CN105023692A - Multiferroic liquid and preparation method thereof - Google Patents
Multiferroic liquid and preparation method thereof Download PDFInfo
- Publication number
- CN105023692A CN105023692A CN201510427378.4A CN201510427378A CN105023692A CN 105023692 A CN105023692 A CN 105023692A CN 201510427378 A CN201510427378 A CN 201510427378A CN 105023692 A CN105023692 A CN 105023692A
- Authority
- CN
- China
- Prior art keywords
- multiferroic
- liquid
- magnetic
- nanoparticles
- ferroelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007788 liquid Substances 0.000 title claims abstract description 138
- 238000002360 preparation method Methods 0.000 title abstract description 14
- 239000002105 nanoparticle Substances 0.000 claims abstract description 75
- 230000005291 magnetic effect Effects 0.000 claims abstract description 64
- 239000000463 material Substances 0.000 claims abstract description 48
- 239000002122 magnetic nanoparticle Substances 0.000 claims abstract description 41
- 239000004094 surface-active agent Substances 0.000 claims abstract description 20
- 230000005621 ferroelectricity Effects 0.000 claims abstract description 13
- 239000000725 suspension Substances 0.000 claims abstract description 11
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 claims description 13
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 claims description 13
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 claims description 13
- 239000005642 Oleic acid Substances 0.000 claims description 13
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000012530 fluid Substances 0.000 claims description 13
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 claims description 13
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 13
- 229920002545 silicone oil Polymers 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 238000001556 precipitation Methods 0.000 claims description 7
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 4
- AUQIXRHHSITZFM-UHFFFAOYSA-N 11-phenylundecanoic acid Chemical compound OC(=O)CCCCCCCCCCC1=CC=CC=C1 AUQIXRHHSITZFM-UHFFFAOYSA-N 0.000 claims description 3
- JRBPAEWTRLWTQC-UHFFFAOYSA-N dodecylamine Chemical compound CCCCCCCCCCCCN JRBPAEWTRLWTQC-UHFFFAOYSA-N 0.000 claims description 3
- 229920001083 polybutene Polymers 0.000 claims description 3
- 238000007789 sealing Methods 0.000 claims description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims 1
- 239000003599 detergent Substances 0.000 claims 1
- POULHZVOKOAJMA-UHFFFAOYSA-M dodecanoate Chemical compound CCCCCCCCCCCC([O-])=O POULHZVOKOAJMA-UHFFFAOYSA-M 0.000 claims 1
- 229910052731 fluorine Inorganic materials 0.000 claims 1
- 239000011737 fluorine Substances 0.000 claims 1
- 229940070765 laurate Drugs 0.000 claims 1
- 229920001296 polysiloxane Polymers 0.000 claims 1
- 239000011435 rock Substances 0.000 claims 1
- 230000005684 electric field Effects 0.000 abstract description 43
- 239000007787 solid Substances 0.000 abstract description 17
- 239000002245 particle Substances 0.000 abstract description 16
- 230000000694 effects Effects 0.000 abstract description 10
- 230000005389 magnetism Effects 0.000 abstract description 8
- 238000011160 research Methods 0.000 abstract description 7
- 239000000203 mixture Substances 0.000 abstract description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 230000009471 action Effects 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 9
- 239000002243 precursor Substances 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 239000000243 solution Substances 0.000 description 7
- 230000001105 regulatory effect Effects 0.000 description 6
- 238000002834 transmittance Methods 0.000 description 6
- 230000002776 aggregation Effects 0.000 description 5
- 230000001808 coupling effect Effects 0.000 description 5
- 230000010287 polarization Effects 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 4
- 238000005054 agglomeration Methods 0.000 description 4
- 229910002113 barium titanate Inorganic materials 0.000 description 4
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 4
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 4
- 239000012452 mother liquor Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 3
- 239000002070 nanowire Substances 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910003321 CoFe Inorganic materials 0.000 description 2
- 239000005639 Lauric acid Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229960000583 acetic acid Drugs 0.000 description 2
- YRKCREAYFQTBPV-UHFFFAOYSA-N acetylacetone Chemical compound CC(=O)CC(C)=O YRKCREAYFQTBPV-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical compound CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 230000005307 ferromagnetism Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000010413 mother solution Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- 230000005653 Brownian motion process Effects 0.000 description 1
- 229910021094 Co(NO3)2-6H2O Inorganic materials 0.000 description 1
- 229920001774 Perfluoroether Polymers 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000005620 antiferroelectricity Effects 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000005303 antiferromagnetism Effects 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- YHWCPXVTRSHPNY-UHFFFAOYSA-N butan-1-olate;titanium(4+) Chemical compound [Ti+4].CCCC[O-].CCCC[O-].CCCC[O-].CCCC[O-] YHWCPXVTRSHPNY-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 230000005492 condensed matter physics Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- KTMLBHVBHVXWKQ-UHFFFAOYSA-N dibismuth dioxido(dioxo)manganese Chemical compound [Bi+3].[Bi+3].[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O.[O-][Mn]([O-])(=O)=O KTMLBHVBHVXWKQ-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005293 ferrimagnetic effect Effects 0.000 description 1
- 230000005308 ferrimagnetism Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000005616 pyroelectricity Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000010897 surface acoustic wave method Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- -1 which can be CFO Substances 0.000 description 1
Landscapes
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
- Colloid Chemistry (AREA)
Abstract
本发明公开了一种多铁性液体及其制备方法。本发明的多铁性液体通过以下步骤制得,首先将基液和表面活性剂均匀混合混合液体;再将铁电性的纳米颗粒和磁性的纳米颗粒加入该混合液体中摇晃并装入密封容器中置入摇床上摇动半个小时以上,即得到纳米颗粒均匀分散在所述混合液体中的形成稳定的悬浮液,即多铁性液体。本发明的多铁性液体既具有磁性、铁电性还具有流动性,对磁场和电场都非常敏感;较固态铁电材料多铁性液体具有更小的矫顽力,微粒在电场或磁场下容易转动;而且还具有磁光效应和折射效应这些固态多铁性材料不具备的性能。本发明首次提出多铁性液体及制备方法,为多铁性材料的研究开辟了新的方向。
The invention discloses a multiferroic liquid and a preparation method thereof. The multiferroic liquid of the present invention is prepared through the following steps: first, uniformly mix the base liquid and the surfactant to mix the mixed liquid; then add ferroelectric nanoparticles and magnetic nanoparticles to the mixed liquid for shaking and put it into a sealed container Put it on a shaker and shake it for more than half an hour to obtain a stable suspension in which the nanoparticles are uniformly dispersed in the mixed liquid, that is, a multiferroic liquid. The multiferroic liquid of the present invention not only has magnetism, ferroelectricity but also fluidity, and is very sensitive to magnetic field and electric field; it has smaller coercive force than solid ferroelectric material multiferroic liquid, and the particles are stable under electric field or magnetic field. It is easy to rotate; it also has the properties that solid multiferroic materials do not have, such as magneto-optic effect and refraction effect. The invention proposes a multiferroic liquid and a preparation method for the first time, opening up a new direction for the research of multiferroic materials.
Description
技术领域technical field
本发明属于多铁性材料领域,具体涉及一种多铁性液体及其制备方法。The invention belongs to the field of multiferroic materials, and in particular relates to a multiferroic liquid and a preparation method thereof.
背景技术Background technique
1994年瑞士的Schmid明确提出了多铁性材料这一概念,多铁性材料(mutliferroic)是指材料的同一个相中包含两种及两种以上铁的基本性能,这些铁的基本性能包括铁电性(反铁电性),铁磁性(反铁磁性、亚铁磁性)和铁弹性。这类材料在一定的温度下同时存在自发极化序和自旋序,正是它们的同时存在引起的磁电耦合效应,使多铁性体具有某些特殊的物理性质,引发了若干新的、有意义的的物理现象,如:在磁场的作用下产生电极化或者诱导铁电相变;在电场作用下产生磁场或者诱导铁磁相变;在Curie温度铁磁相变点附近产生介电常数的突变,多铁性材料已成为当前国际上研究的一个热点。In 1994, Schmid in Switzerland clearly proposed the concept of multiferroic materials. Multiferroic materials (mutliferroic) refer to the basic properties of two or more types of iron in the same phase of the material. These basic properties of iron include iron Electricity (antiferroelectricity), ferromagnetism (antiferromagnetism, ferrimagnetism) and ferroelasticity. This kind of material has both spontaneous polarization order and spin order at a certain temperature. It is the magnetoelectric coupling effect caused by their simultaneous existence that makes multiferroics have some special physical properties and triggers several new , Significant physical phenomena, such as: generating electric polarization or inducing ferroelectric phase transition under the action of a magnetic field; generating a magnetic field or inducing ferromagnetic phase transition under the action of an electric field; Constant mutation, multiferroic materials have become a hotspot in current international research.
铁电材料具有优良的铁电、介电、热释电性、电光特性、声光特性、非线性光学等特性,它们在铁电存储器、红外探测器、传感器、声表面波、集成光电器件、电容器等固态器件方面有着非常重要的应用,这也极大地推动了铁电材料及铁电物理学的研究和发展。基于铁电材料的铁电随机存储器由于其非易失性和读取速度快等特点而具有巨大的应用前景。铁电材料及其应用研究已成为凝聚态物理、固体电子学领域最热门的研究课题之一。Ferroelectric materials have excellent properties such as ferroelectricity, dielectricity, pyroelectricity, electro-optic properties, acousto-optic properties, and nonlinear optics. They are used in ferroelectric memories, infrared detectors, sensors, surface acoustic waves, integrated optoelectronic devices, There are very important applications in solid-state devices such as capacitors, which also greatly promotes the research and development of ferroelectric materials and ferroelectric physics. Ferroelectric random access memory based on ferroelectric materials has great application prospects due to its non-volatility and fast read speed. Ferroelectric materials and their applications have become one of the most popular research topics in the fields of condensed matter physics and solid-state electronics.
目前同时具有铁电有序和磁性有序的材料也不多,典型的有铁酸铋(BiFeO3,简称BFO)、锰酸铋(BiMnO3,简称BMO)、罗息盐(NaKC4H4O6.4H2O)、BaFe12O19等。即便如此,目前研究的多铁性材料都是固态,包括多铁性陶瓷、多铁性薄膜、多铁性单晶等。固态多铁性材料存在以下不足:1、固态多铁性材料的矫顽力比较大,当用磁场或电场来调控器磁性或铁电性的时候,需要的磁场或电场也就比较大;2.当研究其磁电耦合效应的时候,发现效应比较弱变化不明显;3.施加电场过大容易将多铁性材料损坏,造成材料浪费;4.多铁性材料一旦成型其结构就不能改变。At present, there are not many materials with ferroelectric order and magnetic order at the same time. The typical ones are bismuth ferrite (BiFeO 3 , referred to as BFO), bismuth manganate (BiMnO 3 , referred to as BMO), and Roch salt (NaKC 4 H 4 O 6 .4H 2 O), BaFe 12 O 19 , etc. Even so, the multiferroic materials studied so far are all in the solid state, including multiferroic ceramics, multiferroic thin films, and multiferroic single crystals. Solid multiferroic materials have the following disadvantages: 1. The coercive force of solid multiferroic materials is relatively large. When magnetic or electric fields are used to regulate magnetism or ferroelectricity, the required magnetic or electric fields are relatively large; 2. .When studying the magnetoelectric coupling effect, it is found that the effect is relatively weak and the change is not obvious; 3. If the electric field is too large, the multiferroic material will be easily damaged, resulting in material waste; 4. Once the multiferroic material is formed, its structure cannot be changed .
由于目前同时具有铁电有序和磁性有序的单相材料不多,而且这些材料要么是磁性不够强,要么就是铁电性比较弱,要么就是居里温度比较低(只有在低温下才具有磁性和铁电性)。液态的多铁性材料还未见报道,在国际上也没有“多铁性液体”这个概念。这是因为,当多铁性材料处于液化状态到时候,温度一般都高于其铁电居里温度或者铁磁居里温度,此时多铁性材料已经失去铁电性和(或)铁磁性(或亚铁磁性、反铁磁性)了。因此,我们首次提出“多铁性液体”这个概念,并给出了其制备方法。At present, there are not many single-phase materials with ferroelectric order and magnetic order at the same time, and these materials are either not magnetic enough, or the ferroelectricity is relatively weak, or the Curie temperature is relatively low (only at low temperatures). magnetism and ferroelectricity). Liquid multiferroic materials have not been reported yet, and there is no concept of "multiferroic liquid" in the world. This is because, when the multiferroic material is in a liquefied state, the temperature is generally higher than its ferroelectric or ferromagnetic Curie temperature, and the multiferroic material has lost ferroelectricity and/or ferromagnetism at this time. (or ferrimagnetic, antiferromagnetic). Therefore, we put forward the concept of "multiferroic liquid" for the first time, and gave its preparation method.
发明内容Contents of the invention
为了解决上述固态多铁性材料的不足,本发明提供了一种多铁性液体以及其制备方法。In order to solve the shortcomings of the above-mentioned solid multiferroic materials, the present invention provides a multiferroic liquid and a preparation method thereof.
本发明通过以下技术方案实现:The present invention is realized through the following technical solutions:
一种多铁性液体,包括磁性的纳米颗粒、铁电性的纳米颗粒、基液、表面活性剂,所述基液和所述表面活性剂均匀混合成混合液体,所述磁性的纳米颗粒、铁电性的纳米颗粒均匀分散在所述混合液体中形成稳定的悬浮液。A multiferroic liquid, comprising magnetic nanoparticles, ferroelectric nanoparticles, a base liquid, and a surfactant, wherein the base liquid and the surfactant are uniformly mixed into a mixed liquid, the magnetic nanoparticles, The ferroelectric nanoparticles are uniformly dispersed in the mixed liquid to form a stable suspension.
进一步,所述磁性的纳米颗粒的粒径≦20nm。Further, the particle diameter of the magnetic nanoparticles is ≦20nm.
进一步,所述铁电性的纳米颗粒的粒径≦20nm。Further, the particle size of the ferroelectric nanoparticles is ≦20 nm.
进一步,所述基液是水、有机液体或者有机水溶液。Further, the base liquid is water, an organic liquid or an organic aqueous solution.
进一步,所述基液为硅油、十二烷基苯或聚丁烯油。Further, the base liquid is silicone oil, dodecylbenzene or polybutene oil.
进一步,所述表面活性剂为油酸、氨基十二烷、氟醚酸、月桂酸、苯基十一烷酸至少一种。Further, the surfactant is at least one of oleic acid, aminododecane, fluetheric acid, lauric acid, and phenylundecanoic acid.
制备上述任一所述的多铁性液体的方法,包括以下步骤:The method for preparing any of the above-mentioned multiferroic liquids comprises the following steps:
准备干燥的磁性纳米颗粒,干燥的铁电性纳米颗粒,基液和表面活性剂;Preparation of dry magnetic nanoparticles, dry ferroelectric nanoparticles, base fluid and surfactant;
把基液和表面活性剂均匀混合为混合液体,把磁性的纳米颗粒、铁电性的纳米颗粒加入到混合液体中,摇晃避免纳米颗粒团聚、沉淀,再把混合液体装入密封的容器中并置于摇床上摇动,直至形成稳定的悬浮液,即得到多铁性液体。Mix the base liquid and surfactant evenly into a mixed liquid, add magnetic nanoparticles and ferroelectric nanoparticles into the mixed liquid, shake to avoid the aggregation and precipitation of the nanoparticles, then put the mixed liquid into a sealed container and Shake on a shaker until a stable suspension is formed to obtain a multiferroic liquid.
进一步,为了使纳米颗粒均匀的分散在所述混合液体中形成稳定的悬浮液,摇床摇动时间大于半小时。Further, in order to uniformly disperse the nanoparticles in the mixed liquid to form a stable suspension, the shaking time of the shaker is longer than half an hour.
本发明的有益效果:Beneficial effects of the present invention:
1、对于固态多铁性材料,其矫顽力比较大,当用磁场或电场来调控器磁性或铁电性的时候,需要的磁场或电场比较大。而多铁性液体,由于纳米颗粒悬浮在液体中,纳米颗粒受到布朗运动的影响,且液体对纳米颗粒运动的阻力相对固体而言小很多。在电场(磁场)作用下,纳米颗粒可以在液体中旋转,其磁矩方向或者极化方向就可以相应发生转变;然而在固态多铁性材料里面,晶粒显然不能转动,阻力很大。1. For solid multiferroic materials, the coercive force is relatively large. When a magnetic or electric field is used to regulate the magnetism or ferroelectricity, the required magnetic or electric field is relatively large. In multiferroic liquids, since the nanoparticles are suspended in the liquid, the nanoparticles are affected by Brownian motion, and the resistance of the liquid to the movement of the nanoparticles is much smaller than that of the solid. Under the action of an electric field (magnetic field), nanoparticles can rotate in the liquid, and their magnetic moment or polarization direction can be changed accordingly; however, in solid multiferroic materials, the crystal grains obviously cannot rotate, and the resistance is very large.
2、对于固态多铁性材料,在研究其磁电耦合效应的时候,发现磁电耦合效应比较弱。而多铁性液态中悬浮有磁性的纳米颗粒和铁电性的纳米颗粒,施加电场的时候,铁电性纳米颗粒就发生转动,电偶极矩(电矩)就会转向电场方向,并形成链状,而且在液体中使电矩转动所需要的电场远小于固态多铁材料。在转动或其它运动方式的过程中,铁电性纳米颗粒会与磁性纳米颗粒发生作用,从而影响到磁性纳米颗粒的位置、方向、形状,从而实现电场对多铁性液体磁性的调控。反之,施加磁场的时候,磁性纳米颗粒的磁矩就会在磁场方向下轻松转动、运动并形成链状。在转动会或其它运动的过程中,磁性纳米颗粒就会影响铁电性纳米颗粒的位置、方向、形状,从而对多铁性液体的铁电性起调控作用。因此,只要施加很小的电场或磁场,就能使得电矩方向(极化方向)或磁矩方向转动,铁电性纳米颗粒的运动会作用于磁性纳米颗粒,反之磁性纳米颗粒在磁场下的运动又会影响铁电性纳米颗粒,从而实现并提高了多铁性液体的磁电耦合效应。2. For solid multiferroic materials, when studying the magnetoelectric coupling effect, it is found that the magnetoelectric coupling effect is relatively weak. However, magnetic nanoparticles and ferroelectric nanoparticles are suspended in the multiferroic liquid state. When an electric field is applied, the ferroelectric nanoparticles will rotate, and the electric dipole moment (electric moment) will turn to the direction of the electric field and form Chain-like, and the electric field required to turn the electric moment in the liquid is much smaller than that of solid multiferroic materials. In the process of rotation or other motion, the ferroelectric nanoparticles will interact with the magnetic nanoparticles, thereby affecting the position, direction, and shape of the magnetic nanoparticles, thereby realizing the regulation of the magnetic properties of the multiferroic liquid by the electric field. Conversely, when a magnetic field is applied, the magnetic moments of the magnetic nanoparticles will easily rotate, move and form chains in the direction of the magnetic field. During rotation or other motions, magnetic nanoparticles will affect the position, direction, and shape of ferroelectric nanoparticles, thereby regulating the ferroelectricity of multiferroic liquids. Therefore, as long as a small electric field or magnetic field is applied, the direction of the electric moment (polarization direction) or the direction of the magnetic moment can be rotated, and the movement of the ferroelectric nanoparticles will act on the magnetic nanoparticles, whereas the movement of the magnetic nanoparticles under the magnetic field It will also affect the ferroelectric nanoparticles, thereby realizing and improving the magnetoelectric coupling effect of the multiferroic liquid.
3、对于固态多铁性材料,施加电场过大,多铁性材料容易被电场击穿而损坏,而且这种击穿是永久的,不能恢复,造成多铁性材料的浪费。而多铁性液体,某一个点被电场击穿坏掉之后,只需要去掉电(磁)场,重新摇晃多铁性液体,然后再施加电(磁)场,多铁性液体又能恢复再使用。而且,多铁性液体只需要很小的电场就能改变其极化方向,因此也不容易被击穿。3. For solid multiferroic materials, if the applied electric field is too large, the multiferroic materials are easily broken down by the electric field and damaged, and this breakdown is permanent and cannot be recovered, resulting in waste of multiferroic materials. For multiferroic liquids, after a certain point is broken by an electric field breakdown, you only need to remove the electric (magnetic) field, shake the multiferroic liquid again, and then apply the electric (magnetic) field again, and the multiferroic liquid can recover again. use. Moreover, multiferroic liquids only need a small electric field to change their polarization direction, so they are not easy to be broken down.
4、对于固态多铁性材料,结构一旦成型,就不能改变。而对于多铁性液体,由于液体的流动性,其内部结构是可变化的。对多铁性液体施加电(磁)场之后,可以很容易的改变纳米链的长短粗细。而且,可根据需要施加电(磁)场,不需要用时候就不给电(磁)场,需要用的时候就施加电(磁)场电(磁)场,用完之后就可以去掉电(磁)场。而且可以通过改变电(磁)场的大小、方向、梯度等参数,随意控制纳米链的结构。如,做成光伏电池,使用固固态多铁性材料,薄膜层的厚度就是恒定的,电极之间的距离、电极的面积都是恒定的;如果是纳米线,那么纳米线的长度粗细距离都是恒定不变的。使用多铁性液体,则可以通过改变电(磁)场大小方向等因素,来改变纳米链的长短粗细距离。4. For solid multiferroic materials, once the structure is formed, it cannot be changed. As for the multiferroic liquid, due to the fluidity of the liquid, its internal structure is changeable. After applying an electric (magnetic) field to the multiferroic liquid, the length and thickness of the nanochains can be easily changed. Moreover, the electric (magnetic) field can be applied as required, and the electric (magnetic) field will not be given when not in use, and the electric (magnetic) field electric (magnetic) field will be applied when needed, and the electric (magnetic) field can be removed after use. magnetic field. Moreover, the structure of nanochains can be controlled at will by changing parameters such as the magnitude, direction, and gradient of the electric (magnetic) field. For example, if a photovoltaic cell is made of a solid multiferroic material, the thickness of the film layer is constant, and the distance between the electrodes and the area of the electrodes are constant; if it is a nanowire, then the length, thickness, and distance of the nanowire are both is constant. Using a multiferroic liquid, the length, thickness, and distance of the nanochains can be changed by changing the magnitude and direction of the electric (magnetic) field and other factors.
5、多铁性液体有磁光效应、折射效应在固态多铁性材料中没有的性能。5. Multiferroic liquid has the properties of magneto-optical effect and refraction effect which are not found in solid multiferroic materials.
6、在电场或磁场作用下,固态多铁性材料中电畴的取向只能沿着接近于电场方向的某些取向,并不一定沿着电场方向,而对于多铁性液体而言,由于纳米颗粒可以在液体中自由转动,因此其电畴的取向可以完全沿着电场方向。6. Under the action of electric field or magnetic field, the orientation of electric domains in solid multiferroic materials can only be along certain orientations close to the direction of electric field, not necessarily along the direction of electric field. For multiferroic liquids, due to Nanoparticles can rotate freely in the liquid, so the orientation of their electrical domains can be completely along the direction of the electric field.
由于多铁性液体同时具有多铁性和流动性,具有许多独特的铁电学、流体力学、光学和声学特性。当多铁性液体置于一定强度的均匀电场,当一束偏振光穿过时,偏振光的电矢量平行于外电场方向与垂直于外电场方向吸收情况会存在差异,因而呈光学各向异性,将产生法拉第效应、双折射效应等一系列电光效应。多铁性液体在交变场中估计会具有电导率频散、铁电粘滞性等现象。同样,可以通过电场来控制多铁性液体的磁性,反过来也可以施加磁场来改变其电性能。Since multiferroic liquids are both multiferroic and fluid, they have many unique ferroelectric, hydrodynamic, optical and acoustic properties. When a multiferroic liquid is placed in a uniform electric field of a certain intensity, when a beam of polarized light passes through, there will be differences in the absorption of the electric vector of the polarized light parallel to the direction of the external electric field and perpendicular to the direction of the external electric field, so it is optically anisotropic. A series of electro-optic effects such as Faraday effect and birefringence effect will be produced. It is estimated that multiferroic liquids will have conductivity dispersion and ferroelectric viscosity in alternating field. Likewise, the magnetism of multiferroic liquids can be controlled by an electric field, which in turn can be altered by applying a magnetic field.
总之,本发明首次提出多铁性液体概念并公开了多铁性液体的制备方法,为多铁性材料的研究开辟了一个全新的研究方向,从而拓宽了多铁性材料的研究范围,可根据多铁性液体的不同性能进行深入研究并加以利用,从而使多铁性材料得到更加充分的应用。本发明的多铁性液体为磁性纳米颗粒和铁电性纳米颗粒均匀分散在基液中形成稳定的悬浮液,该多铁性液体同时具有磁性、铁电性和流动性,从理论上说,提供了一种全新的同时具有铁电性和磁性的多铁性材料,本发明的多铁性液体的应用范围将比固态多铁性材料更加宽广。In a word, the present invention proposes the concept of multiferroic liquid for the first time and discloses the preparation method of multiferroic liquid, which has opened up a new research direction for the research of multiferroic materials, thereby broadening the research scope of multiferroic materials. The different properties of multiferroic liquids are thoroughly studied and utilized, so that multiferroic materials can be more fully applied. The multiferroic liquid of the present invention is that magnetic nanoparticles and ferroelectric nanoparticles are evenly dispersed in the base liquid to form a stable suspension, and the multiferroic liquid has magnetism, ferroelectricity and fluidity at the same time. Theoretically, A brand-new multiferroic material with both ferroelectricity and magnetism is provided, and the application range of the multiferroic liquid of the invention will be wider than that of the solid multiferroic material.
