CN105047751A - 带势垒层结构的砷化铟热光伏电池的液相外延制备方法 - Google Patents

带势垒层结构的砷化铟热光伏电池的液相外延制备方法 Download PDF

Info

Publication number
CN105047751A
CN105047751A CN201510296009.6A CN201510296009A CN105047751A CN 105047751 A CN105047751 A CN 105047751A CN 201510296009 A CN201510296009 A CN 201510296009A CN 105047751 A CN105047751 A CN 105047751A
Authority
CN
China
Prior art keywords
indium
growth
indium arsenide
source
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510296009.6A
Other languages
English (en)
Other versions
CN105047751B (zh
Inventor
胡淑红
王洋
吕英飞
孙艳
戴宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201510296009.6A priority Critical patent/CN105047751B/zh
Publication of CN105047751A publication Critical patent/CN105047751A/zh
Application granted granted Critical
Publication of CN105047751B publication Critical patent/CN105047751B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种带势垒层结构的砷化铟热光伏电池的液相外延制备方法,该方法通过驱动马达将具有一定过冷度的各个生长源从砷化铟衬底表面推过,从而在衬底表明形成带势垒结构的砷化铟热光伏电池材料结构。本发明的制备方法更为简便,成本更为低廉,解决了现有技术高成本和高毒性的问题。

Description

带势垒层结构的砷化铟热光伏电池的液相外延制备方法
技术领域
本发明涉及一种光伏电池,具体涉及一种带势垒层结构的砷化铟热光伏电池的液相外延制备方法。
背景技术
热光伏电池能够将热辐射体发出的光或者是太阳光谱中的红外光通过半导体P-N结的光伏效应转换成电能[1-5]。其原理与太阳能电池相似,只是利用的辐射源不同而已。太阳能电池利用的光源是太阳光中的可见光波段,而热光伏电池利用的辐射源既可以是太阳光中的红外波段(太阳辐射光谱中约有43%的辐射能量在红外光谱区),也可以是人为制造的温度在1000℃左右的热辐射体。由于热辐射体的温度远低于太阳温度,发射的大部分都是低能量红外光子,因此需要选择窄禁带半导体材料与之匹配。
砷化铟(INAs)为Ⅲ-Ⅴ族窄禁带半导体材料,室温下的禁带宽度为0.354eV,其禁带宽度正好位于1000℃温区对应的红外辐射能量范围,是带隙最为匹配的半导体材料之一。
传统的光伏电池设计为P-i-N结构[6,7],如图2所示。这种设计结构的热光伏电池在室温下工作的缺陷是会产生较大的暗电流,从而降低了电池的效率和最终的输出功率。该结构探测器的暗电流主要由三种电流分量组成,分别为①反向扩散电流:起源于耗尽区边缘P区电子和N区空穴产生的少数载流子的扩散。②产生-复合电流:起源于耗尽区中热激发的载流子在电场下向势垒区两边的漂移运动以及材料中的缺陷、杂质、位错等禁带中的深能级捕获或发射载流子形成的复合电流。③表面漏电流:与表面态相关的各种漏电流[8,9]。本发明专利设计了一种带势垒层的光伏电池结构,在传统的P-i-N结构中增加了一层宽禁带阻挡层材料,如图3a,3b所示:3a中的阻挡层阻挡了来自P区的电子扩散电流和表面电流,而3b中的阻挡层阻挡了来自N区的空穴扩散电流和表面电流。上述带势垒层的光伏电池结构有效抑制了该结构器件的暗电流,从而最终提高了热光伏电池的量子效率。
生长热光伏电池结构的方法有分子束外延以及低压-有机金属化学气相沉积等方法[10,11],前者制备电池材料成本会比较高,与目前科技界主流大力发展低成本电池材料的努力方向相矛盾的。后者则由于使用的原材料均是有毒的有机金属源,且易于侵入人体,不利于相关操作人员的身体健康。
文献:
1.R.R.Siergiej,S.SiNharoy,T.Valko,R.J.Wehrer,B.WerNsmaN,S.D.liNk,R.W.Schultz,aNdR.J.Messham.AIPCoNf.Proc.738,480(2004).
2.JiaNYiNaNdRobertoPaiella.APPliedPhysicsLetters.98,041103(2011).
3.ANdreevVM,KhvostikovVP,KhvostikovaOAetal.31thIEEEPhotovoltaicSPecialistCoNfereNceaNdExhibitioN,OrlaNdo,JaNuary3-7(2005).
4.ANdreevVM,KhvostikovVP,KhvostikovaOAetal.ThermoPhotovoltaicGeNeratioNofElectricity:6thNRELCoNfereNce:Freiburg,JuNe,2004[C].AIPCoNf.Proc.738,96(2004).
5.FrassLM,MiNkiNLeoNid.ThermoPhotovoltaicGeNeratioNofElectricity:7thNRELCoNfereNce:Madrid,SePtember25,(2006).
6.V.A.Gevorkyan,V.M.Aroutiounian,K.M.Gambaryan,I.A.Andreev,L.V.GolubevandYu.P.Yakovlev.TechnicalPhysicsLetters.Vol.34,No1,69-71(2008).
7.V.P.Khvostikov,V.D.Rumyantsev,O.A.Khvostikova,M.Z.Shvarts,P.Y.Gazaryan,S.V.Sorokina,N.A.Kaluzhniy,V.M.Andreev.Presentedat6thConferenceonThermophotovolaticGenerationofElectricity.Freiburg,June2004.
8.S.MaimoNaNdG.W.Wicks.AppliedPhysicsLetters89,151109(2006).
9.李成,李好斯白音,李耀耀,王凯,顾溢,张永刚。《半导体光电》2009年12月第30卷第6期。
10.S.Wojtczuk.IEEE.974-978(1996).
11.C.A.Wang,H.K.Choi,andS.L.Ransom,G.W.Charache,L.R.Danielson,andD.M.DePoy.AppliedphysicsLettersVol75,No.91305-1307,(1999).
发明内容
本发明的目的在于提供一种带势垒层结构的砷化铟热光伏电池的液相外延制备方法,解决了现有技术高成本和高毒性的问题。
所述的光伏电池的结构为:在衬底上依次为宽禁带的阻挡层、砷化铟的吸收层、砷化铟的表面层;两个电极分别做在腐蚀后台面的衬底上以及砷化铟表面层上。
热光伏电池的液相外延制备方法如下:
(1)外延生长温度和生长源组分的确定
根据砷化铟二元化合物相图和铟砷锑磷四元合金相图确定外延生长温度点为550-555℃。砷化铟生长源中铟的摩尔百分比范围为0.8-0.9,砷的摩尔百分比为0.2-0.1;铟砷锑磷生长源中磷的摩尔百分比范围为0.001-0.0013,砷的摩尔百分比为0.01,锑的摩尔百分比范围为0.40-0.4217,铟的摩尔百分比范围为0.589-0.567。
(2)铟砷锑磷四元合金掺杂类型的确定
阻挡P区电子扩散电流的阻挡层铟砷锑磷四元合金的掺杂类型为Zn掺杂的P型;阻挡N区空穴扩散电流的阻挡层铟砷锑磷四元合金的掺杂类型为Te掺杂的N型。
(3)热光伏电池结构的生长
称量各生长源;打开石英管,将相应尺寸的砷化铟衬底,铟、锑金属以及砷化铟,磷化铟颗粒快速放入石墨舟相应的衬底槽和生长源槽中;生长源装好后,在氢气气氛650℃下恒温2小时使生长源充分溶解和均匀混合;恒温结束后,开始执行降温生长程序:降温速率为2℃/min,降温至557-562℃时,随后炉温以0.2℃/min的速率缓慢降至电池结构的实际生长温度550-557℃时,快速拉动装有砷化铟衬底的石墨舟托板与各个生长源接触:其中吸收层的生长时间120-150秒,阻挡层的生长时间为10-20秒,N型或P型表面层的生长时间为10-20秒。生长完毕后衬底拉离生长源位置;炉体断电并退出石英管,开启电风扇冷却石英管。
本发明的优点在于:制备方法更为简便,成本更为低廉,解决了现有技术高成本和高毒性的问题。
附图说明
图1为热光伏电池结构示意图。
图2为传统热光伏电池能带结构示意图。
图3为本发明专利中带阻挡层的热光伏电池能带结构示意图,(a)中的阻挡层阻挡来自P区的电子扩散电流和表面电流,(b)中的阻挡层阻挡来自N区的空穴扩散电流和表面电流。
图4为热光伏电池液相外延生长方法示意图。
具体实施方式
实施例1
1、生长源的配置
(1)组分确定:根据砷化铟二元化合物相图和铟砷锑磷四元合金相图确定外延生长温度点为550℃。砷化铟生长源中铟的摩尔百分比范围为0.9,砷的摩尔百分比为0.1;铟砷锑磷生长源中磷的摩尔百分比为0.001,砷的摩尔百分比为0.01,锑的摩尔百分比范围为0.40,铟的摩尔百分比范围为0.589。本实施例中的铟砷锑磷阻挡层InAsSbP为P型掺杂。P型掺杂剂选用锌(Zn)元素,掺杂量占熔源总量的质量比为0.012%。
(2)生长源的称量:根据上述的计算,用微量天平准确地称出生长所需铟(In)量、锑(Sb)量以及砷化铟(InAs)量和磷化铟(InP)量。所用的铟(In)量、锑(Sb)源均为99.99999%(7N)的高纯单质源,砷化铟(InAs)量和磷化铟(InP)为单晶材料。
2、外延生长前的准备工作
(1)石墨舟处理。为避免生长源玷污,舟要非常干净,使用前要用王水浸泡24小时,去除杂质,然后用沸腾地去离子水煮至酸碱度为中性,再在真空下进行高温烘烤,温度在1000℃以上。
(2)石英管处理。用王水浸泡24小时,再用去离子水反复冲洗后烘干待用。
(3)设置炉温。使用自动控温程序,实现自动升温、恒温、降温。
(4)衬底准备。本实施例中采用P型(100)双面抛光InAs衬底,解理面积为12×12mm2,尺寸和厚度与石墨舟托板槽大小和深度相匹配。经酒精、丙酮、去离子水反复清洗,用盐酸腐蚀液(浓度25%)进行表面化学腐蚀抛光,再用去离子水反复清洗后备用。
3、外延生长
(1)装料。打开石英反应管,将处理好的InAs衬底片及称好的铟(In)源、锑(Sb)源以及砷化铟(InAs)源和磷化铟(InP)源快速装入石墨舟衬底槽和相应的生长源槽中。要求快速装源,以减少在空气中的氧化和沾污。
(2)外延生长。生长源装好后,在氢气气氛下600℃恒温下生长源1小时,以保证熔源的充分溶解和均匀混合恒温结束后,开始执行降温生长程序,降至550℃开始生长:电机照程序设定好的运动程序放置衬底的石墨舟滑板使衬底与液槽1中P型Zn掺杂的铟砷锑磷熔源接触10秒;电机程序继续运行拉动石墨滑板使衬底与液槽2中的InAs熔源接触100秒;电机继续运行拉动石墨舟滑板使其与液槽3中的N型Te掺杂的InAs熔源接触10秒后,电机运行拉动石墨舟滑板使衬底脱离熔源槽,此时生长完毕,炉体断电并退出石英管,开启电风扇冷却石英管。
(3)开炉取片。
实施例2
1、生长源的配置
(1)组分确定:根据砷化铟二元化合物相图和铟砷锑磷四元合金相图确定外延生长温度点为555℃。砷化铟生长源中铟的摩尔百分比范围为0.8,砷的摩尔百分比为0.2;铟砷锑磷生长源中磷的摩尔百分比为0.0013,砷的摩尔百分比为0.01,锑的摩尔百分比范围为0.4217,铟的摩尔百分比范围为0.567。本实施例中的铟砷锑磷阻挡层InAsSbP为N型掺杂。N型掺杂剂选用碲(Te)元素,掺杂量占熔源总量的质量比为0.012%。
(2)生长源的称量:根据上述的计算,用微量天平准确地称出生长所需铟(In)量、锑(Sb)量以及砷化铟(InAs)量和磷化铟(InP)量。所用的铟(In)量、锑(Sb)源均为99.99999%(7N)的高纯单质源,砷化铟(InAs)量和磷化铟(InP)为单晶材料。
2、外延生长前的准备工作
(1)石墨舟处理。为避免生长源玷污,舟要非常干净,使用前要用王水浸泡24小时,去除杂质,然后用沸腾地去离子水煮至酸碱度为中性,再在真空下进行高温烘烤,温度在1000℃以上。
(2)石英管处理。用王水浸泡24小时,再用去离子水反复冲洗后烘干待用。
(3)设置炉温。使用自动控温程序,实现自动升温、恒温、降温。
(4)衬底准备。本实施例中采用N型(100)双面抛光InAs衬底,解理面积为12×12mm2,尺寸和厚度与石墨舟托板槽大小和深度相匹配。经酒精、丙酮、去离子水反复清洗,用盐酸腐蚀液(浓度25%)进行表面化学腐蚀抛光,再用去离子水反复清洗后备用。
3、外延生长
(1)装料。打开石英反应管,将处理好的InAs衬底片及称好的铟(In)源、锑(Sb)源以及砷化铟(InAs)源和磷化铟(InP)源快速装入石墨舟衬底槽和相应的生长源槽中。要求快速装源,以减少在空气中的氧化和沾污。
(2)外延生长。生长源装好后,在氢气气氛下600℃恒温下生长源1小时,以保证熔源的充分溶解和均匀混合。恒温结束后,开始执行降温生长程序,降至555℃开始生长。电机照程序设定好的运动程序放置衬底的石墨舟滑板使衬底与液槽1中N型Te掺杂的铟砷锑磷熔源接触20秒;电机程序继续运行拉动石墨滑板使衬底与液槽2中的InAs熔源接触200秒;电机继续运行拉动石墨舟滑板使其与液槽3中的P型Zn掺杂的InAs熔源接触20秒后,电机运行拉动石墨舟滑板使衬底脱离熔源槽,此时生长完毕,炉体断电并退出石英管,开启电风扇冷却石英管。
(3)开炉取片。
实施例3
1、生长源的配置
(1)组分确定:根据砷化铟二元化合物相图和铟砷锑磷四元合金相图确定外延生长温度点为553℃。砷化铟生长源中铟的摩尔百分比范围为0.85,砷的摩尔百分比为0.15;铟砷锑磷生长源中磷的摩尔百分比为0.001,砷的摩尔百分比为0.01,锑的摩尔百分比范围为0.419,铟的摩尔百分比范围为0.57。本实施例中的铟砷锑磷阻挡层InAsSbP为P型掺杂。P型掺杂剂选用锌(Zn)元素,掺杂量占熔源总量的质量比为0.012%。
(2)生长源的称量:根据上述的计算,用微量天平准确地称出生长所需铟(In)量、锑(Sb)量以及砷化铟(InAs)量和磷化铟(InP)量。所用的铟(In)量、锑(Sb)源均为99.99999%(7N)的高纯单质源,砷化铟(InAs)量和磷化铟(InP)为单晶材料。
2、外延生长前的准备工作
(1)石墨舟处理。为避免生长源玷污,舟要非常干净,使用前要用王水浸泡24小时,去除杂质,然后用沸腾地去离子水煮至酸碱度为中性,再在真空下进行高温烘烤,温度在1000℃以上。
(2)石英管处理。用王水浸泡24小时,再用去离子水反复冲洗后烘干待用。
(3)设置炉温。使用自动控温程序,实现自动升温、恒温、降温。
(4)衬底准备。本实施例中采用N型(100)双面抛光InAs衬底,解理面积为12×12mm2,尺寸和厚度与石墨舟托板槽大小和深度相匹配。经酒精、丙酮、去离子水反复清洗,用盐酸腐蚀液(浓度25%)进行表面化学腐蚀抛光,再用去离子水反复清洗后备用。
3、外延生长
(1)装料。打开石英反应管,将处理好的InAs衬底片及称好的铟(In)源、锑(Sb)源以及砷化铟(InAs)源和磷化铟(InP)源快速装入石墨舟衬底槽和相应的生长源槽中。要求快速装源,以减少在空气中的氧化和沾污。
(2)外延生长。生长源装好后,在氢气气氛下600℃恒温下生长源1小时,以保证熔源的充分溶解和均匀混合。恒温结束后,开始执行降温生长程序,降至553℃开始生长。电机照程序设定好的运动程序放置衬底的石墨舟滑板使衬底与液槽1中P型Te掺杂的铟砷锑磷熔源接触20秒;电机程序继续运行拉动石墨滑板使衬底与液槽2中的InAs熔源接触200秒;电机继续运行拉动石墨舟滑板使其与液槽3中的P型Zn掺杂的InAs熔源接触20秒后,电机运行拉动石墨舟滑板使衬底脱离熔源槽,此时生长完毕,炉体断电并退出石英管,开启电风扇冷却石英管。
(3)开炉取片。

Claims (1)

1.一种带势垒层结构的砷化铟热光伏电池的液相外延制备方法,所述的砷化铟热光伏电池的结构为:在衬底上依次为宽禁带的阻挡层、砷化铟的吸收层、砷化铟的表面层;两个电极分别做在腐蚀后台面的衬底上以及砷化铟表面层上;其特征在于,砷化铟热光伏电池的液相外延制备方法包括以下步骤:
(1)外延生长温度和生长源组分的确定
1)根据砷化铟二元化合物相图和铟砷锑磷四元合金相图确定外延生长温度点为550-555℃,砷化铟生长源中铟的摩尔百分比范围为0.8-0.9,砷的摩尔百分比为0.2-0.1;铟砷锑磷生长源中磷的摩尔百分比范围为0.001-0.0013,砷的摩尔百分比为0.01,锑的摩尔百分比范围为0.4-0.4217,铟的摩尔百分比范围为0.589-0.567。
(2)铟砷锑磷四元合金掺杂类型的确定
阻挡P区电子扩散电流的阻挡层铟砷锑磷四元合金的掺杂类型为Zn掺杂的P型;阻挡N区空穴扩散电流的阻挡层铟砷锑磷四元合金的掺杂类型为Te掺杂的N型;
(3)热光伏电池结构的生长
称量各生长源;打开石英管,将相应尺寸的砷化铟衬底,铟、锑金属以及砷化铟,磷化铟颗粒快速放入石墨舟相应的衬底槽和生长源槽中;生长源装好后,在氢气气氛650℃下恒温2小时使生长源充分溶解和均匀混合;恒温结束后,开始执行降温生长程序:降温速率为2℃/min,降温至557-562℃时,随后炉温以0.2℃/min的速率缓慢降至电池结构的实际生长温度550-555℃时,快速拉动装有砷化铟衬底的石墨舟托板与各个生长源接触:其中吸收层的生长时间100-150秒,阻挡层的生长时间为10-30秒,N型或P型表面层的生长时间为10-30秒。生长完毕后衬底拉离生长源位置;炉体断电并退出石英管,开启电风扇冷却石英管。
CN201510296009.6A 2015-06-02 2015-06-02 带势垒层结构的砷化铟热光伏电池的液相外延制备方法 Active CN105047751B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510296009.6A CN105047751B (zh) 2015-06-02 2015-06-02 带势垒层结构的砷化铟热光伏电池的液相外延制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510296009.6A CN105047751B (zh) 2015-06-02 2015-06-02 带势垒层结构的砷化铟热光伏电池的液相外延制备方法

Publications (2)

Publication Number Publication Date
CN105047751A true CN105047751A (zh) 2015-11-11
CN105047751B CN105047751B (zh) 2017-01-18

Family

ID=54454137

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510296009.6A Active CN105047751B (zh) 2015-06-02 2015-06-02 带势垒层结构的砷化铟热光伏电池的液相外延制备方法

Country Status (1)

Country Link
CN (1) CN105047751B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560119A (zh) * 2017-09-25 2019-04-02 新唐科技股份有限公司 高压半导体元件

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054880A1 (en) * 2004-09-14 2006-03-16 Sanjay Krishna High performance hyperspectral detectors using photon controlling cavities
CN301924147S (zh) * 2011-11-14 2012-05-23 浙江萨帕斯工具制造有限公司 热水泵(ae1375)
CN102732952A (zh) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 一种用于超薄外延层生长的液相外延石墨舟及其生长方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924147A (zh) * 2010-04-02 2010-12-22 中国科学院上海技术物理研究所 一种InAs红外光伏电池及液相外延的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060054880A1 (en) * 2004-09-14 2006-03-16 Sanjay Krishna High performance hyperspectral detectors using photon controlling cavities
CN301924147S (zh) * 2011-11-14 2012-05-23 浙江萨帕斯工具制造有限公司 热水泵(ae1375)
CN102732952A (zh) * 2012-06-25 2012-10-17 中国科学院上海技术物理研究所 一种用于超薄外延层生长的液相外延石墨舟及其生长方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
V.A.GEVORKYAN 等: ""Liquid-phase electroepitaxial growth of low band-gap p-InAsPSbyn-InAs and p-InAsPyn-InAs diode heterostructures for thermo-photovoltaic application"", 《THIN SOLID FILMS》 *
邱峰 等: ""稀氮Ⅲ-Ⅴ族InAsN和InSbN中长波红外光电材料与器件"", 《红外》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109560119A (zh) * 2017-09-25 2019-04-02 新唐科技股份有限公司 高压半导体元件
CN109560119B (zh) * 2017-09-25 2021-11-16 新唐科技股份有限公司 高压半导体元件

Also Published As

Publication number Publication date
CN105047751B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
US8921968B2 (en) Selective emitter solar cells formed by a hybrid diffusion and ion implantation process
Hajijafarassar et al. Monolithic thin-film chalcogenide–silicon tandem solar cells enabled by a diffusion barrier
Krier et al. Low bandgap InAs-based thermophotovoltaic cells for heat-electricity conversion
EP2577745A2 (en) Ion implanted selective emitter solar cells with in situ surface passivation
Varache et al. Evolution of bulk c-Si properties during the processing of GaP/c-Si heterojunction cell
Hahn et al. State-of-the-art industrial crystalline silicon solar cells
Moehlecke et al. Development of silicon solar cells and photovoltaic modules in Brazil: analysis of a pilot production
Shih et al. Growth by directional freezing of CuInSe2 and diffused homojunctions in bulk material
US10692736B2 (en) Method for producing high-photoelectric-conversion-efficiency solar cell and high-photoelectric-conversion-efficiency solar cell
CN105047751B (zh) 带势垒层结构的砷化铟热光伏电池的液相外延制备方法
Wang Technology, Manufacturing and Grid Connection of Photovoltaic Solar Cells
US6313398B1 (en) Ga-doped multi-crytsalline silicon, Ga-doped multi-crystalline silicon wafer and method for producing the same
Dahlinger et al. Full area laser doped boron emitter silicon solar cells
Reshak et al. Drift and diffusion component studies in CdTe structure for photovoltaic application
CN204680680U (zh) 带势垒层结构的砷化铟热光伏电池
Zhao et al. High efficiency rear emitter pert cells on CZ and FZ n-type silicon substrates
Saidov et al. Impurity thermovoltaic effect in the grain boundaries of a polycrystalline silicon solar cell
Khvostikov et al. Zinc-diffused InAsSbP/InAs and ge TPV cells
US9905716B2 (en) Method for manufacturing a monolithic silicon wafer comprising multiple vertical junctions
CN104868008A (zh) 一种带势垒层结构的砷化铟热光伏电池
RU2805140C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ ФОТОЭЛЕКТРИЧЕСКОГО ПРЕОБРАЗОВАТЕЛЯ НА ОСНОВЕ GaInAsSb
Auer et al. Improved performance of thin-film silicon solar cells on graphite substrates
Hossain et al. Solar Photovoltaics
Wojtczuk et al. Production data on 0.55 eV InGaAs thermophotovoltaic cells
Karlina et al. Thermophotovoltaic cells based on In 0.53 Ga 0.47 As/InP heterostructures

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant