CN105046262A - 一种鲁棒扩展局部二值模式纹理特征提取方法 - Google Patents

一种鲁棒扩展局部二值模式纹理特征提取方法 Download PDF

Info

Publication number
CN105046262A
CN105046262A CN201510366866.9A CN201510366866A CN105046262A CN 105046262 A CN105046262 A CN 105046262A CN 201510366866 A CN201510366866 A CN 201510366866A CN 105046262 A CN105046262 A CN 105046262A
Authority
CN
China
Prior art keywords
pixel
local binary
neighborhood
binary patterns
robust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510366866.9A
Other languages
English (en)
Other versions
CN105046262B (zh
Inventor
刘丽
老松杨
谢毓湘
杨征
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National University of Defense Technology
Original Assignee
National University of Defense Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University of Defense Technology filed Critical National University of Defense Technology
Priority to CN201510366866.9A priority Critical patent/CN105046262B/zh
Publication of CN105046262A publication Critical patent/CN105046262A/zh
Application granted granted Critical
Publication of CN105046262B publication Critical patent/CN105046262B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/50Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种鲁棒扩展局部二值模式纹理特征提取方法,包括获取待提取特征纹理图像;对待提取特征纹理图像进行预处理;从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式;根据对于指定像素的鲁棒扩展局部二值模式,将指定像素归入固定的组中,被归入同一个固定的组中的指定像素被视为具有相同类型纹理模式;继续指定下一个像素作为当前指定像素按上述方式进行处理,直到待提取特征纹理图像中的每个像素都被归入固定的组中。

Description

一种鲁棒扩展局部二值模式纹理特征提取方法
技术领域
本发明涉及图像纹理描述与分析技术,特别地,涉及一种鲁棒扩展局部二值模式纹理特征提取方法。
背景技术
纹理是一种重要的视觉线索,广泛存在于自然界各种物体的表面。不管是自然图像、卫星遥感图像还是医学图像,纹理为图像基本特征之一,是图像中像素强度的某种局部模式重复出现的宏观表现。纹理分类是图像处理、计算机视觉和模式识别的一个基础问题,在图像处理与模式识别领域占有重要地位。对纹理图像分类的研究,不仅对于人类对自身视觉机理的理解和研究具有推动作用,而且对计算机视觉和模式识别领域其它问题如人脸识别、物体识别、场景分类等等有重要支撑作用。纹理分类在视觉导航、场景分类、目标识别、基于内容的图像检索、遥感图像分析、工业检测、医学图像分析和理解和文本分类等领域有着广泛的应用。纹理分类问题涉及数字图像处理、计算机视觉、模式识别、机器学习、计算机图形学、人机交互、认知科学、应用数学、统计学、神经生理学和人工智能等多个研究领域。纹理分类问题的深入研究和最终解决,可以有力地促进这些学科的成熟和发展。
作为一个经典的模式识别问题,纹理分类主要包括两个关键环节:纹理特征提取和分类器设计。众所周知,有效的纹理特征提取方法占有着相对重要的地位,因为如果使用不好的纹理特征,即便是最好的分类器也无法达到很好的识别效果。因此,纹理特征提取方法的研究一直是人们关注的热点,出现了很多纹理特征提取方法[][]。然而,由于自然界纹理图像种类繁多,纹理分类问题本身的复杂性,加上实际应用中非限定成像环境的影响,要求提取的纹理特征能够对采集到的纹理图像往往会出现数据缺失、光照变化、旋转变化、尺度变化、局部变形和模糊等类内差异具有高度鲁棒性;此外,与日俱增的大规模纹理图像数据对纹理特征提取的实时性要求也越来越高;这些难点使得现有的纹理特征提取方法仍然难以满足实际应用的需求。
提取有效纹理特征的本质困难在于平衡两个相互竞争的目标:高质量的特征描述和低计算复杂度。高质量的纹理特征描述子需要兼具强可区分力(能够区分不同纹理图像类别)和高鲁棒性(能够对同一纹理图像类别存在的类内差异如光照变化、旋转变化、尺度变化、图像模糊、图像随机噪声和图像遮挡等鲁棒)。计算复杂度低和特征维数低的纹理特征描述子能够使得分类任务实时进行。现有的研究工作都试图在这两个相互竞争的目标中取得良好折衷,然而往往只能较好的达到其中一个目标,不可避免的牺牲另一个目标。