附图说明Description of drawings
图1是本发明的多铁性液体示意图;Fig. 1 is the multiferroic liquid schematic diagram of the present invention;
图2是本发明的多铁性液体在磁场下多铁性液体中沿磁场方向磁性纳米颗粒形成链状;Fig. 2 is that the multiferroic liquid of the present invention forms chains along the direction of the magnetic field in the multiferroic liquid under a magnetic field;
图3是本发明的多铁性液体在电场下多铁性液体中沿电场方向铁电性纳米颗粒形成链状;Fig. 3 is that the multiferroic liquid of the present invention forms chains in the multiferroic liquid along the direction of the electric field in the multiferroic liquid;
图4是本发明的多铁性液体在相同方向施加的电场和磁场下多铁性液体中纳米颗粒沿电场和磁场的方向形成链状;Fig. 4 is that the multiferroic liquid of the present invention forms a chain along the direction of the electric field and magnetic field in the multiferroic liquid under the electric field and magnetic field applied in the same direction;
图5是本发明的多铁性液体在不同磁场下其透光率的变化情况;Fig. 5 is the variation situation of its light transmittance of multiferroic liquid of the present invention under different magnetic fields;
图6是本发明的多铁性液体在不同电场下其透光率的变化情况。Fig. 6 shows the variation of the light transmittance of the multiferroic liquid of the present invention under different electric fields.
具体实施方式Detailed ways
下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.
一种多铁性液体,包括磁性的纳米颗粒、铁电性的纳米颗粒、基液、表面活性剂,所述基液和所述表面活性剂均匀混合成混合液体,所述磁性的纳米颗粒、铁电性的纳米颗粒均匀分散在所述混合液体中形成稳定的悬浮液。所述铁电性的纳米颗粒为钛酸钡(BTO)、锆钛酸铅(PZT)或四氧化三铁(Fe3O4),所述磁性的纳米颗粒为钴铁氧体(CoFe2O4,简写CFO)或γ-Fe2O3(本领域技术人员应当知道也可以根据需要选择其他铁电材料和磁性材料)。所述的纳米颗粒是具有铁电性(或者磁性)的纳米微粒或者纳米线。所述磁性的纳米颗粒的粒径≦20nm。所述铁电性的纳米颗粒的粒径≦20nm。纳米颗粒的粒径越小越好,粒径越小,由于库伦运动,纳米颗粒就不容易发生沉淀。反之,粒径越大,由于受到重力作用,就容易发生沉淀,不能形成悬浮液了。如果粒径大,就必须选择密度也很大的基液体,用浮力来抵消重力,这样对基液的选择就比较苛刻,可供选择的基液就比较少了。所述基液是水、有机液体或者有机水溶液。为了能够对多铁性液体的多铁性进行表征,就需要对多铁性液体施加电场或磁场,使得液体中的铁电性的纳米颗粒或磁性的纳米颗粒被极化。因此,基液就应该选择导电性很差的液体,比如接近于绝缘的油脂类,此外还应具有其他一些性能:击穿强度高,介质损耗角正切小,绝缘电阻率高,相对介电常数小;其次是具有优良的物理和化学性能。如汽化温度高,闪点高,尽量难燃或不燃;凝固点低,合适的粘度和粘度-温度特性;热导率大,比热容大;热稳定性好,耐氧化;在电场作用下吸气性小;它和与之接触的固体材料之间的相容性要好;毒性低、易生物降解。还要求来源广、价格低。优选供高温下使用的硅油、十二烷基苯或聚丁烯油等。选择与基液的介电性相匹配的表面活性剂油酸、氨基十二烷、氟醚酸、月桂酸或苯基十一烷酸。所选的表面活性剂既能包覆所述纳米颗粒又能溶于所选的基液中。且铁电性纳米颗粒和磁性纳米颗粒的总体积分数最好不超过20%,体积分数越大就越容易团聚,最后沉淀下来,不能形成稳定的悬浮液。体积分数过大,对表面活性剂以及基液的要求就越高,能选择的的范围就越窄。除特殊需求,总体积分数在5%之内会更加稳定,不易团聚、沉淀。A multiferroic liquid, comprising magnetic nanoparticles, ferroelectric nanoparticles, a base liquid, and a surfactant, wherein the base liquid and the surfactant are uniformly mixed into a mixed liquid, the magnetic nanoparticles, The ferroelectric nanoparticles are uniformly dispersed in the mixed liquid to form a stable suspension. The ferroelectric nanoparticles are barium titanate (BTO), lead zirconate titanate (PZT) or ferric oxide (Fe 3 O 4 ), and the magnetic nanoparticles are cobalt ferrite (CoFe 2 O 4 , CFO for short) or γ-Fe 2 O 3 (those skilled in the art should know that other ferroelectric materials and magnetic materials can also be selected as required). The nanoparticles are ferroelectric (or magnetic) nanoparticles or nanowires. The particle size of the magnetic nanoparticles is≦20nm. The particle size of the ferroelectric nanoparticles is≦20nm. The smaller the particle size of the nanoparticles, the better, and the smaller the particle size, the less likely the nanoparticles are to precipitate due to Coulomb movement. Conversely, the larger the particle size, the easier it is to precipitate due to the action of gravity, and the suspension cannot be formed. If the particle size is large, a base liquid with a high density must be selected, and the buoyancy is used to offset the gravity, so the selection of the base liquid is relatively harsh, and there are fewer base liquids to choose from. The base liquid is water, organic liquid or organic aqueous solution. In order to be able to characterize the multiferroicity of the multiferroic liquid, it is necessary to apply an electric field or a magnetic field to the multiferroic liquid, so that the ferroelectric nanoparticles or magnetic nanoparticles in the liquid are polarized. Therefore, the base fluid should choose a liquid with poor conductivity, such as grease close to insulation. In addition, it should have other properties: high breakdown strength, small dielectric loss tangent, high insulation resistivity, relative permittivity Small; followed by excellent physical and chemical properties. Such as high vaporization temperature, high flash point, flame retardant or non-combustible as far as possible; low freezing point, suitable viscosity and viscosity-temperature characteristics; high thermal conductivity, large specific heat capacity; good thermal stability, oxidation resistance; gas absorption under the action of electric field Small; it has better compatibility with the solid material it comes in contact with; low toxicity and easy biodegradation. It also requires wide sources and low prices. Silicone oil, dodecylbenzene, polybutene oil, etc. for use at high temperatures are preferable. Choose a surfactant oleic acid, aminododecane, fluoroether acid, lauric acid, or phenylundecanoic acid that matches the dielectric properties of the base fluid. The selected surfactant is capable of both coating the nanoparticles and soluble in the selected base fluid. Moreover, the total volume fraction of ferroelectric nanoparticles and magnetic nanoparticles is preferably not more than 20%. The larger the volume fraction, the easier it is to agglomerate, and finally settle down, unable to form a stable suspension. If the volume fraction is too large, the requirements for surfactants and base fluids will be higher, and the range of options will be narrower. Except for special needs, the overall integral score will be more stable within 5%, and it will not be easy to reunite and precipitate.
BTO-CFO多铁性液体的制备:Preparation of BTO-CFO multiferroic liquid:
第1步:以溶胶-凝胶法制备铁电性的BTO纳米颗粒Step 1: Preparation of ferroelectric BTO nanoparticles by sol-gel method
1)钡前驱液的配制:将适量的冰醋酸加入到醋酸钡中,置于80℃恒温水浴锅中加热溶解,冷却后转移入容量瓶中,采用滴定管滴加乙二醇乙醚定容即得Ba前驱液。2)钛前驱液的配制:将冰醋酸和乙二醇乙醚作为混合溶剂加入到钛酸四丁酯中,经溶解后转移到容量瓶中,采用滴定管滴入乙二醇乙醚定容即得Ti前驱液。将Ti前驱液滴加到Ba前驱液中,滴加后加入适量乙酰丙酮以调整溶胶粘度,混合均匀后经24小时即得纯钛酸钡的溶胶。若需制备掺杂钛酸钡的溶胶,只需同时加入适量的La前驱液、Nd前驱液或Co前驱液,经24小时老化后即得掺杂钛酸钡的溶胶。若有必要,还可加入适量乙醇胺以控制溶胶的粘度。然后将得到的溶液在加热台上进行烘烤,烤干之后放入箱式炉进行烧结,在烧结温度为900℃,时间为2h。将所得产物充分研磨后,得到BTO纳米颗粒。1) Preparation of barium precursor solution: add an appropriate amount of glacial acetic acid to barium acetate, heat and dissolve in a constant temperature water bath at 80°C, transfer it to a volumetric flask after cooling, and use a burette to drop ethylene glycol ether to constant volume. Ba precursor. 2) Preparation of titanium precursor solution: Add glacial acetic acid and ethylene glycol ether as a mixed solvent to tetrabutyl titanate, transfer it to a volumetric flask after dissolution, and use a burette to drop ethylene glycol ether to constant volume to obtain Ti Precursor. Add the Ti precursor solution dropwise to the Ba precursor solution, add an appropriate amount of acetylacetone after the dropwise addition to adjust the viscosity of the sol, and mix well to obtain a pure barium titanate sol after 24 hours. To prepare a sol doped with barium titanate, it is only necessary to add an appropriate amount of La precursor, Nd precursor or Co precursor at the same time, and after 24 hours of aging, the sol doped with barium titanate can be obtained. If necessary, an appropriate amount of ethanolamine can also be added to control the viscosity of the sol. Then the obtained solution was baked on a heating platform, and then put into a box furnace for sintering at a sintering temperature of 900° C. for 2 hours. After the obtained product is thoroughly ground, BTO nanoparticles are obtained.
第2步:共沉淀法制备CoFe2O4(CFO)磁性纳米颗粒Step 2: Preparation of CoFe 2 O 4 (CFO) Magnetic Nanoparticles by Co-precipitation Method
将FeCl3·6H2O(0.04mol,100mL)与Co(NO3)2·6H2O(0.02mol,100mL)混合,加入NaOH(0.35mol,500mL),然后将混合溶液加热到沸腾,伴之快速搅拌、沸腾持续1min后取下自然沉淀;充分沉淀后用1mol/L的H(NO)3溶液对沉淀物进行清洗直至pH值为7,然后将清洗所得产物经过丙酮脱水、干燥等工序后得到所需要的CFO磁性纳米颗粒。FeCl 3 6H 2 O (0.04mol, 100mL) was mixed with Co(NO 3 ) 2 6H 2 O (0.02mol, 100mL), NaOH (0.35mol, 500mL) was added, and the mixed solution was heated to boiling with After rapid stirring and boiling for 1 min, the natural precipitate was removed; after sufficient precipitation, the precipitate was washed with 1mol/L H(NO) 3 solution until the pH value was 7, and then the cleaned product was dehydrated and dried with acetone Finally, the required CFO magnetic nanoparticles are obtained.
第3步:BTO-CFO多铁性液体的制备Step 3: Preparation of BTO-CFO Multiferroic Liquid
硅油具有耐高低温、化学稳定性好、蒸气压低、黏度受温度影响小等特点,是多铁性液体的理想载液。但是,硅油憎水、憎油的特性使得将铁电性BTO和磁性CFO微粒均匀分散于其中的表面活性剂必须具有亲油性能,且能包覆磁性颗粒和铁电性颗粒,否则易出现团聚、沉降等现象。选用油酸作为表面活性剂。Silicone oil has the characteristics of high and low temperature resistance, good chemical stability, low vapor pressure, and viscosity is not affected by temperature. It is an ideal carrier liquid for multiferroic liquids. However, the hydrophobic and oleophobic properties of silicone oil make the surfactant that uniformly disperses ferroelectric BTO and magnetic CFO particles in it must have lipophilic properties and be able to coat magnetic particles and ferroelectric particles, otherwise agglomeration will easily occur , subsidence, etc. Oleic acid was selected as the surfactant.
制备磁性纳米颗粒体积分数为5%,铁电性纳米颗粒积分数也为5%、总体积为100ml的BTO-CFO多铁性液体。A BTO-CFO multiferroic liquid with a volume fraction of magnetic nanoparticles of 5%, a volume fraction of ferroelectric nanoparticles of 5%, and a total volume of 100 ml was prepared.
方法一:method one:
所需BTO和CFO纳米颗粒体积均为5ml,其密度约为6g/cm3,则需要BTO和CFO的质量都为30g;油酸的浓度为2%,则需要量取2ml的油酸;硅油的体积为100-10-2=88ml。The required volume of BTO and CFO nanoparticles is 5ml, and its density is about 6g/cm 3 , then the mass of BTO and CFO is required to be 30g; the concentration of oleic acid is 2%, then 2ml of oleic acid needs to be measured; silicone oil The volume is 100-10-2=88ml.
首先,称量30g的BTO纳米颗粒(体积约5cm3)和30g的CFO纳米颗粒(体积约5cm3),把BTO纳米颗粒和CFO纳米颗粒加入2ml油酸和88ml硅油的均匀混合的混合液体中,摇晃,避免微粒团聚、沉淀,再把装有混合液体的容器密封(防止摇动时摇出容器)并置于摇床上摇动,在摇床上进行摇动约1个小时。即得到铁电性纳米颗粒体积分数为5%、磁性纳米颗粒体积分数也为5%、总体积为100ml的BTO-CFO多铁性液体。First, weigh 30g of BTO nanoparticles (volume about 5cm 3 ) and 30g of CFO nanoparticles (volume about 5cm 3 ), and add BTO nanoparticles and CFO nanoparticles to the uniformly mixed mixed liquid of 2ml oleic acid and 88ml silicone oil , shake to avoid particle agglomeration and precipitation, then seal the container containing the mixed liquid (to prevent shaking out of the container when shaking) and place it on a shaker for shaking for about 1 hour. That is, a BTO-CFO multiferroic liquid with a volume fraction of ferroelectric nanoparticles of 5%, a volume fraction of magnetic nanoparticles of 5%, and a total volume of 100 ml was obtained.
方法二:Method Two:
制备BTO铁电性纳米颗粒体积分数为5%、总体积为100ml的BTO铁电性液体母液:The BTO ferroelectric liquid mother solution that the volume fraction of BTO ferroelectric nanoparticles is 5% and the total volume is 100ml is prepared:
所需BTO纳米颗粒体积为5ml,其密度约为6g/cm3,则需要BTO的质量为30g;油酸的浓度为2%,则需要量取2ml的油酸;硅油的体积为100-5-2=93ml。The required volume of BTO nanoparticles is 5ml, and its density is about 6g/cm 3 , then the mass of BTO is required to be 30g; the concentration of oleic acid is 2%, then 2ml of oleic acid needs to be measured; the volume of silicone oil is 100-5 -2 = 93ml.
首先,称量30g的BTO纳米颗粒(体积约5cm3),把BTO纳米颗粒加入2ml油酸和93ml硅油的均匀混合的混合液体中,摇晃,避免微粒团聚、沉淀,再把装有混合液体的容器密封(防止摇动时摇出容器)并置于摇床上摇动,在摇床上进行摇动约1个小时。即得到铁电纳米颗粒体积分数为5%、总体积为100ml的BTO铁电性液体母液。First, weigh 30g of BTO nanoparticles (volume about 5cm 3 ), add BTO nanoparticles to the uniformly mixed mixed liquid of 2ml oleic acid and 93ml silicone oil, shake to avoid particle agglomeration and precipitation, and then put the mixed liquid The container was sealed (to prevent shaking out of the container when shaken) and placed on a shaker for approximately 1 hour on a shaker. That is, a BTO ferroelectric liquid mother solution with a volume fraction of ferroelectric nanoparticles of 5% and a total volume of 100 ml was obtained.
制备CFO磁性纳米颗粒体积分数为5%、总体积为100ml的CFO磁性液体母液:The CFO magnetic liquid mother liquor whose volume fraction of CFO magnetic nanoparticles is 5% and whose total volume is 100ml is prepared:
所需CFO纳米颗粒体积为5ml,其密度约为6g/cm3,则需要CFO的质量为30g;油酸的浓度为2%,则需要量取2ml的油酸;硅油的体积为100-5-2=93ml。The required volume of CFO nanoparticles is 5ml, and its density is about 6g/cm 3 , so the mass of CFO needs to be 30g; the concentration of oleic acid is 2%, and 2ml of oleic acid needs to be measured; the volume of silicone oil is 100-5 -2 = 93ml.
首先,称量30g的CFO纳米颗粒(体积约5cm3),再把CFO纳米颗粒加入2ml油酸和93ml硅油的均匀混合的混合液体中,摇晃,避免微粒团聚、沉淀,再把装有混合液体的容器密封(防止摇动时摇出容器)并置于摇床上摇动,在摇床上进行摇动约1个小时。即得到磁性纳米颗粒体积分数为5%、体积为100ml的CFO磁性液体母液。First, weigh 30g of CFO nanoparticles (volume about 5cm 3 ), then add CFO nanoparticles into the uniformly mixed mixed liquid of 2ml oleic acid and 93ml silicone oil, shake it to avoid particle agglomeration and precipitation, and then put the mixed liquid The container was sealed (to prevent shaking out of the container when shaking) and placed on a shaker for shaking for about 1 hour. That is, a CFO magnetic liquid mother liquor with a volume fraction of 5% magnetic nanoparticles and a volume of 100 ml was obtained.
分别量取50ml的BTO铁电性液体母液和50ml的CFO磁性液体母液并将其混合,密封且置于摇床上摇动1个小时,及得到铁电性纳米颗粒体积分数为5%、磁性纳米颗粒体积分数也为5%、总体积为100ml的BTO-CFO多铁性液体。Take 50ml of BTO ferroelectric liquid mother liquor and 50ml of CFO magnetic liquid mother liquor respectively and mix them, seal and shake on a shaker for 1 hour, and obtain ferroelectric nanoparticles with a volume fraction of 5%, magnetic nanoparticles BTO-CFO multiferroic liquid with a volume fraction of 5% and a total volume of 100 ml.
配置BFO多铁性液体母液和CFO磁性液体母液所使用的基液和表面活性剂都是相同的,防止二者混合之后也许会出现沉淀现象。The base liquid and surfactant used to configure the BFO multiferroic liquid mother liquid and the CFO magnetic liquid mother liquid are the same to prevent precipitation after the two are mixed.
方法二也可以先制备体积分数不相同的铁电性液体母液和磁性液体母液,然后根据配置需要分别量取相应体积的铁电性液体母液和磁性液体母液,再加入一定量的基液或者基液与表面活性剂的混合液体,在摇床上摇动直至形成稳定的悬浮液,从而得到多铁性液体。Method 2 can also first prepare ferroelectric liquid mother liquid and magnetic liquid mother liquid with different volume fractions, and then measure corresponding volumes of ferroelectric liquid mother liquid and magnetic liquid mother liquid according to configuration requirements, and then add a certain amount of base liquid or base liquid The mixed liquid of liquid and surfactant is shaken on a shaker until a stable suspension is formed, thereby obtaining a multiferroic liquid.
综上所述,我们可以根据研究的需要,配置不同体积百分数的铁电性纳米颗粒和磁性纳米颗粒的多铁性液体。研究通过磁场控制铁电性纳米颗粒的形状、运动,那么磁性纳米颗粒所占的比重应该相对大一些,最好占总纳米颗粒体积的30%-80%,低于30%,磁性纳米颗粒的运动和形状对铁电性纳米颗粒虽有一定的影响,但是起不到关键的作用;如果超过80%,虽然磁性纳米颗粒能明显的影响到铁电性纳米颗粒,但是铁电性纳米颗粒的比例由于太小,性能变化不会很大。反之,如果需要研究磁性纳米颗粒的运动情况、性质、或者结构与其他性质之间的关系的话,那么为了能通过电场来调控铁电性纳米颗粒的结构从而调控磁性纳米颗粒,则铁电性纳米颗粒占总微粒体积最好为30%-80%。In summary, we can configure multiferroic liquids with different volume percentages of ferroelectric nanoparticles and magnetic nanoparticles according to the needs of research. To study the shape and movement of ferroelectric nanoparticles controlled by magnetic field, the proportion of magnetic nanoparticles should be relatively large, preferably 30%-80% of the total nanoparticle volume, less than 30%. Although movement and shape have certain influence on ferroelectric nanoparticles, they do not play a key role; if more than 80%, although magnetic nanoparticles can obviously affect ferroelectric nanoparticles, the Since the ratio is too small, the performance change will not be great. Conversely, if it is necessary to study the relationship between the movement, properties, or structure of magnetic nanoparticles and other properties, then in order to regulate the structure of ferroelectric nanoparticles and magnetic nanoparticles through electric fields, ferroelectric nanoparticle The particle volume is preferably 30%-80% of the total particle volume.
如图1所示,图1中黑色的圆圈代表具有磁性的纳米颗粒,可以是CFO,Fe3O4等。灰色的圆圈代表具有铁电性的纳米颗粒,可以是BTO,PZT等。灰色的区域代表基液,可以是水、酸、油、烃等等。As shown in Figure 1, the black circles in Figure 1 represent magnetic nanoparticles, which can be CFO, Fe 3 O 4 and so on. The gray circles represent ferroelectric nanoparticles, which can be BTO, PZT, etc. The gray area represents the base fluid, which can be water, acids, oils, hydrocarbons, etc.
图2所示,沿竖直方向施加磁场之后,具有磁性的纳米颗粒就沿着磁场的方向有序排列,形成链状,可以调控其他性质,例如透光性。此外,铁电性的纳米颗粒在磁性纳米链的作用下也会发生移动,说明不但可以通过磁场调控磁性,还可以通过磁场调控电学性能。As shown in Figure 2, after a magnetic field is applied in the vertical direction, the magnetic nanoparticles are arranged in an orderly manner along the direction of the magnetic field, forming a chain, which can control other properties, such as light transmission. In addition, ferroelectric nanoparticles will also move under the action of magnetic nanochains, indicating that not only magnetic properties can be regulated by magnetic fields, but also electrical properties can be regulated by magnetic fields.
图3所示,沿竖直方向施加电场之后,具有铁电性的纳米颗粒就沿着电场的方向有序排列,形成链状,可以调控其他性质,例如透光性。此外,具有磁性的纳米颗粒在铁电性纳米链的作用下也会发生移动,说明不但可以通过电场调控铁电性,还可以通过电场调控磁学性能。在传感器、密封器件等方面具有一定的应用价值。As shown in Figure 3, after applying an electric field along the vertical direction, the ferroelectric nanoparticles are arranged in an orderly manner along the direction of the electric field, forming a chain, which can control other properties, such as light transmission. In addition, magnetic nanoparticles will also move under the action of ferroelectric nanochains, indicating that not only ferroelectricity can be regulated by electric field, but also magnetic properties can be regulated by electric field. It has certain application value in sensors, sealing devices and the like.
如图4所示,沿竖直方向同时施加电场和磁场之后,具有铁电性的纳米颗粒就沿着电场的方向有序排列,形成链状,同时具有磁性的纳米颗粒就在磁场作用下也形成链状,如图4所示。这样的话,通过电场和磁场就可以调控其他性质,例如透光性、铁电性、磁性、流动性等,具有一定的应用价值。As shown in Figure 4, after an electric field and a magnetic field are applied simultaneously in the vertical direction, the ferroelectric nanoparticles are arranged in an orderly manner along the direction of the electric field, forming a chain, and at the same time, the magnetic nanoparticles are also released under the action of the magnetic field. Form a chain, as shown in Figure 4. In this way, other properties, such as light transmission, ferroelectricity, magnetism, fluidity, etc., can be regulated through electric and magnetic fields, which has certain application value.
如图5所示,铁电性纳米颗粒和磁性纳米颗粒总体积分数为10%的多铁性液体,铁电性纳米颗粒和磁性纳米颗粒体积分数都为5%的多铁性液体,在加磁场后光的透射率随着时间的变化。可以发现磁场对光的透射率具有一定的调控作用。如图6所示,铁电性纳米颗粒和磁性纳米颗粒总体积分数为10%的多铁性液体,铁电性纳米颗粒和磁性纳米颗粒体积分数都为5%的多铁性液体,在加电场后光的透射率随着时间的变化。a中电场为200kV/m,b中电场强度为500kV/m。可以发现电场对光的透射率具有一定的调控作用。As shown in Figure 5, the multiferroic liquid with a total volume fraction of ferroelectric nanoparticles and magnetic nanoparticles of 10%, and the multiferroic liquid with a volume fraction of ferroelectric nanoparticles and magnetic nanoparticles of 5% were added Transmittance of light after a magnetic field as a function of time. It can be found that the magnetic field has a certain regulation effect on the light transmittance. As shown in Figure 6, the multiferroic liquid with a total volume fraction of ferroelectric nanoparticles and magnetic nanoparticles of 10%, and the multiferroic liquid with a volume fraction of ferroelectric nanoparticles and magnetic nanoparticles of 5% were added Transmittance of light after an electric field as a function of time. The electric field in a is 200kV/m, and the electric field strength in b is 500kV/m. It can be found that the electric field has a certain regulation effect on the light transmittance.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510427378.4A CN105023692A (en) | 2015-07-20 | 2015-07-20 | Multiferroic liquid and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510427378.4A CN105023692A (en) | 2015-07-20 | 2015-07-20 | Multiferroic liquid and preparation method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
CN105023692A true CN105023692A (en) | 2015-11-04 |
Family
ID=54413586
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510427378.4A Pending CN105023692A (en) | 2015-07-20 | 2015-07-20 | Multiferroic liquid and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105023692A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108254413A (en) * | 2018-01-29 | 2018-07-06 | 重庆科技学院 | A kind of device and method for testing multiferroic liquid |
CN108254412A (en) * | 2018-01-29 | 2018-07-06 | 重庆科技学院 | A kind of test device and method of multiferroic liquid |
CN108267483A (en) * | 2018-01-29 | 2018-07-10 | 重庆科技学院 | A kind of device and method for testing multiferroic liquid properties |
CN108287179A (en) * | 2018-01-29 | 2018-07-17 | 重庆科技学院 | A kind of performance testing device and method of multiferroic liquid |
CN108445058A (en) * | 2018-03-07 | 2018-08-24 | 重庆科技学院 | Multiferroic liquid physics characteristic test device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101475930A (en) * | 2008-12-26 | 2009-07-08 | 中国科学院过程工程研究所 | Superparamagnetic nano particle in situ adsorptive separation-immobilized Rhodococcus biological desulphurization process |
CN101804968A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Direct synthesis method of nanometer oxide powder |
CN102285692A (en) * | 2011-06-16 | 2011-12-21 | 西南大学 | Preparation of colloid with strong magneto optic effect |
CN103740365A (en) * | 2014-01-14 | 2014-04-23 | 重庆三峡学院 | A kind of FeOOH-ZnFe2O4 mixed magnetic liquid and preparation method thereof |
-
2015
- 2015-07-20 CN CN201510427378.4A patent/CN105023692A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101475930A (en) * | 2008-12-26 | 2009-07-08 | 中国科学院过程工程研究所 | