality of viewing angles, and each viewing angle corresponds to at least a part of the sub-pixels 10 to provide a viewing angle image. In practice, multiple light splitting elements 14 can be used to generate different viewing angles, and the light splitting elements 14 can be lenticular convex lenses, but not limited thereto. In addition, the display device 1 defines a plurality of viewing areas 12 parallel to each other, and each viewing area 12 corresponds to one of the viewing angles. By arranging the light-splitting elements 14 in an oblique manner, an angle θ can be formed between the visible regions 12 and the column direction in which the sub-pixels 10 are arranged.

于实务上,子像素10与视角之间对应关系,是依据视角数量与夹角θ而定,且相邻的子像素10通常属于不同的视角。因此,以子像素10中的子像素100为例,假设其为对应的视角于所处可视区域内欲被显示的子像素10。由于夹角θ的存在,除了其中一个子像素10本身外,其周围属于其他视角的子像素10亦会落入可视区域。以N个视角为例,可以下列方程式表示。In practice, the corresponding relationship between sub-pixels 10 and viewing angles is determined according to the number of viewing angles and the included angle θ, and adjacent sub-pixels 10 usually belong to different viewing angles. Therefore, taking the sub-pixel 100 among the sub-pixels 10 as an example, it is assumed that it is the sub-pixel 10 to be displayed in the visible area where the corresponding viewing angle is located. Due to the existence of the included angle θ, in addition to one of the sub-pixels 10 itself, the surrounding sub-pixels 10 belonging to other viewing angles will also fall into the visible area. Taking N viewing angles as an example, it can be represented by the following equation.

View1perceived=View1display+C1×(ViewNdisplay+View2display)View1 perceived =View1 display +C 1 ×(ViewN display +View2 display )

+C2×(View(N-1)display+View3display)+...…(1)+C 2 ×(View(N-1) display +View3 display )+...(1)

View2perceived=View2display+C1×(View1display+View3display)View2 perceived =View2 display +C 1 ×(View1 display +View3 display )

+C2×(ViewNdisplay+View4display)+...…(2)+C 2 ×(ViewN display +View4 display )+...(2)

..

..

..

ViewNperceived=ViewNdisplay+C1×(View(N-1)display+View1display)ViewN perceived =ViewN display +C 1 ×(View(N-1) display +View1 display )

+C2×(View(N-2)display+View2display)+...…(3)+C 2 ×(View(N-2) display +View2 display )+...(3)

其中,Viewiperceived为使用者看到的第i个视角的子像素10的亮度,Viewidisplay为显示装置显示的第i个视角的子像素10的亮度,Cj则代表除了第i个视角的子像素10之外的其他视角的子像素10的亮度对第i个视角的子像素10的亮度的影响程度。于实务上,可将Cj视为一权重值,此权重值关联于原始矩阵中对应的子像素10于对应的可视区域中所占的面积大小。进一步将上述方程式转换为矩阵的方式表示,可得下列方程式。Wherein, Viewi perceived is the brightness of the sub-pixel 10 at the i-th viewing angle seen by the user, Viewi display is the brightness of the sub-pixel 10 at the i-th viewing angle displayed by the display device, and Cj represents the sub-pixels except for the i-th viewing angle The degree of influence of the luminance of the sub-pixel 10 at other viewing angles other than 10 on the brightness of the sub-pixel 10 at the i-th viewing angle. In practice, Cj can be regarded as a weight value, and the weight value is related to the area occupied by the corresponding sub-pixel 10 in the original matrix in the corresponding viewable area. Further converting the above equation into a matrix representation, the following equation can be obtained.

CVd=Vp.......................................................................(4)CV d =V p ................................................ ...................................(4)

CC == 11 CC 11 CC 22 ...... CC 11 CC 11 11 CC 11 CC 22 ...... ...... CC 11 11 CC 11 CC 22 CC 22 ...... CC 22 11 CC 22 CC 11 CC 22 ...... CC 11 11 ...... (( 55 ))

VV dd == VV ii ee ww 11 dd ii sthe s pp ll aa ythe y VV ii ee ww 22 dd ii sthe s pp ll aa ythe y VV ii ee ww 33 dd ii sthe s pp ll aa ythe y .. .. .. ViewNViewN dd ii sthe s pp ll aa ythe y ...... (( 66 ))

VV pp == VV ii ee ww 11 pp ee rr cc ee ii vv ee dd VV ii ee ww 22 pp ee rr cc ee ii vv ee dd VV ii ee ww 33 pp ee rr cc ee ii vv ee dd .. .. .. ViewNViewN pp ee rr cc ee ii vv ee dd ...... (( 77 ))

其中,C为校正矩阵,Vd为输出矩阵,Vp为原始矩阵。Among them, C is the correction matrix, V d is the output matrix, and V p is the original matrix.

根据上述矩阵,原始矩阵的元素对应于至少部分的同一列的子像素10的亮度。再者,校正矩阵的对角线元素为1,且除了第一行外的每一行为其上一行的向右循环移位的一结果。于实务上,可将校正矩阵的反矩阵乘以原始矩阵以产生输出矩阵。更进一步来说,可将原始矩阵的每一个元素分别乘上对应的一系数并相加,以产生输出矩阵的多个元素其中之一。其中上述的系数即为校正矩阵的反矩阵的元素,因此上述的系数系关联于Cj所代表的权重值。According to the above matrix, the elements of the original matrix correspond to the brightness of at least part of the sub-pixels 10 of the same column. Furthermore, the diagonal elements of the correction matrix are 1, and each row except the first row is a result of the rightward cyclic shift of the row above it. In practice, the inverse of the correction matrix can be multiplied by the original matrix to generate the output matrix. Furthermore, each element of the original matrix can be multiplied by a corresponding coefficient and added together to generate one of the plurality of elements of the output matrix. The above-mentioned coefficients are the elements of the inverse matrix of the correction matrix, so the above-mentioned coefficients are associated with the weight value represented by Cj.

请同时参照图1及图2,其中图2为本实施例的三维影像控制方法的流程图。本实施例的三维影像控制方法适用于如图1所示的显示装置1,包括下列步骤。首先,于步骤S20,提供原始矩阵。其中,原始矩阵的每一元素对应其中一个视角影像中的其中一个子像素10的亮度。再来,于步骤S22,将原始矩阵与校正矩阵进列运算,以产生输出矩阵。显示装置1则依据输出矩阵中的元素决定其中一个视角影像的其中一个子像素10的亮度。藉由上述的运算,可降低子像素10的亮度,以补偿其邻近子像素10漏光造成的影响。因此,显示装置1可利用输出矩阵决定各视角影像,并进而提供优化后的三维影像的显示。Please refer to FIG. 1 and FIG. 2 at the same time, wherein FIG. 2 is a flow chart of the 3D image control method of this embodiment. The 3D image control method of this embodiment is applicable to the display device 1 shown in FIG. 1 , and includes the following steps. First, in step S20, an original matrix is provided. Wherein, each element of the original matrix corresponds to the brightness of one of the sub-pixels 10 in one of the perspective images. Next, in step S22, the original matrix and the correction matrix are operated in sequence to generate an output matrix. The display device 1 determines the brightness of one of the sub-pixels 10 of one of the viewing angle images according to the elements in the output matrix. Through the above calculation, the brightness of the sub-pixel 10 can be reduced to compensate the influence caused by the light leakage of its adjacent sub-pixels 10 . Therefore, the display device 1 can use the output matrix to determine images of each viewing angle, and further provide optimized display of 3D images.

请参照图3,是另一显示装置的结构示意图,用以说明本发明另一实施例的三维影像控制方法。如图3所示,显示装置3包括多个子像素30。其中,第一列及第四列的子像素30为属于红色子像素,第二列及第五列的子像素30为属于绿色子像素,第三列及第六列的子像素30为属于蓝色子像素。可视区域32与子像素30排列的列方向形成一夹角ψ1,其中,ψ1为tan-1(1/6),约等于9.46度。各子像素30上所标示的数字代表子像素30所对应的视角,举例来说,标示「1」的子像素30对应第1视角,标示「5」的子像素30则对应第5视角,本实施例以共5个视角为例,惟并不以此为限。因此,标示相同数字的子像素30可构成对应的视角影像。以第2视角为例,假设子像素300为所欲显示的子像素30,则其受子像素302及子像素304的漏光影响最大。同理对于其他的视角,亦受其上下子像素30的影响最大。Please refer to FIG. 3 , which is a schematic structural diagram of another display device for illustrating a 3D image control method according to another embodiment of the present invention. As shown in FIG. 3 , the display device 3 includes a plurality of sub-pixels 30 . Wherein, the sub-pixels 30 in the first column and the fourth column belong to the red sub-pixels, the sub-pixels 30 in the second column and the fifth column belong to the green sub-pixels, and the sub-pixels 30 in the third column and the sixth column belong to the blue sub-pixels. color sub-pixels. The viewable area 32 forms an angle ψ 1 with the row direction of the sub-pixels 30 , wherein ψ 1 is tan −1 (1/6), approximately equal to 9.46 degrees. The number marked on each sub-pixel 30 represents the viewing angle corresponding to the sub-pixel 30. For example, the sub-pixel 30 marked with "1" corresponds to the first viewing angle, and the sub-pixel 30 marked with "5" corresponds to the fifth viewing angle. The embodiment takes a total of 5 viewing angles as an example, but it is not limited thereto. Therefore, the sub-pixels 30 marked with the same number can form a corresponding viewing angle image. Taking the second viewing angle as an example, assuming that the sub-pixel 300 is the sub-pixel 30 to be displayed, it is most affected by the light leakage of the sub-pixel 302 and the sub-pixel 304 . Similarly, other viewing angles are most affected by the upper and lower sub-pixels 30 .

因此,可将校正矩阵、输出矩阵及原始矩阵分别以下列方程式描述。Therefore, the correction matrix, output matrix and original matrix can be described by the following equations respectively.

CC == 11 CC 11 00 00 CC 11 CC 11 11 CC 11 00 ...... 00 CC 11 11 CC 11 00 00 00 CC 11 11 CC 11 CC 11 00 00 CC 11 11 ...... (( 88 ))

VV dd == VV ii ee ww 11 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 44 )) VV ii ee ww 22 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 33 )) VV ii ee ww 33 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 22 )) VV ii ee ww 44 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 11 )) VV ii ee ww 55 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y )) ...... (( 99 ))

VV pp == VV ii ee ww 11 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 44 )) )) VV ii ee ww 22 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 33 )) VV ii ee ww 33 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 22 )) VV ii ee ww 44 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 11 )) VV ii ee ww 55 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y )) ...... (( 1010 ))

其中,各视角的子像素30的相对位置关系如上述原始矩阵元素及输出矩阵元素的下标所示。举例来说,第3视角的子像素30坐标为(x,y-2),第2视角的子像素30位于第3视角的子像素30下方,因此其坐标为(x,y-3)。又第1视角的子像素30位于第2视角的子像素30下方,因此其坐标为(x,y-4),第4视角及第5视角的子像素30坐标则可以此类推。于实务上,C1可为一小于0.3的值,惟不以此为限。本实施例虽以ψ1约等于9.46度为例,于实务上,当ψ1介于8度至11度之间,各视角的子像素30的相互影响与本实施例相近。故本实施例的原始矩阵、校正矩阵和输出矩阵,可适用于ψ1介于8度至11度之间的显示装置,所属技术领域的通常知识者可适当调整C1,以达到最佳化的目的。Wherein, the relative positional relationship of the sub-pixels 30 of each viewing angle is shown by the subscripts of the above-mentioned original matrix elements and output matrix elements. For example, the coordinates of the sub-pixel 30 of the third viewing angle are (x, y-2), and the sub-pixels 30 of the second viewing angle are located below the sub-pixels 30 of the third viewing angle, so their coordinates are (x, y-3). Moreover, the sub-pixel 30 of the first viewing angle is located below the sub-pixel 30 of the second viewing angle, so its coordinates are (x, y-4), and the coordinates of the sub-pixels 30 of the fourth viewing angle and the fifth viewing angle can be deduced by analogy. In practice, C 1 may be a value less than 0.3, but not limited thereto. Although the present embodiment takes ψ 1 approximately equal to 9.46° as an example, in practice, when ψ 1 is between 8° and 11°, the mutual influence of the sub-pixels 30 at different viewing angles is similar to that of the present embodiment. Therefore, the original matrix, correction matrix and output matrix of this embodiment are applicable to display devices where ψ 1 is between 8 degrees and 11 degrees, and those skilled in the art can properly adjust C 1 to achieve the optimum the goal of.

请参照图4,是又一显示装置的结构示意图,用以说明本发明又一实施例的三维影像控制方法。如图4所示,显示装置4包括多个子像素40。其中,第一列及第四列的子像素40为属于红色子像素,第二列及第五列的子像素40为属于绿色子像素,第三列及第六列的子像素40为属于蓝色子像素。可视区域42与子像素40排列的列方向形成一夹角ψ2,其中,ψ2为tan-1(1/3),约等于18.43度。各子像素40上所标示的数字代表子像素40所对应的视角,本实施例亦以共5个视角为例,惟并不以此为限。以第2视角为例,假设子像素400为所欲显示的子像素40,则其受子像素402及子像素404的漏光影响最大。同理对于其他的视角,亦受其上下子像素40的影响最大。再者,本实施例中子像素40的配置与上述实施例中子像素30的配置方式相同。因此,本实施例亦可应用如上述ψ1约等于9.46度时的原始矩阵、校正矩阵和输出矩阵。又由于在本实施例中,各子像素40受其上下子像素40的影响较前述实施例为低,故于实务上所选取C1的值亦较前述实施例小。本实施例虽以ψ2约等于18.43度为例,于实务上,当ψ2介于16度至20度之间,各视角的子像素40的相互影响与本实施例相近。故本实施例的原始矩阵、校正矩阵和输出矩阵,可适用于ψ2介于16度至20度之间的显示装置,所属技术领域的通常知识者可适当调整C1,以达到最佳化的目的。Please refer to FIG. 4 , which is a schematic structural diagram of another display device for illustrating a 3D image control method according to another embodiment of the present invention. As shown in FIG. 4 , the display device 4 includes a plurality of sub-pixels 40 . Wherein, the sub-pixels 40 in the first column and the fourth column belong to the red sub-pixels, the sub-pixels 40 in the second column and the fifth column belong to the green sub-pixels, and the sub-pixels 40 in the third column and the sixth column belong to the blue sub-pixels. color sub-pixels. The viewable area 42 forms an included angle ψ 2 with the row direction of the sub-pixels 40 , wherein ψ 2 is tan −1 (1/3), approximately equal to 18.43 degrees. The numbers marked on the sub-pixels 40 represent the viewing angles corresponding to the sub-pixels 40 , and this embodiment also takes a total of 5 viewing angles as an example, but it is not limited thereto. Taking the second viewing angle as an example, assuming that the sub-pixel 400 is the sub-pixel 40 to be displayed, it is most affected by the light leakage of the sub-pixel 402 and the sub-pixel 404 . Similarly, other viewing angles are most affected by the upper and lower sub-pixels 40 . Furthermore, the arrangement of the sub-pixels 40 in this embodiment is the same as the arrangement of the sub-pixels 30 in the above-mentioned embodiments. Therefore, this embodiment can also apply the original matrix, correction matrix and output matrix when ψ 1 is approximately equal to 9.46 degrees. In this embodiment, each sub-pixel 40 is less affected by its upper and lower sub-pixels 40 than in the foregoing embodiments, so the value of C 1 selected in practice is also smaller than that of the foregoing embodiments. Although the present embodiment takes ψ 2 approximately equal to 18.43 degrees as an example, in practice, when ψ 2 is between 16 degrees and 20 degrees, the mutual influence of the sub-pixels 40 of each viewing angle is similar to that of the present embodiment. Therefore, the original matrix, correction matrix, and output matrix of this embodiment are applicable to display devices with ψ 2 between 16° and 20°, and those skilled in the art can properly adjust C 1 to achieve the optimum the goal of.

请参照图5,是再一显示装置的结构示意图,用以说明本发明再一实施例的三维影像控制方法。如图5所示,显示装置5包括多个子像素50。其中,第一列及第四列的子像素50为属于红色子像素,第二列及第五列的子像素50为属于绿色子像素,第三列及第六列的子像素50为属于蓝色子像素。可视区域52与子像素50排列的列方向形成一夹角ψ3,其中,ψ3为tan-1(1/9),约等于6.34度。各子像素50上所标示的数字代表子像素50所对应的视角,本实施例亦以共5个视角为例,惟并不以此为限。以第3视角为例,假设子像素500为所欲显示的子像素50,则其受子像素502及子像素504的漏光影响最大。其次,子像素500亦受子像素506及子像素508的漏光影响,惟其影响较子像素502及子像素504为小。同理对于其他的视角,亦受其上下各二个子像素50的影响最大。Please refer to FIG. 5 , which is a schematic structural diagram of yet another display device for illustrating a 3D image control method according to yet another embodiment of the present invention. As shown in FIG. 5 , the display device 5 includes a plurality of sub-pixels 50 . Among them, the sub-pixels 50 in the first column and the fourth column are red sub-pixels, the sub-pixels 50 in the second column and the fifth column are green sub-pixels, and the sub-pixels 50 in the third column and the sixth column are blue sub-pixels. color sub-pixels. The viewable area 52 forms an included angle ψ 3 with the row direction of the sub-pixels 50 , wherein ψ 3 is tan −1 (1/9), approximately equal to 6.34 degrees. The numbers marked on the sub-pixels 50 represent the viewing angles corresponding to the sub-pixels 50 , and this embodiment also takes a total of 5 viewing angles as an example, but it is not limited thereto. Taking the third viewing angle as an example, assuming that the sub-pixel 500 is the sub-pixel 50 to be displayed, it is most affected by the light leakage of the sub-pixel 502 and the sub-pixel 504 . Secondly, the sub-pixel 500 is also affected by the light leakage of the sub-pixel 506 and the sub-pixel 508 , but its influence is smaller than that of the sub-pixel 502 and the sub-pixel 504 . Similarly, other viewing angles are most affected by the upper and lower sub-pixels 50 respectively.

因此,可将校正矩阵、输出矩阵及原始矩阵分别以下列方程式描述。Therefore, the correction matrix, output matrix and original matrix can be described by the following equations respectively.

CC == 11 CC 11 CC 22 CC 22 CC 11 CC 11 11 CC 11 CC 22 CC 22 CC 22 CC 11 11 CC 11 CC 22 CC 22 CC 22 CC 11 11 CC 11 CC 11 CC 22 CC 22 CC 11 11 ...... (( 1111 ))

VV dd == VV ii ee ww 11 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 44 )) VV ii ee ww 22 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 33 )) VV ii ee ww 33 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 22 )) VV ii ee ww 44 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 11 )) VV ii ee ww 55 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y )) ...... (( 1212 ))

VV pp == VV ii ee ww 11 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 44 )) )) VV ii ee ww 22 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 33 )) VV ii ee ww 33 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 22 )) VV ii ee ww 44 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 11 )) VV ii ee ww 55 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y )) ...... (( 1313 ))

其中,各视角的子像素50的相对位置关系如上述原始矩阵元素及输出矩阵元素的下标所示。再者,由于子像素50受其上下二子像素50的影响最大,故于实务上C1大于C2。本实施例虽以ψ3约等于6.34度为例,于实务上,当ψ3介于5度至8度之间,各视角的子像素50的相互影响与本实施例相近。故本实施例的原始矩阵、校正矩阵和输出矩阵,可适用于ψ3介于5度至8度之间的显示装置,所属技术领域的通常知识者可适当调整C1与C2,以达到最佳化的目的。Wherein, the relative positional relationship of the sub-pixels 50 of each viewing angle is shown by the subscripts of the above-mentioned original matrix elements and output matrix elements. Furthermore, since the sub-pixel 50 is most affected by its upper and lower sub-pixels 50 , in practice C 1 is greater than C 2 . Although the present embodiment takes ψ 3 approximately equal to 6.34 degrees as an example, in practice, when ψ 3 is between 5 degrees and 8 degrees, the mutual influence of the sub-pixels 50 of each viewing angle is similar to that of the present embodiment. Therefore, the original matrix, correction matrix and output matrix of this embodiment are applicable to display devices with ψ 3 between 5 degrees and 8 degrees, and those skilled in the art can adjust C 1 and C 2 appropriately to achieve purpose of optimization.

请参照图6,是又一显示装置的结构示意图,用以说明本发明又一实施例的三维影像控制方法。如图6所示,显示装置6包括多个子像素60。其中,第一列、第四列、第七列及第十列的子像素60为属于红色子像素,第二列、第五列及第八列的子像素60为属于绿色子像素,第三列、第六列及第九列的子像素60为属于蓝色子像素。可视区域62与子像素60排列的列方向形成一夹角ψ4,ψ4为tan-1(2/3),约等于33.69度。各子像素60上所标示的数字代表子像素60所对应的视角,本实施例亦以共5个视角为例,惟并不以此为限。以第2视角为例,假设子像素602为所欲显示的子像素60,于实务上,可挑选邻近同色的子像素60做为校正的依据,惟并不以此为限。例如,可挑选邻近同色的子像素601及子像素603做为校正的依据。又以第3视角为例,假设子像素603为所欲显示的子像素60,则可挑选邻近同色的子像素602及子像素604做为校正的依据,其余视角可以此类推。Please refer to FIG. 6 , which is a schematic structural diagram of another display device for illustrating a 3D image control method according to another embodiment of the present invention. As shown in FIG. 6 , the display device 6 includes a plurality of sub-pixels 60 . Wherein, the sub-pixels 60 in the first column, the fourth column, the seventh column and the tenth column belong to the red sub-pixels, the sub-pixels 60 in the second column, the fifth column and the eighth column belong to the green sub-pixels, and the sub-pixels 60 in the third column belong to the green sub-pixels. The sub-pixels 60 in the first, sixth and ninth columns are blue sub-pixels. The viewable area 62 forms an included angle ψ 4 with the row direction of the sub-pixels 60 , and ψ 4 is tan −1 (2/3), approximately equal to 33.69 degrees. The numbers marked on the sub-pixels 60 represent the viewing angles corresponding to the sub-pixels 60 , and this embodiment also takes a total of 5 viewing angles as an example, but it is not limited thereto. Taking the second viewing angle as an example, assuming that the sub-pixel 602 is the sub-pixel 60 to be displayed, in practice, adjacent sub-pixels 60 of the same color can be selected as the basis for correction, but the present invention is not limited thereto. For example, adjacent sub-pixels 601 and 603 of the same color can be selected as the basis for correction. Taking the third viewing angle as an example, assuming that the sub-pixel 603 is the sub-pixel 60 to be displayed, then the adjacent sub-pixels 602 and 604 of the same color can be selected as the basis for correction, and so on for other viewing angles.

因此,可将校正矩阵、输出矩阵及原始矩阵分别以下列方程式描述。Therefore, the correction matrix, output matrix and original matrix can be described by the following equations respectively.

CC == 11 CC 11 00 00 CC 11 CC 11 11 CC 11 00 00 00 CC 11 11 CC 11 00 00 00 CC 11 11 CC 11 CC 11 00 00 CC 11 11 ...... (( 1414 )) VV dd == VV ii ee ww 11 pp ee rr cc ee ii vv ee dd __ (( xx ++ 11 ,, ythe y -- 33 )) VV ii ee ww 22 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- 11 )) VV ii ee ww 33 pp ee rr cc ee ii vv ee dd __ (( xx ++ 11 ,, ythe y -- 22 )) VV ii ee ww 44 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y )) VV ii ee ww 55 pp ee rr cc ee ii vv ee dd __ (( xx ,, ythe y -- (( xx ++ 11 ,, ythe y -- 11 )) ...... (( 1515 ))

VV pp == VV ii ee ww 11 dd ii sthe s pp ll aa ythe y __ (( xx ++ 11 ,, ythe y -- 33 )) VV ii ee ww 22 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y -- 11 )) VV ii ee ww 33 dd ii sthe s pp ll aa ythe y __ (( xx ++ 11 ,, ythe y -- 22 )) VV ii ee ww 44 dd ii sthe s pp ll aa ythe y __ (( xx ,, ythe y )) VV ii ee ww 55 dd ii sthe s pp ll aa ythe y __ (( xx ++ 11 ,, ythe y -- 11 )) ...... (( 1616 ))

其中,各视角的子像素60的相对位置关系如上述原始矩阵元素及输出矩阵元素的下标所示。本实施例虽以ψ4约等于33.69度为例,于实务上,当ψ4介于32度至35度之间,各视角的子像素60的相互影响与本实施例相近。故本实施例的原始矩阵、校正矩阵和输出矩阵,可适用于ψ4介于32度至35度之间的显示装置,所属技术领域的通常知识者可适当调整C1,以达到最佳化的目的。Wherein, the relative positional relationship of the sub-pixels 60 of each viewing angle is shown by the subscripts of the above-mentioned original matrix elements and output matrix elements. Although the present embodiment takes ψ 4 approximately equal to 33.69 degrees as an example, in practice, when ψ 4 is between 32 degrees and 35 degrees, the mutual influence of the sub-pixels 60 at different viewing angles is similar to that of the present embodiment. Therefore, the original matrix, correction matrix and output matrix of this embodiment are applicable to display devices with ψ 4 between 32 degrees and 35 degrees, and those skilled in the art can properly adjust C 1 to achieve the optimum the goal of.

综上所述,依据三维影像显示装置子像素的配置及其与视角的对应关系,可定义适当的原始矩阵、校正矩阵,进而产生输出矩阵。藉此,可降低子像素的亮度,以补偿其邻近子像素漏光造成的影响,改善影像模糊的问题,提升影像品质。因此,显示装置可利用输出矩阵决定各视角影像,以提供优化的三维影像显示。To sum up, according to the configuration of the sub-pixels of the 3D image display device and the corresponding relationship with the viewing angle, an appropriate original matrix and correction matrix can be defined to generate an output matrix. In this way, the brightness of the sub-pixel can be reduced to compensate the influence caused by the light leakage of its adjacent sub-pixels, so as to improve the problem of image blur and improve the image quality. Therefore, the display device can use the output matrix to determine the images of each viewing angle, so as to provide optimized 3D image display.

虽然本发明的实施例揭露如上所述,然并非用以限定本发明,任何熟习相关技艺者,在不脱离本发明的精神和范围内,举凡依本发明申请范围所述的形状、构造、特征及数量当可做些许的变更,因此本发明的专利保护范围须视本说明书所附的申请专利范围所界定者为准。Although the embodiments of the present invention are disclosed as above, they are not intended to limit the present invention. Anyone skilled in the relevant art can use the shapes, structures, and features described in the application scope of the present invention without departing from the spirit and scope of the present invention. and quantity can be slightly changed, so the scope of patent protection of the present invention must be defined by the scope of patent application attached to this specification.

Claims (10)

1.一种三维影像控制方法,其特征在于,适用于一显示装置,该显示装置具有多个子像素,该些子像素以多个行及多个列的方式排列,该显示装置定义有多个视角,每一该视角对应至少部分的该些子像素以提供一视角影像,该显示装置定义有互相平行的多个可视区域,每一该可视区域对应该些视角其中之一,该些可视区域与该些子像素的一列方向具有一夹角,该三维影像控制方法包括:1. A three-dimensional image control method, characterized in that it is suitable for a display device, the display device has a plurality of sub-pixels, the sub-pixels are arranged in a plurality of rows and a plurality of columns, and the display device defines a plurality of sub-pixels Viewing angles, each viewing angle corresponds to at least part of the sub-pixels to provide a viewing angle image, the display device defines a plurality of viewing areas parallel to each other, each viewing area corresponds to one of the viewing angles, and the display device There is an included angle between the visible area and a column direction of the sub-pixels, and the three-dimensional image control method includes: 提供一原始矩阵,该原始矩阵的每一元素对应该些视角影像其中之一的该些子像素其中之一的亮度;以及providing an original matrix, each element of the original matrix corresponds to the brightness of one of the sub-pixels of one of the view images; and 将该原始矩阵与一校正矩阵进行运算,以产生一输出矩阵,该显示装置依据该输出矩阵中的一元素决定该些视角影像其中之一的该些子像素其中之一的亮度。The original matrix is operated with a correction matrix to generate an output matrix, and the display device determines the brightness of one of the sub-pixels of one of the perspective images according to an element in the output matrix. 2.根据权利要求1所述的三维影像控制方法,其特征在于,该原始矩阵关联于每一该可视区域中该些子像素之间的相对位置。2. The 3D image control method according to claim 1, wherein the original matrix is associated with relative positions between the sub-pixels in each of the visible regions. 3.根据权利要求1所述的三维影像控制方法,其特征在于,每一该子像素对应一颜色,该原始矩阵的该些元素对应至相同颜色。3. The 3D image control method according to claim 1, wherein each of the sub-pixels corresponds to a color, and the elements of the original matrix correspond to the same color. 4.根据权利要求1所述的三维影像控制方法,其特征在于,该校正矩阵的每一元素为一权重值,该权重值关联于该原始矩阵的该些元素其中之一于该些可视区域其中之一所占的面积。4. The 3D image control method according to claim 1, wherein each element of the correction matrix is a weight value, and the weight value is associated with one of the elements of the original matrix in the visible The area occupied by one of the regions. 5.根据权利要求4所述的三维影像控制方法,其特征在于,于产生该输出矩阵的步骤中,包括将该校正矩阵的反矩阵乘以该原始矩阵以产生该输出矩阵。5. The 3D image control method according to claim 4, wherein the step of generating the output matrix comprises multiplying the inverse matrix of the correction matrix by the original matrix to generate the output matrix. 6.根据权利要求5所述的三维影像控制方法,其特征在于,于产生该输出矩阵的步骤中,包括:将该原始矩阵的每一该元素分别乘上对应的一系数并相加以产生该输出矩阵的多个元素其中之一,其中该些系数关联于该些权重值。6. The 3D image control method according to claim 5, characterized in that, in the step of generating the output matrix, comprising: multiplying each element of the original matrix by a corresponding coefficient and adding them together to generate the One of the elements of the output matrix, wherein the coefficients are associated with the weight values. 7.根据权利要求5所述的三维影像控制方法,其特征在于,该原始矩阵的该些元素对应于至少部分的同一列的该些子像素的亮度,该校正矩阵的第一行的一第一元素为1,该第一行的一第二元素为一第一权重值,该第一行的一最后元素为该第一权重值,该第一行其余的该些元素为0,该第一权重值小于1且大于0,该校正矩阵除了该第一行外的每一该行为其上一该行的向右循环移位的一结果。7. The 3D image control method according to claim 5, wherein the elements of the original matrix correspond to at least part of the brightness of the sub-pixels in the same column, and a first row of the correction matrix One element is 1, a second element of the first row is a first weight value, a last element of the first row is the first weight value, the remaining elements of the first row are 0, the first row A weight value is less than 1 and greater than 0, and each row of the correction matrix except the first row is a result of a rightward cyclic shift of the row above it. 8.根据权利要求7所述的三维影像控制方法,其特征在于,该夹角介于8度至11度之间或16度至20度之间。8 . The 3D image control method according to claim 7 , wherein the included angle is between 8 degrees and 11 degrees or between 16 degrees and 20 degrees. 9.根据权利要求5所述的三维影像控制方法,其特征在于,该原始矩阵的该些元素对应于至少部分的同一列的该些子像素的亮度,该校正矩阵的第一行的一第一元素为1,该第一行的一第二元素为一第一权重值,该第一行的一第三元素为一第二权重值,该第一行的一最后元素为该第一权重值,该第一行的该最后元素的前一该元素为该第二权重值,该第一行其余的该些元素为0,该第一权重值及该第二权重值小于1且大于0,该第一权重值大于该第二权重值,该校正矩阵除了该第一行外的每一该行为其上一该行的向右循环移位的一结果。9. The 3D image control method according to claim 5, wherein the elements of the original matrix correspond to at least part of the brightness of the sub-pixels in the same column, and a first row of the correction matrix An element is 1, a second element of the first row is a first weight value, a third element of the first row is a second weight value, and a last element of the first row is the first weight value, the element before the last element in the first row is the second weight value, the remaining elements in the first row are 0, the first weight value and the second weight value are less than 1 and greater than 0 , the first weight value is greater than the second weight value, and each row of the correction matrix except the first row is a result of a rightward cyclic shift of the row above it. 10.根据权利要求9所述的三维影像控制方法,其特征在于,该夹角介于5度至8度之间。10. The 3D image control method according to claim 9, wherein the included angle is between 5 degrees and 8 degrees.
CN201510546957.0A 2015-07-03 2015-08-31 Three-dimensional image control method Pending CN105049828A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW104121726 2015-07-03
TW104121726A TWI556623B (en) 2015-07-03 2015-07-03 Controlling method of three-dimensional image

Publications (1)

Publication Number Publication Date
CN105049828A true CN105049828A (en) 2015-11-11

Family

ID=54455978

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510546957.0A Pending CN105049828A (en) 2015-07-03 2015-08-31 Three-dimensional image control method

Country Status (2)

Country Link
CN (1) CN105049828A (en)
TW (1) TWI556623B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020135051A1 (en) * 2018-12-24 2020-07-02 惠科股份有限公司 Image optimization method and device for display panel, and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621706A (en) * 2009-07-21 2010-01-06 四川大学 Method for reducing picture crosstalk of cylinder grafting auto-stereoscopic display
US20120019518A1 (en) * 2010-07-26 2012-01-26 Samsung Electronics Co., Ltd. Rendering system and method based on weighted value of sub-pixel region
CN102469326A (en) * 2010-11-10 2012-05-23 株式会社东芝 Three-dimensional image display apparatus and method
CN104539935A (en) * 2015-01-19 2015-04-22 北京京东方多媒体科技有限公司 Image brightness adjusting method, adjusting device and display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004063838A1 (en) * 2004-12-23 2006-07-06 Seereal Technologies Gmbh Method and apparatus for calculating computer generated video holograms
HU0900478D0 (en) * 2009-07-31 2009-09-28 Holografika Hologrameloeallito Method and apparatus for displaying 3d images
CN102238313A (en) * 2010-04-22 2011-11-09 扬智科技股份有限公司 Method for generating image conversion matrix, image conversion method and device thereof
TWI504933B (en) * 2012-06-13 2015-10-21 Innolux Corp 2d/3d switchable display device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101621706A (en) * 2009-07-21 2010-01-06 四川大学 Method for reducing picture crosstalk of cylinder grafting auto-stereoscopic display
US20120019518A1 (en) * 2010-07-26 2012-01-26 Samsung Electronics Co., Ltd. Rendering system and method based on weighted value of sub-pixel region
CN102469326A (en) * 2010-11-10 2012-05-23 株式会社东芝 Three-dimensional image display apparatus and method
CN104539935A (en) * 2015-01-19 2015-04-22 北京京东方多媒体科技有限公司 Image brightness adjusting method, adjusting device and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020135051A1 (en) * 2018-12-24 2020-07-02 惠科股份有限公司 Image optimization method and device for display panel, and computer readable storage medium

Also Published As

Publication number Publication date
TWI556623B (en) 2016-11-01
TW201703516A (en) 2017-01-16

Similar Documents

Publication Publication Date Title
JP6802066B2 (en) Display drive method and device, sampling area generation method and device
CN104914586B (en) Integrated Imaging Display Device
WO2016145799A1 (en) Display device and display method therefor
CN103824520B (en) Pel array and driving method, display floater and display device
US20120092763A1 (en) Autostereoscopic display apparatus and method
CN104020573B (en) A multi-viewpoint 3D display device based on orthogonal polarization directional backlight
WO2016145869A1 (en) Three-dimensional display method, three-dimensional display device, and display substrate
JP2017536583A (en) Driving method of pixel array
CN104597609A (en) Pixel array, display device and display method
CN105158915B (en) One kind being based on three-in-one LED naked-eye 3D display device and preparation method
WO2013135083A1 (en) 3d display method and display device
CN103327347A (en) Display apparatus and electronic apparatus
WO2017117928A1 (en) Display module, display device, and drive method thereof
CN102413352A (en) Tracking mode free stereo display screen based on RGBW (red, green, blue, white) square sub-pixels
US9674508B2 (en) Display apparatus and a method of displaying a three-dimensional image using the same
CN104795012B (en) Display floater, display device and image element driving method
JP5149438B1 (en) 3D image display apparatus and 3D image display method
CN105049828A (en) Three-dimensional image control method
WO2012096205A1 (en) Display device
WO2017113623A1 (en) Display panel, display device and pixel arranging method
US20160260369A1 (en) Display apparatus and display driving method
CN107274824B (en) Display panel and method for generating random graph block coordinates
CN105629489A (en) 3D display screen and 3D display device
CN104035202B (en) A kind of LED 3D displays device
CN102098525A (en) Polarized three-dimensional electronic large screen display system and manufacturing method thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151111

RJ01 Rejection of invention patent application after publication