局部二值模式(LocalBinaryPattern,LBP)已经发展成为最主要的纹理特征提取方法之一,并在图像处理和计算机视觉领域受到越来越多的关注,这主要是由于LBP方法存在如下显著优势:①易于工程实现;②灰度尺度不变性;③低计算复杂度低。正是因为如此,LBP方法已被成功应用于以纹理分类和人脸识别为代表的图像处理和计算机视觉中的诸多领域,包括工业检测、遥感图像分析、动态纹理识别、基于内容的图像检索、医学图像处理、场景分类、运动分析和环境建模等等。LBP方法得到广泛研究,出现了大量基于LBP的改进方法,
这些后续LBP改进方法主要致力于提高其鉴别力,鲁棒性和易用性。
在提高原始LBP方法的特征鉴别力方面,引人注目的工作主要包括完全局部二值模式(CompletedLocalBinaryPattern,CLBP)、扩展局部二值模式(ExtendedLocalBinaryPattern,ELBP)、鉴别完全局部二值模式(disCLBP)、成对旋转不变共现局部二值模式(PairwiseRotaionInvariantCooccurrenceLocalBinaryPattern,PRICoLBP),以及显著局部二值模式(DominantLocalBinaryPattern,DLBP)和Gabor滤波特征的联合描述等等。然而,尽管这些改进方法使得特征鉴别力有所提升,但其鲁棒性下降,因为它们对图像模糊和图像随机噪声相当敏感,并且它们的特征维数往往较高,导致后续分类计算复杂度增加。
在提高原始LBP方法对图像模糊和随机噪声等图像质量下降问题的鲁棒性方面,研究者们也做出了很多尝试。代表性的改进方法有局部三值模式(LocalTernaryPattern,LTP)、中值二值模式(MedianBinaryPattern,MBP)、局部相位量化(LocalPhaseQuantization,LPQ)、模糊局部二值模式(FuzzyLocalBinaryPattern,FLBP),容忍噪声局部二值模式(NoiseTolerantLocalBinaryPattern,NTLBP),鲁棒局部二值模式(RobustLocalBinaryPattern,RLBP)和抗噪声局部二值模式(NoiseResistentLocalBinaryPattern,NRLBP)等等。尽管这些改进方法对噪声的鲁棒性较原始LBP方法有所增强,但其抗噪能力仍然不理想,这一点其它研究者也注意到。我们最近提出的扩展局部二值模式ELBP方法中给出了四种类似于LBP的描述子——基于中心强度的局部二值模式ELBP_CI、基于邻域强度的局部二值模式ELBP_NI、基于径向差分的局部二值模式ELBP_RD和与基于角向差分的局部二值模式ELBP_AD。我们之前的研究工作已经表明,三个新局部二值模式特征ELBP_CI、ELBP_NI与ELBP_RD的联合特征描述子即ELBP具有很好的纹理分类性能,遗憾的是仍然存在一些显著的缺陷:①对图像模糊和随机噪声相当敏感;②不能捕获宏观纹理结构信息;③特征维数较高。对图像模糊和噪点过于敏感会导致ELBP缺乏鲁棒性,不能捕获宏观纹理结构信息会难以描述大尺度纹理信息,而特征维数过高则会增加后续纹理分类的计算复杂度,影响纹理分类方法计算速度。
针对现有技术中使用基于局部二值模式LBP方法进行纹理描述时缺乏对图像模糊和随机噪声鲁棒性、纹理信息描述过于局部而损失宏观纹理信息、以及特征维数较高等问题,目前尚缺乏有效的解决方案。
发明内容
针对现有技术中使用局部二值模式LBP进行纹理描述时缺乏对图像模糊和随机噪声的鲁棒性、纹理信息描述过于局部而导致损失宏观纹理信息、以及高特征维数下计算复杂度高的问题,本发明的目的在于提出一种鲁棒扩展局部二值模式纹理特征提取方法,对图像模糊和随机噪声的鲁棒性显著增强,纹理分类性能在高鲁棒性和强鉴别力方面为现有最高水平,且具有较低的特征维数,使得基于新特征纹理分类系统具有较低的计算复杂度。
基于上述目的,本发明提供的技术方案如下:
根据本发明的一个方面,提供了一种鲁棒扩展局部二值模式纹理特征提取方法,包括:
获取待提取特征纹理图像;
对待提取特征纹理图像进行预处理;
从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式;
根据对于指定像素的鲁棒扩展局部二值模式,将指定像素归入固定的模式组中,被归入同一个固定的模式组中的指定像素被视为具有等价模式;
继续指定下一个像素作为当前指定像素按上述方式进行处理,直到待提取特征纹理图像中的每个像素都被归入固定的组中。
其中,对待提取特征纹理图像进行预处理包括:
将待提取特征纹理图像无残留地分割为N个像素块,N个像素块均是尺寸为W×W的正方形像素集合;
使用取平均方法处理N个像素块,获得N个像素块的取平均结果,并计算N个像素块的取平均结果的平均值μw
并且,根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式,其中,对于指定像素的鲁棒扩展局部二值模式包括以下至少之一:基于中心强度的鲁棒扩展局部二值模式、基于邻域强度的鲁棒扩展局部二值模式、基于径向差分的鲁棒扩展局部二值模式。
一方面,当对于指定像素的鲁棒扩展局部二值模式为基于中心强度的鲁棒扩展局部二值模式时,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从待提取特征纹理图像中依次选定每个像素xc
以指定像素xc为中心,从待提取特征纹理图像中截取出中心块χc,w,中心块χc,w是尺寸为W×W的、以指定像素xc为中心的正方形像素集合;
使用取平均方法处理中心块χc,w,获得中心块χc,w的取平均结果φ(χc,w);
根据中心块χc,w的取平均结果φ(χc,w)与N个像素块的取平均结果的平均值μw,获得对于指定像素xc的基于中心强度的鲁棒扩展局部二值模式RELBP_CI(xc)
RELBP_CI(xc)=s(φ(χc,w)-μw)
其中, s ( x ) = { 1 x &GreaterEqual; 0 0 x < 0 .
另一方面,当对于指定像素的鲁棒扩展局部二值模式为基于邻域强度的鲁棒扩展局部二值模式时,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从待提取特征纹理图像中依次选定每个像素xc
以指定像素xc为中心,从待提取特征纹理图像中选取到p个邻域像素xr,p,n,p个邻域像素xr,p,n等角间隔的均匀分布在以xc为圆心以r为半径的圆周上,其中n=0,...,p-1,邻域像素xr,p,n的坐标值为(-rsin(2πn/p),rcos(2πn/p))与指定像素xc的坐标的叠加和;
分别以p个邻域像素xr,p,n中的每一个为中心,从待提取特征纹理图像中截取出p个邻域块p个邻域块都是尺寸为wr×wr的、分别以每个邻域像素xr,p,n为中心的正方形像素集合;
使用取平均方法处理p个邻域块获得p个邻域块的取平均结果并计算p个邻域块的取平均结果的平均值
根据p个邻域块的取平均结果与p个邻域块的取平均结果的平均值获得对于指定像素xc的基于邻域强度的鲁棒扩展局部二值模式RELBP_CIr,p(xc)
RELBPNI r , p ( x c ) = &Sigma; n = 0 p - 1 s ( &phi; ( x r , p , w r , n ) - &mu; r , p , w r ) 2 n
其中, &mu; r , p , w r = 1 p &Sigma; n = 0 p - 1 &phi; ( X r , p , w r , n ) , s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
另一方面,当对于指定像素的鲁棒扩展局部二值模式为基于径向差分的鲁棒扩展局部二值模式时,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从待提取特征纹理图像中依次选定每个像素xc
以指定像素xc为中心,从待提取特征纹理图像中选取到p个邻域像素xr,p,n,p个邻域像素xr,p,n等角间隔的均匀分布在以xc为圆心以r为半径的圆周上,其中n=0,...,p-1,邻域像素xr,p,n的坐标值为(-rsin(2πn/p),rcos(2πn/p))与指定像素xc的坐标的叠加和;
分别以p个邻域像素xr,p,n中的每一个为中心,从待提取特征纹理图像中截取出p个邻域块p个邻域块都是尺寸为wr×wr的、分别以每个邻域像素xr,p,n为中心的正方形像素集合;
以指定像素xc为中心,从待提取特征纹理图像中选取到p个亚邻域像素xr-1,p,n,p个亚邻域像素xr-1,p,n等角间隔的均匀分布在以xc为圆心以r-1为半径的圆周上,其中,邻域像素xr-1,p,n的坐标值为(-(r-1)sin(2πn/p),(r-1)cos(2πn/p))与指定像素xc的坐标的叠加和;
分别以p个亚邻域像素xr-1,p,n中的每一个为中心,从待提取特征纹理图像中截取出p个亚邻域块p个亚邻域块是分别以每个亚邻域像素xr-1,p,n为中心的正方形像素集合;
使用取平均方法φ处理p个亚邻域块获得p个亚邻域块的取平均结果
根据p个邻域块的取平均滑结果与p个位于半径r-1上的亚邻域块的取平均结果计算位于相同角度方向上、不同半径大小的两个滤波值的差分值,基于此获得对于指定像素xc的基于径向差分的鲁棒扩展局部二值模式
R E L B P _ RD r , r - 1 , p , w r , w r - 1 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) 2 n
其中, s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
上述对于指定像素的鲁棒扩展局部二值模式,将指定像素归入固定的组中包括:
根据鲁棒扩展局部二值模式RELBP分别计算其中,
A R E L B P _ NI r , p r i u 2 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) , i f U ( A E E L B P _ NI r , p &le; 2 ) p + 1 , o t h e r w i s e ,
A R E L B P _ RD r , p r i u 2 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) , if U ( A E E L B P _ RD r , p &le; 2 ) p + 1 , o t h e r w i s e ,
其中,U值是指一个二进制模式串的均匀度度量,定义为二进制模式中圆周上相邻的两个比特值的0/1或1/0转移次数,以ARELBP_NIr,p为例给出U值的定义,设ARELBP_NIr,p的二进制模式比特串为:
ARELBP_NIr,p=b0b1……bp-1
其中, b n = s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) , n = 0 , ...... , p - 1 , 那么:
U ( ARELBP NI r , p ) = U ( b 0 b 1 ...... b p - 1 ) = | b 0 - b p | + &Sigma; n = 0 p - 1 | b n - b n + 1 | ;
判断U(ARELBP_NIr,p≤2)(U(ARELBP_RDr,p≤2))是否成立,若是,则将其归入均匀模式下,并根据 ( &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) ) 的取值而划入均匀模式下组0至组p中的一个;若否,则将其归入非均匀模式下的唯一组p+1中;
根据生成联合概率直方图,并以联合概率直方图为分组依据将指定像素归入固定的模式组中。
从上面所述可以看出,本发明提供的技术方案通过以超像素集合(Superpixel)代替单像素进行纹理分类、并使用取平均方法对多尺度超像素集合进行滤波处理的技术方案,增强了对图像模糊和随机噪声的鲁棒性,且在无噪声环境中纹理分类性能没有损失,反而增强。因此,纹理分类性能具有高鲁棒性和强鉴别力,且降低了特征维数带来的计算复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为根据本发明实施例的一种鲁棒扩展局部二值模式纹理特征提取方法的流程图;
图2为现有技术中的局部二值模式生成示意图;
图3为根据本发明实施例的一种鲁棒扩展局部二值模式纹理特征提取方法中,对于某一指定像素,其中心块、邻域像素、邻域块、亚邻域像素以及亚邻域块的截取方式示意图;
图4为根据本发明实施例的一种鲁棒扩展局部二值模式纹理特征提取方法中,对于某一指定像素,其邻域与多层亚邻域的截取数据处理方法示意图;
图5为根据本发明实施例的一种鲁棒扩展局部二值模式纹理特征提取方法中,将指定像素分组的各组特征示意图;
图6为基于纹理分类方法Outex的包含108不同的纹理类别的测试套件OutexTC36000与OutexTC36001的部分纹理单元图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进一步进行清楚、完整、详细地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
局部二值模式(LocalBinaryPatterns,下文中简称为LBP)通过标记中心点像素与其邻域像素之间的差异来反映局部图像碎片的空间结构特征,只考虑标志信息以形成一个二值模式。生成的二值模式所对应的十进制值,然后用其标记给定的像素。图2示出的是现有技术中的局部二值模式生成示意图,如图2所示,对于图像的一个指定像素xc,LBP响应是通过与p邻域的像素比较来计算的使其均匀地按角度分布半径为R中心为C的圆上:
LBP r , p ( c ) = &Sigma; n = 0 p - 1 s ( x r , p , n - x c ) 2 n , s ( x ) = 1 x &GreaterEqual; 0 0 x < 0
设xc的坐标是(0,0),则xr,p,n的坐标是由(-rsin(2πn/p),rcos(2πn/p))给出的,邻域没有落在像素的中心点上,灰度值xr,p,n是由差值所估计出来的。
对于具有M灰度水平的像素,LBP定义是由P相邻的像素形成的所有2p可能灰度到图案的空间到结果二值差异形成的2p不同图案的空间的映射。一个纹理图象因此可以由2p个LBP图案的概率分布来表现。为了能够包含不同尺度的纹理信息,该LBP方法后来被扩展为使用不同半径的邻域,(r,p)的取值通常被置为(1,8),(2,16),(3,24)中的一种或多种。
为了提高图像旋转的鲁棒性,一个旋转不变版本是由所有具有相同模式的旋转版本的二值模式集合所得出的:
LBP r , p r i = m i n { R O R ( LBP r , p , i ) | i = 0 , 1 , ... , p - 1 }
其中,ROR(X,I)执行x上的i步循环逐位右移,仅保留那些旋转独特模式从而导致特征维数显著降低。
某些LBP模式代表了基本的纹理结构,并命名为统一模式,这些模式,其中最多有两个值为U:
U ( LBP r , p ) = &Sigma; n = 0 p - 1 | s ( x r , p , n - x c ) - s ( x r , p , mod ( n + 1 , p ) - x c ) | ,
这样U(LBPr,p)计算按位转换从0到1,反之亦然。U(LBPr,p)有P(P–1)+3大类,包括P(P–1)+2个显著均匀模式和所有包含所有模式的不均匀模式。为了获得改进的旋转不变性,并获得较低的特征维数,可进一步将均匀型态组合为p+1个不同的旋转不变的类别,从而导致旋转不变性均匀描述具有比p+2的低得多的维数:
LBP r , p r i u 2 = &Sigma; n = 0 p - 1 s ( x r , p , n - x c ) , i f U ( LBP r , p ) &le; 2 p + 1 , o t h e r w i s e
LBP仅编码一个中心点和其邻域之间的关系,而ELBP被设计为在一个局部区域进行编码独特的空间关系,因此具有独特的空间信息。ELBP由三个类似于LBP的描述组成:ELBP_CI,ELBP_NI和ELBP_RD其从中心像素及相邻像素的强度搜索信息,与径向的差异。
所述ELBP策略是类似于原始LBP。ELBP_CI的中心像素的强度是阈值:
ELBP_CI(xc)=s(xc-β),其中阈值β为整个图像的平均值。
ELBP_NI利用相邻像素强度的平均值代替使用中心点的灰度值作为阈值生成二值图案。ELBP_NI被定义为与局部平均其中,阈值 &beta; r , p = 1 p &Sigma; n = 0 p - 1 x r , p , n .
与基于强度的描述符ELBP_NI和ELBP_CI相独立,ELBP_RD是从径向方向像素差而得: E L B P _ RD r , r - 1 , p = &Sigma; n = 0 p - 1 s ( x r , p , n - x r - 1 , p , n ) 2 n
类似于LBP,分组策略为了获得可以产生ELBP_NI和ELBP_RD。可以得到良好的纹理分类性能。然而,ELBP仍然在使用单独的像素强度作为阈值,这使得ELBP易受图像噪声影响,缺乏鲁棒性。
我们要考虑在采样点,从中心取样位置源图像块得出简单滤波器响应更换单个像素的灰度值效果,因此需要修改ELBP,使得各个单像素强度由取平均方法φ替换。这种新的局部二值模式被命名为RELBP,并用来描述更需要鲁棒性的纹理图像。
根据本发明的实施例,提供了一种鲁棒扩展局部二值模式纹理特征提取方法。
如图1所示,根据本发明的实施例的提供了一种鲁棒扩展局部二值模式纹理特征提取方法包括:
步骤S101,获取待提取特征纹理图像;
步骤S103,对待提取特征纹理图像进行预处理;
步骤S105,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式;
步骤S107,根据对于指定像素的鲁棒扩展局部二值模式,将指定像素归入固定的模式组中,被归入同一个固定的模式组中的指定像素被视为具有等价模式;
步骤S109,继续指定下一个像素作为当前指定像素按上述方式进行处理,直到待提取特征纹理图像中的每个像素都被归入固定的组中。
取平均方法能在空间中线性地减小噪声,并提高鲁棒性。对于应用取平均方法的RELBP,也可以记做GRELBP以突出使用取平均方法的特征。
其中,对待提取特征纹理图像进行预处理包括:
将待提取特征纹理图像无残留地分割为N个像素块,N个像素块均是尺寸为W×W的正方形像素集合;
使用取平均方法φ处理N个像素块,获得N个像素块的取平均结果,并计算N个像素块的取平均结果的平均值μw
并且,根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式,其中,对于指定像素的鲁棒扩展局部二值模式包括以下至少之一:基于中心强度的鲁棒扩展局部二值模式、基于邻域强度的鲁棒扩展局部二值模式、基于径向差分的鲁棒扩展局部二值模式。
一方面,当对于指定像素的鲁棒扩展局部二值模式为基于中心强度的鲁棒扩展局部二值模式时,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从待提取特征纹理图像中依次选定每个像素
以指定像素xc为中心,从待提取特征纹理图像中截取出中心块χc,w,中心块χc,w是尺寸为w×w的、以指定像素xc为中心的正方形像素集合;
使用取平均方法φ处理中心块χc,w,获得中心块χc,w的取平均结果φ(χc,w);
根据中心块χc,w的取平均结果φ(χc,w)与N个像素块的取平均结果的平均值μw,获得对于指定像素xc的基于中心强度的鲁棒扩展局部二值模式RELBP_CI(xc)
RELBP_CI(xc)=s(φ(χc,w)-μw)
其中, s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
另一方面,当对于指定像素的鲁棒扩展局部二值模式为基于邻域强度的鲁棒扩展局部二值模式时,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从待提取特征纹理图像中依次选定每个像素xc
以指定像素xc为中心,从待提取特征纹理图像中选取到p个邻域像素xr,p,n,p个邻域像素xr,p,n等角间隔的均匀分布在以xc为圆心以r为半径的圆周上,其中n=0,...,p-1,邻域像素xr,p,n的坐标值为(-rsin(2πn/p),rcos(2πn/p))与指定像素xc的坐标的叠加和;
分别以p个邻域像素xr,p,n中的每一个为中心,从待提取特征纹理图像中截取出p个邻域块p个邻域块都是尺寸为wr×wr的、分别以每个邻域像素xr,p,n为中心的正方形像素集合;
使用取平均方法φ处理p个邻域块获得p个邻域块的取平均结果并计算p个邻域块的取平均结果的平均值
根据p个邻域块的取平均结果与p个邻域块的取平均结果的平均值获得对于指定像素xc的基于邻域强度的鲁棒扩展局部二值模式RELBP_NIr,p(xc)
R E L B P _ NI r , p ( x c ) = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) 2 n
其中, &mu; r , p , w r = 1 p &Sigma; n = 0 p - 1 &phi; ( X r , p , &omega; r , n ) , s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
另一方面,当对于指定像素的鲁棒扩展局部二值模式为基于径向差分的鲁棒扩展局部二值模式时,从待提取特征纹理图像中依次指定每个像素,为像素构建像素区域使用取平均方法将像素区域处理为取平均结果,并根据取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从待提取特征纹理图像中依次选定每个像素xc
以指定像素xc为中心,从待提取特征纹理图像中选取到p个邻域像素xr,p,n,p个邻域像素xr,p,n等角间隔的均匀分布在以xc为圆心以r为半径的圆周上,其中n=0,...,p-1,邻域像素xr,p,n的坐标值为(-rsin(2πn/p),rcos(2πn/p))与指定像素xc的坐标的叠加和;
分别以p个邻域像素xr,p,n中的每一个为中心,从待提取特征纹理图像中截取出p个邻域块p个邻域块都是尺寸为wr×wr的、分别以每个邻域像素xr,p,n为中心的正方形像素集合;
以指定像素xc为中心,从待提取特征纹理图像中选取到p个亚邻域像素xr-1,p,n,p个亚邻域像素xr-1,p,n等角间隔的均匀分布在以xc为圆心以r-1为半径的圆周上,其中,邻域像素xr-1,p,n的坐标值为(-(r-1)sin(2πn/p),(r-1)cos(2πn/p))与指定像素xc的坐标的叠加和;
分别以p个亚邻域像素xr-1,p,n中的每一个为中心,从待提取特征纹理图像中截取出p个亚邻域块p个亚邻域块是分别以每个亚邻域像素xr-1,p,n为中心的正方形像素集合;
使用取平均方法处理p个亚邻域块获得p个亚邻域块的取平均结果
根据p个邻域块的取平均结果与p个亚邻域块的取平均结果获得对于指定像素xc的基于径向差分的鲁棒扩展局部二值模式
R E L B P _ RD r , r - 1 , p , w r , w r - 1 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) 2 n
其中, s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
图3示出的是对于某一指定像素xc,其中心块χc,w、邻域像素xr,p,n、邻域块亚邻域像素xr-1,p,n以及亚邻域块的截取方式。如图3所示,指定像素xc的中心块的边长wc=3,故中心块为Xc,3;其亚邻域像素xr-1,p,n的亚邻域块边长wr1=3,故亚邻域块为其邻域像素xr,p,n的邻域块边长wr2=5,故邻域块为其邻域像素与亚邻域像素均为p=8,亚邻域像素到指定像素xc的距离为r1,邻域像素到指定像素xc的距离为r2,故可以表示出亚邻域像素集合与邻域像素集合因此有:
R E L B P _ C I ( x c ) = s ( &phi; ( X c , 3 ) - &mu; 3 ) &mu; 3 = 1 N &Sigma; c = 0 N &phi; ( X c , 3 )
R E L B P _ NI r 2 , 8 , 5 ( x c ) = &Sigma; n = 0 7 s ( &phi; ( X r 2 , 8 , 5 , n ) - &mu; r 2 , 8 , 5 ) 2 n &mu; r 2 , 8 , 5 = 1 8 &Sigma; n = 0 7 &phi; ( X r 2 , 8 , 5 , n )
R E B P _ RD r 2 , r 1 , 8 , 5 , 3 ( x c ) = &Sigma; n = 0 7 s ( &phi; ( X r 2 , 8 , 5 , n ) - &phi; ( X r 1 , 8 , 3 , n ) ) 2 n
上述的邻域像素与亚邻域像素之间只是相对关系,任何取样半径小于亚邻域像素的取样半径所取到的像素可以被认为是亚邻域像素的亚邻域像素。对于指定像素xc,我们可以同时选取两个以上的不同半径数值进行像素取样,并将按照上述方法获得的鲁棒扩展局部二值模式相叠加,以丰富关于指定像素xc的纹理信息。图4示出的是对于指定像素xc,其邻域与多层亚邻域的截取数据处理方法示意图,如图4所示,从原始图像中指定像素xc并在4个不同的半径尺度上采集邻域像素与亚邻域像素,并使用取平均方法分别获取他们的RELBP,在进行叠加,以获得指定像素xc更丰富的纹理信息。
上述对于指定像素的鲁棒扩展局部二值模式,将指定像素归入固定的组中包括:
根据鲁棒扩展局部二值模式RELBP分别计算其中,
A R E L B P _ NI r , p r i u 2 =
{ &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) , i f U ( A R E L B P _ NI r , p &le; 2 ) p + 1 , o t h e r w i s e ,
A R E L B P _ RD r , p r i u 2 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) , if U ( A E E L B P _ RD r , p &le; 2 ) p + 1 , o t h e r w i s e ;
其中,U值是指一个二进制模式串的均匀度度量,定义为二进制模式中圆周上相邻的两个比特值的0/1或1/0转移次数,以ARELBP_NIr,p为例给出U值的定义,设ARELBP_NIr,p的二进制模式比特串为:
ARELBP_NIr,p=b0b1……bp-1
其中, b n = s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r , n ) , n = 0 , ...... , p - 1 , 那么:
U ( ARELBP NI r , p ) = U ( b 0 b 1 ...... b p - 1 ) = | b 0 - b p | + &Sigma; n = 0 p - 1 | b n - b n + 1 | ;
举例来说,设计算得到三个ARELBP_NIr,p(或ARELBP_RDr,p)二进制模式为00000000,01110000和01100101,那么U(0000000)=0,U(01110000)=2以及U(01100101)=6,所以00000000和01110000为均匀模式,而01100101则为非均匀模式;
判断U(ARELBP_NIr,p≤2)(U(ARELBP_RDr,p≤2))是否成立,若是,则将其归入均匀模式下,并根据 ( &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) ) 的取值而划入均匀模式下组0至组p中的一个;若否,则将其归入非均匀模式下的唯一组p+1中;
根据生成联合概率直方图,并以联合概率直方图为分组依据将指定像素归入固定的模式组中。
图5示出的是指定像素分组的各组特征示意图。如图5所示的O-U坐标轴中,p=8,O值为符合邻域块取平均灰度值大于中心块取平均灰度值的邻域块个数,U值即U(ARELBP_NIr,p)、或U(ARELBP_RDr,p),组0至组p+1分别对应图中数字编号1-10。对于U≤2的情况,我们采用均匀模式进行编码并按照O值不同分出9个不同的组,分别对应图中数字1-9所代表的局部二值模式;当U>2时,我们采用非均匀模式进行编码并编入同一个组中,对应图中数字10所代表的局部二值模式。
根据计算出的基于像素xc的值与不需要计算的的值,我们生成像素xc的联合概率直方图,联合概率直方图中包含了像素xc的三种局部二值模式的分组信息。通过比对不同像素之间的联合概率直方图,我们得以判断不同像素是否表征出相同的模式,并根据联合概率直方图的差异将不同像素归入固定的模式组中,具有相同联合概率直方图的不同像素被归入同一个模式组中,被分入同一个组的像素被认为可能具有相同的纹理特征。
我们利用可公开获得的数据评估GRELBP在三个不同问题方法上的有效性。我们选取三个最常用的公开基准纹理数据测试集进行试验:Outex_TC10,Outex_TC12_000和Outex_TC12_001。Outex_TC10数据集适用于测试纹理特征描述子的旋转不变性,而Outex_TC12_000和Outex_TC12_001则用于测试特征描述子的光照不变性以及旋转不变性,因此这两个基准测试集难度高于Outex_TC10数据集。使用比较方法所推荐的riu2编码,涉及参数如Table1所示。每个纹理样品被预处理,归一化到零均值和单位标准偏差。
TABLE1
Classificationscores(%)onOutex_TC10,Outex_TC12000andOutex_TC12001testsuites.TheparameterswcandwrinvolvedinARELBParesetaswc=3andwr=(3,3,5,7).
表1给出了实验结果。从上表1可以看出,提出的相当大的改进了的性能。提出的也提高了性能,但是不如显著。联合描述符使得纹理分类性能大幅度提升,显著优于
多尺度描述子的性能较了单尺度方法的性能有了明显提高。多尺度的精准分类率,对光照和旋转变化的纹理分类清楚地表明,单个特征ARELBP_CI、的联合分布能有效反映图像纹理特征,对灰度和旋转变化具有鲁棒性。这些结果表明,该方法能有效地利用微观结构信息和宏观纹理特征。根据我们的知识,我们提出的方法在这三个基准数据集上获得了目前最高分类正确率。
综上所述,借助于本发明的上述技术方案,通过以正方形像素集合代替单像素进行纹理分类、并使用取平均方法对多个正方形像素集合进行归一化处理的技术方案,继承传统LBP方法的优势,克服其劣势,新的扩展局部二值模式纹理特征对图像模糊和随机噪声的鲁棒性显著增强,并且具有灰度尺度不变性和旋转不变性,与此同时还具有优秀的特征鉴别力,其纹理分类性能在高鲁棒性和强鉴别力方面为现有最高水平,在具备这些优点的同时,新的扩展局部二值模式特征具有较低的特征维数,使得基于新特征纹理分类系统具有较低的计算复杂度。
所属领域的普通技术人员应当理解:以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,包括:
获取待提取特征纹理图像;
对所述待提取特征纹理图像进行预处理;
从所述待提取特征纹理图像中依次指定每个像素,为所述像素构建像素区域使用取平均方法将所述像素区域处理为取平均结果,并根据所述取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式;
根据所述对于指定像素的鲁棒扩展局部二值模式,将所述指定像素归入固定的模式组中,被归入同一个所述固定的模式组中的指定像素被视为具有等价模式;
继续指定下一个像素作为当前指定像素按上述方式进行处理,直到所述待提取特征纹理图像中的每个像素都被归入所述固定的组中。
2.根据权利要求1所述的一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,对所述待提取特征纹理图像进行预处理包括:
将所述待提取特征纹理图像无残留地分割为N个像素块,所述N个像素块均是尺寸为W×W的正方形像素集合;
使用取平均方法处理所述N个像素块,获得所述N个像素块的取平均结果,并计算所述N个像素块的取平均结果的平均值μw
3.根据权利要求2所述的一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,根据所述取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式,其中,所述对于指定像素的鲁棒扩展局部二值模式包括以下至少之一:基于中心强度的鲁棒扩展局部二值模式、基于邻域强度的鲁棒扩展局部二值模式、基于径向差分的鲁棒扩展局部二值模式。
4.根据权利要求3所述的一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,当所述对于指定像素的鲁棒扩展局部二值模式为基于中心强度的鲁棒扩展局部二值模式时,从所述待提取特征纹理图像中依次指定每个像素,为所述像素构建像素区域使用取平均方法将所述像素区域处理为取平均结果,并根据所述取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从所述待提取特征纹理图像中依次选定每个像素xc
以所述指定像素xc为中心,从所述待提取特征纹理图像中截取出中心块χc,w,所述中心块χc,w是尺寸为W×W的、以所述指定像素xc为中心的正方形像素集合;
使用取平均方法处理所述中心块χc,w,获得所述中心块χc,w的取平均结果φ(χc,w);
根据所述中心块χc,w的取平均结果φ(χc,w)与所述N个像素块的取平均结果的平均值μw,获得对于指定像素xc的基于中心强度的鲁棒扩展局部二值模式RELBP_CI(xc)
RELBP_CI(xc)=s(φ(χc,w)-μw)
其中, s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
5.根据权利要求3所述的一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,当所述对于指定像素的鲁棒扩展局部二值模式为基于邻域强度的鲁棒扩展局部二值模式时,从所述待提取特征纹理图像中依次指定每个像素,为所述像素构建像素区域使用取平均方法将所述像素区域处理为取平均结果,并根据所述取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从所述待提取特征纹理图像中依次选定每个像素xc
以所述指定像素xc为中心,从所述待提取特征纹理图像中选取到p个邻域像素xr,p,n,所述p个邻域像素xr,p,n等角间隔的均匀分布在以xc为圆心以r为半径的圆周上,其中n=0,...,p-1,所述邻域像素xr,p,n的坐标值为(-rsin(2πn/p),rcos(2πn/p))与指定像素xc的坐标的叠加和;
分别以所述p个邻域像素xr,p,n中的每一个为中心,从所述待提取特征纹理图像中截取出p个邻域块所述p个邻域块都是尺寸为wr×wr的、分别以所述每个邻域像素xr,p,n为中心的正方形像素集合;
使用取平均方法处理所述p个邻域块获得所述p个邻域块的取平均结果并计算所述p个邻域块的取平均结果的平均值
根据所述p个邻域块的取平均结果与所述p个邻域块的取平均结果的平均值获得对于指定像素xc的基于邻域强度的鲁棒扩展局部二值模式RELBP_NLr,p(xc)
R E L B P _ NI r , p ( x c ) = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) 2 n
其中, &mu; r , p , w r = 1 p &Sigma; n = 0 p - 1 &phi; ( X r , p , w r , n ) , s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
6.根据权利要求3所述的一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,当所述对于指定像素的鲁棒扩展局部二值模式为基于径向差分的鲁棒扩展局部二值模式时,从所述待提取特征纹理图像中依次指定每个像素,为所述像素构建像素区域使用取平均方法将所述像素区域处理为取平均结果,并根据所述取平均结果,计算获得对于指定像素的鲁棒扩展局部二值模式为:
从所述待提取特征纹理图像中依次选定每个像素xc
以所述指定像素xc为中心,从所述待提取特征纹理图像中选取到p个邻域像素xr,p,n,所述p个邻域像素xr,p,n等角间隔的均匀分布在以xc为圆心以r为半径的圆周上,其中n=0,...,p-1,所述邻域像素xr,p,n的坐标值为(-rsin(2πn/p),rcos(2πn/p))与指定像素xc的坐标的叠加和;
分别以所述p个邻域像素xr,p,n中的每一个为中心,从所述待提取特征纹理图像中截取出p个邻域块所述p个邻域块都是尺寸为wr×wr的、分别以所述每个邻域像素xr,p,n为中心的正方形像素集合;
以所述指定像素xc为中心,从所述待提取特征纹理图像中选取到p个亚邻域像素xr-1,p,n,所述p个亚邻域像素xr-1,p,n等角间隔的均匀分布在以xc为圆心以r-1为半径的圆周上,其中n=0,...,p-1,所述邻域像素xr-1,p,n的坐标值为(-(r-1)sin(2πn/p),(r-1)cos(2πn/p))与指定像素xc的坐标的叠加和;
分别以所述p个亚邻域像素xr-1,p,n中的每一个为中心,从所述待提取特征纹理图像中截取出p个亚邻域块所述p个亚邻域块是分别以所述每个亚邻域像素xr-1,p,n为中心的正方形像素集合;
使用取平均方法处理所述p个亚邻域块获得所述p个亚邻域块的取平均结果
根据所述p个邻域块的取平均结果与所述p个位于半径r-1上的亚邻域块的取平均结果计算位于相同角度方向上、不同半径大小的两个滤波值的差分值,基于此获得对于指定像素xc的基于径向差分的鲁棒扩展局部二值模式
R E L B P _ RD r , r - 1 , p , w r , w r - 1 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) 2 n
其中, s ( x ) = 1 x &GreaterEqual; 0 0 x < 0 .
7.根据权利要求4至6中任意一项所述的一种鲁棒扩展局部二值模式纹理特征提取方法,其特征在于,根据所述对于指定像素的鲁棒扩展局部二值模式,将所述指定像素归入固定的组中包括:
根据所述鲁棒扩展局部二值模式RELBP分别计算其中,所述
A R E L B R _ NI r , p r i u 2 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) , i f U ( A R E L B P _ NI r , p &le; 2 ) p + 1 , o t h e r w i s e ,
所述
A R E L B R _ RD r , p r i u 2 = &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) , i f U ( A R E L B P _ RD r , p &le; 2 ) p + 1 , o t h e r w i s e ;
其中,所述U值是指一个二进制模式串的均匀度度量,定义为二进制模式中圆周上相邻的两个比特值的0/1或1/0转移次数,以ARELBP_NIr,p为例给出U值的定义,设ARELBP_NIr,p的二进制模式比特串为:
ARELBP_NIr,p=b0b1……bp-1
其中, b n = s ( &phi; ( X r , p , w r , n ) - &mu; r , p , w r ) , n = 0 , ... ... , p - 1 , 那么:
U ( ARELBP NI r , p ) = U ( b 0 b 1 ... ... b p - 1 ) = | b 0 - b p | + &Sigma; n = 0 p - 1 | b n - b n + 1 | ;
判断所述U(ARELBP_NIr,p≤2)(U(ARELBP_RDr,p≤2))是否成立,若是,则将其归入均匀模式下,并根据 ( &Sigma; n = 0 p - 1 s ( &phi; ( X r , p , w r , n ) - &phi; ( X r - 1 , p , w r - 1 , n ) ) ) 的取值而划入所述均匀模式下组0至组p中的一个;若否,则将其归入非均匀模式下的唯一组p+1中;
根据所述生成联合概率直方图,并以所述联合概率直方图为分组依据将所述指定像素归入固定的模式组中。
CN201510366866.9A 2015-06-29 2015-06-29 一种鲁棒扩展局部二值模式纹理特征提取方法 Active CN105046262B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510366866.9A CN105046262B (zh) 2015-06-29 2015-06-29 一种鲁棒扩展局部二值模式纹理特征提取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510366866.9A CN105046262B (zh) 2015-06-29 2015-06-29 一种鲁棒扩展局部二值模式纹理特征提取方法

Publications (2)

Publication Number Publication Date
CN105046262A true CN105046262A (zh) 2015-11-11
CN105046262B CN105046262B (zh) 2018-08-17

Family

ID=54452791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510366866.9A Active CN105046262B (zh) 2015-06-29 2015-06-29 一种鲁棒扩展局部二值模式纹理特征提取方法

Country Status (1)

Country Link
CN (1) CN105046262B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463667A (zh) * 2017-08-02 2017-12-12 大连理工大学 基于邻居像素点的共生局部三值模式的图像检索方法
CN108876832A (zh) * 2018-05-30 2018-11-23 重庆邮电大学 基于分组-次序模式的鲁棒纹理特征提取方法
CN110070545A (zh) * 2019-03-20 2019-07-30 重庆邮电大学 一种城镇纹理特征密度自动提取城镇建成区的方法
CN111191658A (zh) * 2019-02-25 2020-05-22 中南大学 基于广义局部二值模式的纹理描述方法及图像分类方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258202A (zh) * 2013-05-02 2013-08-21 电子科技大学 一种鲁棒的纹理特征提取方法
CN103530645A (zh) * 2013-09-25 2014-01-22 北京工商大学 基于局部二值模式和Zernike矩的纹理图像分类方法及系统
CN103824052A (zh) * 2014-02-17 2014-05-28 北京旷视科技有限公司 一种基于多层次语义特征的人脸特征提取方法及识别方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103258202A (zh) * 2013-05-02 2013-08-21 电子科技大学 一种鲁棒的纹理特征提取方法
CN103530645A (zh) * 2013-09-25 2014-01-22 北京工商大学 基于局部二值模式和Zernike矩的纹理图像分类方法及系统
CN103824052A (zh) * 2014-02-17 2014-05-28 北京旷视科技有限公司 一种基于多层次语义特征的人脸特征提取方法及识别方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107463667A (zh) * 2017-08-02 2017-12-12 大连理工大学 基于邻居像素点的共生局部三值模式的图像检索方法
CN108876832A (zh) * 2018-05-30 2018-11-23 重庆邮电大学 基于分组-次序模式的鲁棒纹理特征提取方法
CN108876832B (zh) * 2018-05-30 2022-04-26 重庆邮电大学 基于分组-次序模式的鲁棒纹理特征提取方法
CN111191658A (zh) * 2019-02-25 2020-05-22 中南大学 基于广义局部二值模式的纹理描述方法及图像分类方法
CN110070545A (zh) * 2019-03-20 2019-07-30 重庆邮电大学 一种城镇纹理特征密度自动提取城镇建成区的方法
CN110070545B (zh) * 2019-03-20 2023-05-26 重庆邮电大学 一种城镇纹理特征密度自动提取城镇建成区的方法

Also Published As

Publication number Publication date
CN105046262B (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN105022989A (zh) 一种鲁棒扩展局部二值模式纹理特征提取方法
Sirmacek et al. Urban-area and building detection using SIFT keypoints and graph theory
CN105005781A (zh) 一种鲁棒扩展局部二值模式纹理特征提取方法
CN106056751A (zh) 冠字号码的识别方法及系统
Gu et al. Learning to boost filamentary structure segmentation
CN102521597B (zh) 一种基于分级策略的影像直线特征匹配方法
CN105046262A (zh) 一种鲁棒扩展局部二值模式纹理特征提取方法
US9224207B2 (en) Segmentation co-clustering
Yang et al. BoSR: A CNN-based aurora image retrieval method
CN107239792A (zh) 一种基于二进制描述子的工件识别方法及装置
Khemchandani et al. Color image classification and retrieval through ternary decision structure based multi-category TWSVM
CN103679207A (zh) 一种手写体数字识别方法及系统
Xie et al. Fabric defect detection method combing image pyramid and direction template
CN104282008A (zh) 对图像进行纹理分割的方法和装置
Baeta et al. Learning deep features on multiple scales for coffee crop recognition
Hossain et al. Rapid feature extraction for optical character recognition
Forczmański et al. Stamps detection and classification using simple features ensemble
Lan et al. An edge-located uniform pattern recovery mechanism using statistical feature-based optimal center pixel selection strategy for local binary pattern
Sahli et al. Robust vehicle detection in low-resolution aerial imagery
Hu et al. Directional analysis of texture images using gray level co-occurrence matrix
Cohen et al. Set features for fine-grained anomaly detection
CN103336964A (zh) 一种基于模值差镜像不变性的sift图像匹配方法
CN116503848B (zh) 车牌的智能识别方法、装置、设备及存储介质
Gorai et al. A comparative study of local binary pattern descriptors and Gabor Filter for electron microscopy image segmentation
CN109829511B (zh) 基于纹理分类的下视红外图像中云层区域检测方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant