CN105048491A - Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching - Google Patents

Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching Download PDF

Info

Publication number
CN105048491A
CN105048491A CN201510369943.6A CN201510369943A CN105048491A CN 105048491 A CN105048491 A CN 105048491A CN 201510369943 A CN201510369943 A CN 201510369943A CN 105048491 A CN105048491 A CN 105048491A
Authority
CN
China
Prior art keywords
wind power
sigma
lambda
capacity
max
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510369943.6A
Other languages
Chinese (zh)
Inventor
戴则梅
张凯锋
张慧玲
杨国强
王颖
高宗和
陈佳星
谢丽荣
丁茂生
韩红卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
State Grid Ningxia Electric Power Co Ltd
Original Assignee
Nari Technology Co Ltd
NARI Nanjing Control System Co Ltd
State Grid Ningxia Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nari Technology Co Ltd, NARI Nanjing Control System Co Ltd, State Grid Ningxia Electric Power Co Ltd filed Critical Nari Technology Co Ltd
Priority to CN201510369943.6A priority Critical patent/CN105048491A/en
Publication of CN105048491A publication Critical patent/CN105048491A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Control Of Eletrric Generators (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了基于机组组合和经济调度的多阶段风电接纳范围计算方法,包括年度规划阶段、月度规划阶段和日前规划阶段,A:在年度规划阶段:采用地区典型负荷曲线数据,基于经济调度优化方法,建立求解该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量的数学模型;B:在月度规划阶段:采用月度负荷预测数据,基于经济调度优化方法,建立求解该地区最大能够接纳的风电电量以及最小必须接入的风电电量的数学模型;C:在日前规划阶段:采用日前负荷预测数据、日前风电预测数据、月度火电机组启停优化结果,基于经济调度优化方法,建立求解该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量的数学模型。The invention discloses a multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch, including annual planning stage, monthly planning stage and day-ahead planning stage, A: In the annual planning stage: using regional typical load curve data, based on economic dispatch optimization method to establish a mathematical model for solving the maximum wind power installed capacity that can be accommodated in the region and the minimum wind power installed capacity that must be connected; The mathematical model of the amount of wind power that can be accepted and the minimum amount of wind power that must be connected; C: In the day-ahead planning stage: use the day-ahead load forecast data, day-ahead wind power forecast data, and monthly thermal power unit start-stop optimization results, based on the economic dispatch optimization method, to establish Solve the mathematical model of the maximum amount of wind power that can be received in the area on the next day and the minimum amount of wind power that must be connected in the next day.

Description

基于机组组合和经济调度的多阶段风电接纳范围计算方法Calculation method of multi-stage wind power acceptance range based on unit combination and economic dispatch

技术领域technical field

本发明涉及一种基于机组组合和经济调度的多阶段风电接纳范围计算方法。The invention relates to a multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch.

背景技术Background technique

随着能源与环境问题的日益严峻,环境友好型的可再生资源逐渐受到关注。风能以其运行成本低、污染少、储量丰富、开发潜力巨大等天然优势,近年来得到了大力发展,由于自然界中风固有的随机性和波动性,使得并网的风电具有以下不足:With the increasingly severe energy and environmental problems, environmentally friendly renewable resources have gradually attracted attention. With its natural advantages such as low operating cost, less pollution, abundant reserves, and huge development potential, wind energy has been vigorously developed in recent years. Due to the inherent randomness and volatility of wind in nature, grid-connected wind power has the following disadvantages:

1)强烈的不确定性:即风电出力受风速影响难以精确预测;1) Strong uncertainty: that is, wind power output is difficult to predict accurately due to wind speed;

2)反调峰特性:即风电机组出力与系统负荷具有负相关性,尤其是负荷水平较低而风电出力较高时会产生极大问题;2) Anti-peaking characteristics: that is, the wind turbine output has a negative correlation with the system load, especially when the load level is low and the wind power output is high, it will cause great problems;

3)风电机组的输出功率取决于风速的大小,目前风电场风速预测水平非常有限,其预测误差一般在25%~40%左右,因此大规模风电并网对电力系统的稳定运行带来了巨大的挑战。3) The output power of wind turbines depends on the wind speed. At present, the wind speed prediction level of wind farms is very limited, and its prediction error is generally about 25% to 40%. challenge.

现有能源结构的调节能力不足,为了平衡电网的波动性,系统的经济性变差,甚至在风电大发时,系统不得不弃风,随着风电在电网中渗透率的持续提高,电网弃风问题日益严重,因此,研究电网的风电接纳能力对于提高电网的安全性和经济性十分重要。The adjustment ability of the existing energy structure is insufficient. In order to balance the fluctuation of the power grid, the economy of the system becomes worse. The wind problem is becoming more and more serious. Therefore, it is very important to study the wind power acceptance capacity of the grid to improve the security and economy of the grid.

另外,关于电网接纳风电能力尚无明确的定义及标准的计算方法,对于不同领域,评估风电接纳能力所考虑的因素不同,决定了评估方法的不同。传统评估电网接纳能力通常是从风电规划角度,考虑运行方式、扰动方式等因素,用于决策最大风电装机容量,这类评估方法不适用于短期调度运行领域;还有一些研究方法包括基于调峰的分析等,通过建立代数模型对电网风电接纳能力进行分析,但难以保证评估结果的有效性和实用性。In addition, there is no clear definition and standard calculation method for the wind power acceptance capacity of the grid. For different fields, the factors considered in evaluating the wind power acceptance capacity are different, which determines the different evaluation methods. The traditional evaluation of grid capacity is usually from the perspective of wind power planning, considering factors such as operation mode and disturbance mode, and is used to determine the maximum installed capacity of wind power. This type of evaluation method is not suitable for short-term dispatching and operation; Through the establishment of an algebraic model to analyze the wind power acceptance capacity of the power grid, it is difficult to guarantee the validity and practicability of the evaluation results.

发明内容Contents of the invention

针对上述问题,本发明提供一种基于机组组合和经济调度的多阶段风电接纳范围计算方法,用于规划-月度-日前多阶段的风电接纳范围计算,该范围包括最大值和最小值,对分析电网的风电接纳能力具有重要意义,对电网的规划建设和经济调度具有参考价值。In view of the above problems, the present invention provides a multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch, which is used for planning-monthly-day-ahead multi-stage wind power acceptance range calculation. The range includes maximum and minimum values, which are useful for analysis The wind power acceptance capacity of the power grid is of great significance and has reference value for the planning, construction and economic dispatch of the power grid.

术语定义:Definition of Terms:

(1)最大能够接纳的风电装机容量是指通过火电机组启停、机组出力等,该电网能够接纳的最大风电装机容量;(1) The maximum installed wind power capacity that can be accepted refers to the maximum installed wind power capacity that can be accommodated by the power grid through the start and stop of thermal power units, unit output, etc.;

(2)最小必须接入的风电装机容量是指当该地区火电机组装机不能满足负荷需求时,为了保证供需平衡,最小必须接入的风电装机容量;(2) The minimum installed capacity of wind power that must be connected refers to the minimum installed capacity of wind power that must be connected in order to ensure the balance between supply and demand when the thermal power assembly machines in the area cannot meet the load demand;

(3)月度最大能够接纳的风电电量是指通过火电机组启停、机组出力等,该电网在该月度能够接纳的最大风电电量;(3) The monthly maximum wind power capacity that can be accepted refers to the maximum wind power capacity that the power grid can accept in that month through the start and stop of thermal power units, unit output, etc.;

(4)月度最小必须接入的风电电量是指当该地区火电机组出力不能满足负荷需求时,为了保证供需平衡,该月度最小必须接入的风电电量;(4) The monthly minimum amount of wind power that must be connected refers to the monthly minimum amount of wind power that must be connected in order to ensure the balance between supply and demand when the output of thermal power units in the area cannot meet the load demand;

(5)次日最大能够接纳的风电电量是指通过火电机组启停、机组出力等,该电网次日能够接纳的最大风电电量;(5) The maximum amount of wind power that can be received on the next day refers to the maximum amount of wind power that can be received by the power grid on the next day through the start and stop of the thermal power unit, the output of the unit, etc.;

(6)次日最小必须接入的风电电量是指当该地区次日火电机组出力不能满足负荷需求时,为了保证供需平衡,次日最小必须接入的风电电量。(6) The minimum amount of wind power that must be connected in the next day refers to the minimum amount of wind power that must be connected in the next day in order to ensure the balance between supply and demand when the output of thermal power units in the area cannot meet the load demand the next day.

为实现上述技术目的,达到上述技术效果,本发明通过以下技术方案实现:In order to achieve the above-mentioned technical purpose and achieve the above-mentioned technical effect, the present invention is realized through the following technical solutions:

基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,包括年度规划阶段、月度规划阶段和日前规划阶段,分别为:The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch is characterized in that it includes annual planning stage, monthly planning stage and day-ahead planning stage, which are respectively:

A:在年度规划阶段:A: During the annual planning phase:

A01:采用地区典型负荷曲线数据,基于经济调度优化方法,建立求解该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量的数学模型;A01: Using the typical load curve data in the region, based on the economic dispatch optimization method, establish a mathematical model to solve the maximum wind power installed capacity that can be accepted in the region and the minimum wind power installed capacity that must be connected;

A02:求解模型,分别得到该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量;A02: Solve the model to obtain the maximum installed capacity of wind power that can be accepted in the region and the minimum installed capacity of wind power that must be connected;

B:在月度规划阶段:B: During the monthly planning stage:

B01:采用月度负荷预测数据,基于经济调度优化方法,建立求解该地区月度最大能够接纳的风电电量以及月度最小必须接入的风电电量的数学模型;B01: Using monthly load forecast data and based on the economic scheduling optimization method, establish a mathematical model to solve the monthly maximum wind power capacity that can be accepted in the region and the monthly minimum wind power capacity that must be connected;

B02:求解模型,分别得到该地区月度最大能够接纳的风电电量以及月度最小必须接入的风电电量;B02: Solve the model to obtain the maximum monthly wind power capacity that can be accepted in the region and the monthly minimum wind power capacity that must be connected;

C:在日前规划阶段:C: In the day-ahead planning phase:

C01:采用日前负荷预测数据、日前风电预测数据、月度火电机组启停优化结果,基于经济调度优化方法,建立求解该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量的数学模型;C01: Using the day-ahead load forecast data, day-ahead wind power forecast data, and monthly thermal power unit start-stop optimization results, based on the economic dispatch optimization method, establish a formula for solving the maximum wind power capacity that can be accepted in the next day and the minimum wind power power capacity that must be connected in the next day. mathematical model;

C02:求解模型,分别得到该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量。C02: Solve the model, and obtain the maximum wind power capacity that can be received in the area on the next day and the minimum wind power capacity that must be connected in the next day.

优选,步骤A01中,最大能够接纳的风电装机容量的模型为:Preferably, in step A01, the model of the maximum admissible wind power installed capacity is:

目标函数:Objective function:

maxPmaxP WW ,, II nno sthe s tt aa ll ll uu pp -- -- -- (( 11 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt ,, (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GiGi ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·&Center Dot; (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PP WW ii ,, tt ≤≤ PP WW ,, II nno sthe s tt aa ll ll uu pp -- -- -- (( 88 ))

其中:式(1)为可接纳风电装机容量上限,NT为研究周期包含的时段数,NG为系统的火电机组台数,NW为系统的风电机组台数,PWi,t为时段t可接纳风电出力值,为全时段电网可接纳风电装机容量上限,PGi,t为火电机组i在时刻t的出力,PWj,t为风电场j在时刻t的出力,PL,t为系统在时刻t的负荷需求,Pline,t为在时刻t的联络线计划,为火电机组i的最小技术出力,为火电机组i的最大技术出力,μi,t为常规机组i在时刻t的启停机方式,μi,t=1开机,μi,t=0停机,为火电机组i的上升爬坡率限制,为火电机组i的下降爬坡率限制,λ1、λ2为系统的负荷备用系数,为机组i的最小开机时间,为机组i的最小停机时间,为机组i在时段t-1的连续开机时间,为机组i在时段t-1的连续停机时间,Pflow,l,t为传输线l在时刻t的直流潮流,为传输线l的直流潮流限制。Among them: Equation (1) is the upper limit of acceptable wind power installed capacity, NT is the number of periods included in the research period, NG is the number of thermal power units in the system, NW is the number of wind power units in the system, P Wi,t is the acceptable wind power output in time period t value, is the upper limit of the installed capacity of wind power that can be accepted by the grid at all times, P Gi,t is the output of thermal power unit i at time t, P Wj,t is the output of wind farm j at time t, P L,t is the load of the system at time t Demand, P line,t is the connection line plan at time t, Contribute to the minimum technology of thermal power unit i, is the maximum technical output of thermal power unit i, μ i,t is the start-up and shutdown mode of conventional unit i at time t, μ i,t = 1 to start, μ i,t = 0 to stop, is the ramp rate limit of the thermal power unit i, is the limit of ramp rate of thermal power unit i, λ 1 and λ 2 are the load reserve coefficients of the system, is the minimum start-up time of unit i, is the minimum downtime of unit i, is the continuous start-up time of unit i in period t-1, is the continuous shutdown time of unit i in period t-1, P flow,l,t is the DC flow of transmission line l at time t, is the DC power flow limit of the transmission line l.

最小必须接入的风电装机容量的模型为:The model of the minimum wind power installed capacity that must be connected is:

目标函数:Objective function:

minPminP WW ,, II nno sthe s tt aa ll ll dd nno -- -- -- (( 99 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·· (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PP WW ii ,, tt ≤≤ PP WW ,, II nno sthe s tt aa ll ll dd nno -- -- -- (( 1010 ))

其中,式(9)为可接入风电装机容量下限,为风电装机容量下限。Among them, formula (9) is the lower limit of the installed capacity of wind power that can be connected, is the lower limit of wind power installed capacity.

本发明的有益效果是:The beneficial effects of the present invention are:

本方法以机组组合和经济调度为基础,在规划-月度-日前多阶段分别建立了以风电装机容量、风电电量最大为目标的优化模型,采用混合整数规划算法求解,有助于提高电网调度的精细化水平。可以在风电规划建设时提供参考,可以提前防范大规模风电并网对电网安全运行带来的风险,可以为调度人员进行日前发电计划制定提供指导,提高了大规模风电介入后电网的安全性和经济性。Based on unit combination and economic dispatch, this method establishes an optimization model aiming at the maximum wind power installed capacity and wind power output in the stages of planning-monthly-day-ahead, and adopts the mixed integer programming algorithm to solve the problem, which is helpful to improve the efficiency of power grid dispatching. level of refinement. It can provide reference in the planning and construction of wind power, prevent the risks brought by large-scale wind power grid-connection to the safe operation of the power grid in advance, and provide guidance for dispatchers to make day-ahead power generation plans, improving the safety and security of the power grid after large-scale wind power intervention. economy.

具体实施方式Detailed ways

下面结合具体的实施例对本发明技术方案作进一步的详细描述,以使本领域的技术人员可以更好的理解本发明并能予以实施,但所举实施例不作为对本发明的限定。The technical solutions of the present invention will be further described in detail below in conjunction with specific examples, so that those skilled in the art can better understand the present invention and implement it, but the examples given are not intended to limit the present invention.

基于机组组合和经济调度的多阶段风电接纳范围计算方法,包括年度规划阶段、月度规划阶段和日前规划阶段,本发明的电网风电接纳能力优化评估方法提出研究风电接纳区间,主要基于机组组合和经济调度技术,以风电出力之和最大或最小为优化目标,建立优化求解模型,可通过商业软件(ILOG/CPLEX)对模型进行求解,获得电网的风电接纳能力结果。A multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch, including annual planning stage, monthly planning stage and day-ahead planning stage. The wind power acceptance capacity optimization evaluation method of the power grid of the present invention proposes to study the wind power acceptance interval, mainly based on unit combination and economic Scheduling technology takes the maximum or minimum sum of wind power output as the optimization goal, establishes an optimization solution model, and can solve the model through commercial software (ILOG/CPLEX) to obtain the wind power acceptance capacity of the grid.

下面对各个规划阶段进行详细说明:The individual planning stages are described in detail below:

A:在年度规划阶段:A: During the annual planning phase:

A01:采用地区典型负荷曲线数据,基于经济调度优化方法,建立求解该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量的数学模型;A01: Using the typical load curve data in the region, based on the economic dispatch optimization method, establish a mathematical model to solve the maximum wind power installed capacity that can be accepted in the region and the minimum wind power installed capacity that must be connected;

A02:求解模型,分别得到该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量。A02: Solve the model to obtain the maximum installed capacity of wind power that can be accepted in the region and the minimum installed capacity of wind power that must be connected.

年度最大能够接纳风电装机容量模型:该模型以火电机组的机组启停、火电机组出力功率、风电场的出力功率为决策变量;以最大化风电装机容量为优化目标;约束条件包括有功功率平衡约束、火电机组出力上下限约束、火电机组爬坡约束、备用需求约束、火电机组最小启停时间约束、线路潮流约束、风电功率范围约束。优选,优化模型如下:Annual maximum acceptable wind power installed capacity model: This model takes the start and stop of thermal power units, the output power of thermal power units, and the output power of wind farms as decision variables; the optimization goal is to maximize the installed capacity of wind power; constraints include active power balance constraints , thermal power unit output upper and lower limit constraints, thermal power unit climbing constraints, backup demand constraints, thermal power unit minimum start-stop time constraints, line flow constraints, wind power range constraints. Preferably, the optimization model is as follows:

目标函数:Objective function:

maxPmaxP WW ,, II nno sthe s tt aa ll ll uu pp -- -- -- (( 11 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GiGi ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·· (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PP WW ii ,, tt ≤≤ PP WW ,, II nno sthe s tt aa ll ll uu pp -- -- -- (( 88 ))

其中:式(1)为可接纳风电装机容量上限,NT为研究周期包含的时段数,NG为系统的火电机组台数,NW为系统的风电机组台数,PWi,t为时段t可接纳风电出力值,为全时段电网可接纳风电装机容量上限,PGi,t为火电机组i在时刻t的出力,PWj,t为风电场j在时刻t的出力,PL,t为系统在时刻t的负荷需求,Pline,t为在时刻t的联络线计划,为火电机组i的最小技术出力,为火电机组i的最大技术出力,μi,t为常规机组i在时刻t的启停机方式,μi,t=1开机,μi,t=0停机,为火电机组i的上升爬坡率限制,为火电机组i的下降爬坡率限制,λ1、λ2为系统的负荷备用系数,为机组i的最小开机时间,为机组i的最小停机时间,为机组i在时段t-1的连续开机时间,为机组i在时段t-1的连续停机时间,Pflow,l,t为传输线l在时刻t的直流潮流,为传输线l的直流潮流限制。Among them: Equation (1) is the upper limit of acceptable wind power installed capacity, NT is the number of periods included in the research period, NG is the number of thermal power units in the system, NW is the number of wind power units in the system, P Wi,t is the acceptable wind power output in time period t value, is the upper limit of the installed capacity of wind power that can be accepted by the grid at all times, P Gi,t is the output of thermal power unit i at time t, P Wj,t is the output of wind farm j at time t, P L,t is the load of the system at time t Demand, P line,t is the connection line plan at time t, Contribute to the minimum technology of thermal power unit i, is the maximum technical output of thermal power unit i, μ i,t is the start-up and shutdown mode of conventional unit i at time t, μ i,t = 1 to start, μ i,t = 0 to stop, is the ramp rate limit of the thermal power unit i, is the limit of ramp rate of thermal power unit i, λ 1 and λ 2 are the load reserve coefficients of the system, is the minimum start-up time of unit i, is the minimum downtime of unit i, is the continuous start-up time of unit i in period t-1, is the continuous shutdown time of unit i in period t-1, P flow,l,t is the DC flow of transmission line l at time t, is the DC power flow limit of the transmission line l.

需说明的是:上述优化模型中,待优化决策变量为机组启停状态和出力大小,其中既有连续型变量又有离散型变量,约束条件中既有功率平衡约束、机组爬坡约束等线性约束条件,又包含常规机组最小启停时间约束等非线性约束条件,同时还要考虑常规机组最小启停时间和爬坡约束等在不同时间段的耦合性,因此优化模型属于多变量、非线性混合整数规划问题。由于ILOG/CPLEX只能求解线性的混合整数规划模型,因此若调用ILOG/CPLEX求解本文所建立的优化模型之前,必须将模型中的非线性因素进行线性化,结果如下:It should be noted that in the above optimization model, the decision-making variables to be optimized are the start-stop status and output size of the unit, among which there are both continuous variables and discrete variables, and the constraints include power balance constraints, unit ramp constraints, etc. Constraint conditions, including non-linear constraints such as the minimum start-stop time constraints of conventional units, and the coupling between the minimum start-stop time and ramp constraints of conventional units in different time periods, so the optimization model is a multivariate, nonlinear Mixed integer programming problems. Since ILOG/CPLEX can only solve linear mixed integer programming models, before calling ILOG/CPLEX to solve the optimization model established in this paper, the nonlinear factors in the model must be linearized, and the results are as follows:

μμ ii ,, tt == 11 ,, 11 ≤≤ tt ≤≤ Uu ii ΣΣ ττ == tt tt ++ TT ii oo nno -- 11 μμ ii ,, ττ ≥&Greater Equal; TT ii oo nno (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) Uu ii ≤≤ tt ≤≤ NN TT -- TT ii oo nno ++ 11 ΣΣ ττ == tt NN TT [[ μμ ii ,, ττ -- (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ]] ≥&Greater Equal; 00 NN TT -- TT ii oo nno ++ 22 ≤≤ tt ≤≤ NN TT -- -- -- (( II ))

μμ ii ,, tt == 00 ,, 11 ≤≤ tt ≤≤ DD. ii ΣΣ ττ == tt tt ++ TT ii oo ff ff -- 11 (( 11 -- μμ ii ,, ττ )) ≥&Greater Equal; TT ii offoff (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) DD. ii ≤≤ tt ≤≤ NN TT -- TT ii oo ff ff ++ 11 ΣΣ ττ == tt NN TT [[ 11 -- μμ ii ,, ττ -- (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ]] ≥&Greater Equal; 00 NN TT -- TT ii oo ff ff ++ 22 ≤≤ tt ≤≤ NN TT -- -- -- (( II II ))

式(Ⅰ)为最小开机运行时间约束的线性化,式(Ⅱ)为最小停机时间约束的线性化。Equation (I) is the linearization of the minimum uptime constraint, and Equation (II) is the linearization of the minimum downtime constraint.

可采用ILOG/CPLEX求解上述线性化模型,得到最大接纳风电装机容量的最优解为 ILOG/CPLEX can be used to solve the above linearized model to obtain the maximum installed capacity of wind power The optimal solution for

最小必须接入风电装机容量模型:该模型以火电机组的机组启停、火电机组出力功率、风电场的出力功率为决策变量;以最小化风电装机容量为优化目标,优选,优化模型如下:The minimum wind power installed capacity model that must be connected: This model takes the start and stop of thermal power units, the output power of thermal power units, and the output power of wind farms as decision variables; the optimization goal is to minimize the installed capacity of wind power. The optimization model is as follows:

目标函数:Objective function:

minPminP WW ,, II nno sthe s tt aa ll ll dd nno -- -- -- (( 99 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GiGi ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·&Center Dot; (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PP WW ii ,, tt ≤≤ PP WW ,, II nno sthe s tt aa ll ll dd nno -- -- -- (( 1010 ))

其中,式(9)为可接入风电装机容量下限,为风电装机容量下限。Among them, formula (9) is the lower limit of the installed capacity of wind power that can be connected, is the lower limit of wind power installed capacity.

可采用ILOG/CPLEX求解上述线性化模型,得到最小接入风电装机容量的最优解为 ILOG/CPLEX can be used to solve the above linearized model to obtain the minimum installed capacity of connected wind power The optimal solution for

B:在月度规划阶段:B: During the monthly planning stage:

B01:采用月度负荷预测数据,基于经济调度优化方法,建立求解该地区月度最大能够接纳的风电电量以及月度最小必须接入的风电电量的数学模型;B01: Using monthly load forecast data and based on the economic dispatch optimization method, establish a mathematical model to solve the monthly maximum wind power capacity that can be accepted in the region and the monthly minimum wind power power capacity that must be connected;

B02:求解模型,分别得到该地区月度最大能够接纳的风电电量以及月度最小必须接入的风电电量。B02: Solve the model to obtain the maximum monthly wind power capacity that can be received in the region and the monthly minimum wind power capacity that must be connected.

月度最大能够接纳风电电量模型:该模型以火电机组的机组启停、火电机组出力功率、风电场的出力功率为决策变量,以在该月度能够接纳的最大风电电量为优化目标;约束条件包括有功功率平衡约束,火电机组出力上下限约束,火电机组爬坡约束,备用需求约束,火电机组启停时间约束,线路潮流约束,风电装机容量约束。优选,优化模型如下:Monthly maximum acceptable wind power model: This model takes the start and stop of thermal power units, the output power of thermal power units, and the output power of wind farms as decision variables, and takes the maximum wind power capacity that can be accepted in this month as the optimization goal; the constraints include active power Power balance constraints, thermal power unit output upper and lower limit constraints, thermal power unit climbing constraints, backup demand constraints, thermal power unit start-stop time constraints, line flow constraints, wind power installed capacity constraints. Preferably, the optimization model is as follows:

目标函数:Objective function:

maxPmaxP WW mm ,, SS uu mm uu pp == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1111 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·&Center Dot; (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PP WW ii ,, tt ≤≤ PP ‾‾ WW ii ,, ii nno sthe s tt aa ll ll -- -- -- (( 1212 ))

其中,式(11)为月度风电接纳上限,为月度风电接纳容量之和上限,为已知的电网风电场i的装机容量;NT为研究周期包含的时段数,一般而言,在月度规划阶段,每4h取一时段,一天6时段,并乘以当月天数即是NT的数值。Among them, formula (11) is the upper limit of monthly wind power acceptance, is the upper limit of the sum of the monthly wind power receiving capacity, is the known installed capacity of grid wind farm i; NT is the number of periods included in the research cycle. Generally speaking, in the monthly planning stage, a period is taken every 4 hours, 6 periods a day, and multiplied by the number of days in the current month is the value of NT .

可采用ILOG/CPLEX求解上述线性化模型,得到月度风电最大接纳的最优解为 ILOG/CPLEX can be used to solve the above linearized model to obtain the maximum acceptance of monthly wind power The optimal solution for

月度最小必须接入风电电量模型:该模型以火电机组的机组启停、火电机组出力功率、风电场的出力功率为决策变量;以该月度最小必须接纳的风电电量为优化目标,优选,优化模型如下:Monthly minimum must-connect wind power model: This model takes the start-up and stop of thermal power units, the output power of thermal power units, and the output power of wind farms as decision variables; takes the monthly minimum wind power that must be accepted as the optimization goal, optimizes, and optimizes the model as follows:

目标函数:Objective function:

minPminP WW mm ,, SS uu mm dd nno == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1313 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·&Center Dot; (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PP WW ii ,, tt ≤≤ PP ‾‾ WW ii ,, ii nno sthe s tt aa ll ll (( 1212 )) ..

式(13)为月度风电接入下限,为月度风电接纳容量之和下限。Equation (13) is the lower limit of monthly wind power access, It is the lower limit of the sum of monthly wind power receiving capacity.

可采用ILOG/CPLEX求解上述线性化模型,得到月度风电最小必须接纳电量的最优解为 ILOG/CPLEX can be used to solve the above linearized model, and the minimum monthly wind power must be accepted The optimal solution for

C:在日前规划阶段:C: In the day-ahead planning phase:

C01:采用日前负荷预测数据、日前风电预测数据、月度火电机组启停优化结果,基于经济调度优化方法,建立求解该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量的数学模型;C01: Using the day-ahead load forecast data, day-ahead wind power forecast data, and monthly thermal power unit start-stop optimization results, based on the economic dispatch optimization method, establish a formula for solving the maximum wind power capacity that can be accepted in the next day and the minimum wind power power capacity that must be connected in the next day. mathematical model;

C02:求解模型,分别得到该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量。C02: Solve the model, and obtain the maximum wind power capacity that can be received in the area on the next day and the minimum wind power capacity that must be connected in the next day.

次日最大能够接纳风电电量模型:该模型以火电机组的机组启停、火电机组出力功率、风电场的出力功率为决策变量,以次日能够接纳的最大风电电量为优化目标;约束条件包括有功功率平衡约束、火电机组出力上下限约束、火电机组爬坡约束、备用需求约束、火电机组最小启停时间约束、线路潮流约束、风电日前预测出力约束。优选,优化模型如下:The maximum acceptable wind power capacity model for the next day: This model takes the start and stop of the thermal power unit, the output power of the thermal power unit, and the output power of the wind farm as the decision variables, and takes the maximum wind power capacity that can be accepted the next day as the optimization goal; the constraints include active power Power balance constraints, thermal power unit output upper and lower limit constraints, thermal power unit climbing constraints, backup demand constraints, thermal power unit minimum start-stop time constraints, line flow constraints, and wind power day-ahead forecast output constraints. Preferably, the optimization model is as follows:

目标函数:Objective function:

maxPmaxP WW dd ,, SS uu mm uu pp == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1414 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·· (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PWi,t≤PWi,forecast(15)P Wi,t ≤P Wi,forecast (15)

其中,式(14)为次日风电接纳上限,为次日风电接纳容量之和上限,PWi,forecast为风电场i预测出力;NT为研究周期包含的时段数,一般而言,在日前规划阶段,每15min取一时段,一天共96时段,即NT的数值为96。Among them, formula (14) is the upper limit of wind power acceptance for the next day, is the upper limit of the sum of wind power receiving capacity for the next day, P Wi,forecast is the predicted output of wind farm i; NT is the number of time periods included in the research cycle, generally speaking, in the day-ahead planning stage, a time period is taken every 15 minutes, a total of 96 time periods a day, That is, the value of NT is 96.

可采用ILOG/CPLEX求解上述线性化模型,得到次日风电最大接纳的最优解为 ILOG/CPLEX can be used to solve the above linearized model to obtain the maximum wind power acceptance for the next day The optimal solution for

最小必须接入风电电量模型:该模型以火电机组的机组启停、火电机组出力功率、风电场的出力功率为决策变量;以次日最小必须接纳的风电电量为优化目标,优选,优化模型如下:The minimum wind power quantity that must be connected to the model: the model takes the start and stop of the thermal power unit, the output power of the thermal power unit, and the output power of the wind farm as the decision variables; the minimum wind power that must be accepted in the next day is the optimization goal, and the optimization model is as follows :

目标函数:Objective function:

minPminP WW dd ,, SS uu mm dd nno == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1616 ))

约束条件:Restrictions:

ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 ))

PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 ))

PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 ))

ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 ))

(( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·· (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·&Center Dot; (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... NN TT )) -- -- -- (( 66 ))

PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww .. ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 ))

PWi,t≤PWi,forecast(15)P Wi,t ≤P Wi,forecast (15)

其中,式(16)为次日风电接纳下限,为次日风电接纳容量之和下限。Among them, formula (16) is the lower limit of wind power acceptance for the next day, It is the lower limit of the sum of wind power receiving capacity for the next day.

可采用ILOG/CPLEX求解上述线性化模型,得到次日风电最小接入的最优解为 ILOG/CPLEX can be used to solve the above linearized model to obtain the minimum wind power access for the next day The optimal solution for

本发明能够在规划-月度-日前多阶段电网运行下,动态分析电网的风电接纳能力,并且分析电网中各种因素对风电接纳能力的影响。以改变单一因素为原则,分别分析负荷、火电机组最小出力、火电机组最大出力、火电机组最小启停时间、火电机组爬坡约束、电网线路传输能力对电网风电接纳能力上下限的影响,最后得出的结论是:适当增加电网负荷、减小火电机组最小技术出力和最小启停时间、增大火电机组最大技术出力和爬坡约束限制、改善电网线路传输能力等,有利于电网接纳更多的风电。The invention can dynamically analyze the wind power acceptance capacity of the power grid under the planning-monthly-day-ahead multi-stage power grid operation, and analyze the influence of various factors in the power grid on the wind power acceptance capacity. Based on the principle of changing a single factor, the effects of load, minimum output of thermal power units, maximum output of thermal power units, minimum start-stop time of thermal power units, climbing constraints of thermal power units, and transmission capacity of power grid lines on the upper and lower limits of wind power acceptance capacity of the power grid are analyzed respectively. The conclusions drawn are: appropriately increasing the grid load, reducing the minimum technical output of thermal power units and the minimum start-stop time, increasing the maximum technical output of thermal power units and the limit of climbing constraints, improving the transmission capacity of power grid lines, etc., are conducive to the grid to accept more wind power.

本发明在实际电网数据下开展,以机组组合和经济调度为基础,充分考虑影响电网接纳风电的各种因素,建立了以风电出力最大为目标的优化模型,调用商业软件(ILOG/CPLEX)中的混合整数规划算法求解,优化评估规划-月度-日前多时间段的风电接纳能力,有助于在电网规划建设时为风电接入提供参考,提前防范大规模风电并网对电网安全运行带来的风险,为调度人员进行发电计划制定提供指导,改善了大规模风电介入后电网的安全性和经济性。The present invention is carried out under the actual power grid data, based on unit combination and economic scheduling, fully considers various factors that affect the acceptance of wind power by the grid, establishes an optimization model with the goal of maximizing wind power output, and calls commercial software (ILOG/CPLEX) The mixed integer programming algorithm solves the problem, optimizes and evaluates the wind power acceptance capacity of planning-monthly-ahead of the multi-time period, which helps to provide reference for wind power connection during grid planning and construction, and prevents large-scale wind power grid-connected from bringing harm to the safe operation of the grid in advance. It provides guidance for dispatchers to formulate power generation plans, and improves the security and economy of the power grid after large-scale wind power intervention.

以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或者等效流程变换,或者直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above are only preferred embodiments of the present invention, and are not intended to limit the patent scope of the present invention. All equivalent structures or equivalent process transformations made using the content of the description of the present invention, or directly or indirectly used in other related technical fields, are the same as The theory is included in the patent protection scope of the present invention.

Claims (8)

1.基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,包括年度规划阶段、月度规划阶段和日前规划阶段,分别为:1. A multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch, characterized in that it includes the annual planning stage, monthly planning stage and day-ahead planning stage, respectively: A:在年度规划阶段:A: During the annual planning phase: A01:采用地区典型负荷曲线数据,基于经济调度优化方法,建立求解该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量的数学模型;A01: Using the typical load curve data in the region, based on the economic dispatch optimization method, establish a mathematical model to solve the maximum wind power installed capacity that can be accepted in the region and the minimum wind power installed capacity that must be connected; A02:求解模型,分别得到该地区最大能够接纳的风电装机容量以及最小必须接入的风电装机容量;A02: Solve the model to obtain the maximum installed capacity of wind power that can be accommodated in the region and the minimum installed capacity of wind power that must be connected; B:在月度规划阶段:B: During the monthly planning stage: B01:采用月度负荷预测数据,基于经济调度优化方法,建立求解该地区月度最大能够接纳的风电电量以及月度最小必须接入的风电电量的数学模型;B01: Using monthly load forecast data and based on the economic scheduling optimization method, establish a mathematical model to solve the monthly maximum wind power capacity that can be accepted in the region and the monthly minimum wind power capacity that must be connected; B02:求解模型,分别得到该地区月度最大能够接纳的风电电量以及月度最小必须接入的风电电量;B02: Solve the model to obtain the maximum monthly wind power capacity that can be accepted in the region and the monthly minimum wind power capacity that must be connected; C:在日前规划阶段:C: In the day-ahead planning phase: C01:采用日前负荷预测数据、日前风电预测数据、月度火电机组启停优化结果,基于经济调度优化方法,建立求解该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量的数学模型;C01: Using the day-ahead load forecast data, day-ahead wind power forecast data, and monthly thermal power unit start-stop optimization results, based on the economic dispatch optimization method, establish a formula for solving the maximum wind power capacity that can be accepted in the next day and the minimum wind power power capacity that must be connected in the next day. mathematical model; C02:求解模型,分别得到该地区次日最大能够接纳的风电电量以及次日最小必须接入的风电电量。C02: Solve the model, and obtain the maximum wind power capacity that can be accepted in the next day and the minimum wind power capacity that must be connected in the next day. 2.根据权利要求1所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,步骤A01中,最大能够接纳的风电装机容量的模型为:2. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to claim 1, characterized in that, in step A01, the model of the maximum wind power installed capacity that can be accepted is: 目标函数:Objective function: maxPmaxP WW ,, II nno sthe s tt aa ll ll uu pp -- -- -- (( 11 )) 约束条件:Restrictions: ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 )) PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 )) PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 )) ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP CC ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 )) (( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·· (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 66 )) PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 )) PP WW ii ,, tt ≤≤ PP WW ,, II nno sthe s tt aa ll ll uu pp -- -- -- (( 88 )) 其中:式(1)为可接纳风电装机容量上限,NT为研究周期包含的时段数,NG为系统的火电机组台数,NW为系统的风电机组台数,PWi,t为时段t可接纳风电出力值,为全时段电网可接纳风电装机容量上限,PGi,t为火电机组i在时刻t的出力,PWj,t为风电场j在时刻t的出力,PL,t为系统在时刻t的负荷需求,Pline,t为在时刻t的联络线计划,为火电机组i的最小技术出力,为火电机组i的最大技术出力,μi,t为常规机组i在时刻t的启停机方式,μi,t=1开机,μi,t=0停机,为火电机组i的上升爬坡率限制,为火电机组i的下降爬坡率限制,λ1、λ2为系统的负荷备用系数,为机组i的最小开机时间,为机组i的最小停机时间,为机组i在时段t-1的连续开机时间,为机组i在时段t-1的连续停机时间,Pflow,l,t为传输线l在时刻t的直流潮流,为传输线l的直流潮流限制。Among them: Equation (1) is the upper limit of acceptable wind power installed capacity, NT is the number of periods included in the research period, NG is the number of thermal power units in the system, NW is the number of wind power units in the system, P Wi,t is the acceptable wind power output in time period t value, is the upper limit of the installed capacity of wind power that can be accepted by the grid at all times, P Gi,t is the output of thermal power unit i at time t, P Wj,t is the output of wind farm j at time t, P L,t is the load of the system at time t Demand, P line,t is the connection line plan at time t, Contribute to the minimum technology of thermal power unit i, is the maximum technical output of thermal power unit i, μ i,t is the start-up and shutdown mode of conventional unit i at time t, μ i,t = 1 to start, μ i,t = 0 to stop, is the ramp rate limit of the thermal power unit i, is the limit of ramp rate of thermal power unit i, λ 1 and λ 2 are the load reserve coefficients of the system, is the minimum start-up time of unit i, is the minimum downtime of unit i, is the continuous start-up time of unit i in period t-1, is the continuous shutdown time of unit i in period t-1, P flow,l,t is the DC flow of transmission line l at time t, is the DC power flow limit of the transmission line l. 3.根据权利要求2所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,步骤A01中,最小必须接入的风电装机容量的模型为:3. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to claim 2, characterized in that, in step A01, the model of the minimum wind power installed capacity that must be connected is: 目标函数:Objective function: minPminP WW ,, II nno sthe s tt aa ll ll dd nno -- -- -- (( 99 )) 约束条件:Restrictions: ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 )) PP GG ii minmin ≤≤ μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 )) PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 )) ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 )) (( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·· (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 66 )) PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 )) PP WW ii ,, tt ≤≤ PP WW ,, II nno sthe s tt aa ll ll dd nno -- -- -- (( 1010 )) 其中,式(9)为可接入风电装机容量下限,为风电装机容量下限。Among them, formula (9) is the lower limit of the installed capacity of wind power that can be connected, is the lower limit of wind power installed capacity. 4.根据权利要求1所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,步骤B01中,月度最大能够接纳的风电电量的模型为:4. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to claim 1, characterized in that, in step B01, the monthly maximum wind power capacity model that can be accepted is: 目标函数:Objective function: maxPmaxP WW mm ,, SS uu mm uu pp == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1111 )) 约束条件:Restrictions: ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 )) PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 )) PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 )) ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 )) (( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 66 )) PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 )) PP WW ii ,, tt ≤≤ PP ‾‾ WW ii ,, ii nno sthe s tt aa ll ll -- -- -- (( 1212 )) 其中,式(11)为月度风电接纳上限,为月度风电接纳容量之和上限,为已知的电网风电场i的装机容量;NT为研究周期包含的时段数。Among them, formula (11) is the upper limit of monthly wind power acceptance, is the upper limit of the sum of the monthly wind power receiving capacity, is the known installed capacity of grid wind farm i; NT is the number of periods included in the research period. 5.根据权利要求4所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,步骤B01中,月度最小必须接入的风电电量的模型为:5. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to claim 4, characterized in that, in step B01, the monthly minimum wind power capacity model that must be connected is: 目标函数:Objective function: minPminP WW mm ,, SS uu mm dd nno == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1313 )) 约束条件:Restrictions: ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 )) PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 )) PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii uu pp (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 )) ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 )) (( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·&Center Dot; (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 66 )) PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 )) PP WW ii ,, tt ≤≤ PP ‾‾ WW ii ,, ii nno sthe s tt aa ll ll -- -- -- (( 1212 )) .. 6.根据权利要求1所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,步骤C01中,次日最大能够接纳的风电电量的模型为:目标函数:6. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to claim 1, characterized in that, in step C01, the model of the maximum wind power capacity that can be accepted the next day is: objective function: maxPmaxP WW dd ,, SS uu mm uu pp == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1414 )) 约束条件:Restrictions: ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 )) PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 )) {{ PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 )) ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 )) (( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 66 )) PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 )) PWi,t≤PWi,forecast(15)P Wi,t ≤P Wi,forecast (15) 其中,式(14)为次日风电接纳上限,为次日风电接纳容量之和上限,PWi,forecast为风电场i预测出力;NT为研究周期包含的时段数。Among them, formula (14) is the upper limit of wind power acceptance for the next day, is the upper limit of the sum of wind power receiving capacity for the next day, P Wi,forecast is the predicted output of wind farm i; NT is the number of time periods included in the research period. 7.根据权利要求6所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,步骤C01中,次日最小必须接入的风电电量的模型为:7. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to claim 6, characterized in that, in step C01, the model of the minimum amount of wind power that must be connected to the next day is: 目标函数:Objective function: minPminP WW dd ,, SS uu mm dd nno == ΣΣ ii == 11 NN WW ΣΣ tt == 11 NN TT PP WW ii ,, tt -- -- -- (( 1616 )) 约束条件:Restrictions: ΣΣ ii == 11 NN GG PP GG ii ,, tt ++ ΣΣ jj == 11 NN WW PP WW jj ,, tt == PP LL ,, tt ++ PP ll ii nno ee ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 22 )) PP GG ii minmin μμ ii ,, tt ≤≤ PP GG ii ,, tt ≤≤ PP GG ii maxmax μμ ii ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 33 )) PP GG ii ,, tt -- PP GG ii ,, tt -- 11 ≤≤ ΔPΔP GG ii uu pp PP GG ii ,, tt -- 11 -- PP GG ii ,, tt ≤≤ ΔPΔP GG ii dd nno (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 44 )) ΣΣ ii == 11 NN GG (( PP GG ii ,, tt -- PP GG ii minmin )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt ΣΣ ii == 11 NN GG (( PP GG ii maxmax -- PP GG ii ,, tt )) μμ ii ,, tt ≥&Greater Equal; λλ 11 PP LL ,, tt ++ λλ 22 ΣΣ jj == 11 NN WW PP WW jj ,, tt (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 55 )) (( Xx ii ,, tt -- 11 oo nno -- TT ii oo nno )) ·&Center Dot; (( μμ ii ,, tt -- 11 -- μμ ii ,, tt )) ≥&Greater Equal; 00 (( Xx ii ,, tt -- 11 oo ff ff -- TT ii oo ff ff )) ·· (( μμ ii ,, tt -- μμ ii ,, tt -- 11 )) ≥&Greater Equal; 00 (( ii == 11 ,, ...... ,, NN GG ;; tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 66 )) PP ff ll oo ww ,, ll ,, tt ≤≤ PP ff ll oo ww ,, ll maxmax (( tt == 11 ,, ...... ,, NN TT )) -- -- -- (( 77 )) PWi,t≤PWi,forecast(15)P Wi,t ≤P Wi,forecast (15) 其中,式(16)为次日风电接纳下限,为次日风电接纳容量之和下限。Among them, formula (16) is the lower limit of wind power acceptance for the next day, It is the lower limit of the sum of wind power receiving capacity for the next day. 8.根据权利要求1‐7任意一项所述的基于机组组合和经济调度的多阶段风电接纳范围计算方法,其特征在于,采用ILOG/CPLEX求解模型。8. The multi-stage wind power acceptance range calculation method based on unit combination and economic dispatch according to any one of claims 1-7, characterized in that ILOG/CPLEX is used to solve the model.
CN201510369943.6A 2015-06-29 2015-06-29 Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching Pending CN105048491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510369943.6A CN105048491A (en) 2015-06-29 2015-06-29 Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510369943.6A CN105048491A (en) 2015-06-29 2015-06-29 Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching

Publications (1)

Publication Number Publication Date
CN105048491A true CN105048491A (en) 2015-11-11

Family

ID=54454814

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510369943.6A Pending CN105048491A (en) 2015-06-29 2015-06-29 Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching

Country Status (1)

Country Link
CN (1) CN105048491A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790265A (en) * 2016-04-21 2016-07-20 三峡大学 AC power flow constraint-based uncertainty unit commitment model and solving method
CN106684898A (en) * 2016-10-31 2017-05-17 国电南瑞科技股份有限公司 A scheduling optimization method for energy storage system based on value network
CN107784375A (en) * 2016-08-26 2018-03-09 中国电力科学研究院 A kind of bilateral electric power contract participates in the coordination optimizing method of balance of electric power and ener a few days ago

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280878A (en) * 2011-07-26 2011-12-14 国电南瑞科技股份有限公司 Wind power penetration optimization evaluation method based on SCED
CN102915396A (en) * 2012-10-16 2013-02-06 内蒙古自治区电力科学研究院 Method for computing wind power bearing capability of power grid
CN103219751A (en) * 2013-05-08 2013-07-24 东南大学 Control method of active power of clustered wind power plants
CN104167765A (en) * 2014-07-11 2014-11-26 海南电网公司 Admitting ability distribution-based maximum wind power installed capacity calculation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280878A (en) * 2011-07-26 2011-12-14 国电南瑞科技股份有限公司 Wind power penetration optimization evaluation method based on SCED
CN102915396A (en) * 2012-10-16 2013-02-06 内蒙古自治区电力科学研究院 Method for computing wind power bearing capability of power grid
CN103219751A (en) * 2013-05-08 2013-07-24 东南大学 Control method of active power of clustered wind power plants
CN104167765A (en) * 2014-07-11 2014-11-26 海南电网公司 Admitting ability distribution-based maximum wind power installed capacity calculation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZONGHE GAO, JIAN GENG, KAIFENG ZHANG, ZEMEI DAI,ETC: "Wind Power Dispatch Supporting Technologies and Its Implementation", 《IEEE TRANSACTIONS ON SMART GRID》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105790265A (en) * 2016-04-21 2016-07-20 三峡大学 AC power flow constraint-based uncertainty unit commitment model and solving method
CN105790265B (en) * 2016-04-21 2019-01-22 三峡大学 An Uncertain Unit Combination Model Considering AC Power Flow Constraints and Its Solution
CN107784375A (en) * 2016-08-26 2018-03-09 中国电力科学研究院 A kind of bilateral electric power contract participates in the coordination optimizing method of balance of electric power and ener a few days ago
CN107784375B (en) * 2016-08-26 2021-12-03 中国电力科学研究院 Coordination optimization method for bilateral power contract participating in day-ahead power and electric quantity balance
CN106684898A (en) * 2016-10-31 2017-05-17 国电南瑞科技股份有限公司 A scheduling optimization method for energy storage system based on value network

Similar Documents

Publication Publication Date Title
WO2022100091A1 (en) Centralized control method for scheduling of generalized source storage system
CN103606967B (en) A kind of dispatching method realizing electric power system robust and run
US10482549B2 (en) Daily electricity generation plan making method of cascade hydraulic power plant group
CN104616069B (en) A kind of annual generation schedule rolls decomposition optimization
CN104578176B (en) Method for making power generation plan in consideration of direct current interaction
CN102930351B (en) A kind of synthesis energy saving Optimized Operation daily planning generation method
CN104701890B (en) Consider the spinning reserve optimization method of power system containing wind power plant that wind power overflows
CN102075014A (en) Large grid real-time scheduling method for accepting access of wind power
CN112016747A (en) An optimization method suitable for the overall planning and operation of flexible resources of source, load and storage
CN110492534A (en) Meter and the random optimization dispatching method of electric system containing wind-powered electricity generation of flexibility
CN111431213A (en) A plant-grid coordination method and its joint dispatch method for stimulating the joint operation of wind farms and pumped-storage power stations
CN103855718B (en) Hydroenergy storage station participates in the dispatching method containing wind-powered electricity generation electric power system
CN104795846A (en) Optimized operation method of pumped-storage power station and wind power combined system
CN102751728A (en) Energy management method for isolated network running mode in micro network based on load interruption model
CN103219751B (en) Control method of active power of clustered wind power plants
CN103683326A (en) Method for calculating optimal admitting ability for wind power multipoint access of regional power grid
CN104283234A (en) Evaluation method of wind power acceptance capacity based on large-scale unit maintenance
CN110071530A (en) The wind-powered electricity generation of electric system containing energy storage climbing coordinated scheduling method based on LSTM
CN104935017B (en) Based on the wind-powered electricity generation and fired power generating unit combined method for improving light Robust Optimization Model
Zhang et al. Mid-long term optimal dispatching method of power system with large-scale wind-photovoltaic-hydro power generation
CN105069516A (en) Electric transmission and transformation equipment monthly maintenance schedule coordination method based on integrated risk
CN117559391A (en) Hybrid energy storage joint planning method considering flexible supply-demand balance of power system
CN106385044A (en) Composite energy storage control system used for wind power plant power generation plan tracking and control method thereof
CN102904248B (en) Electric power system dispatching method based on wind electricity output uncertainty aggregation
CN105048491A (en) Multi-stage wind power accepted range calculating method based on unit combination and economic dispatching

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151111

RJ01 Rejection of invention patent application after publication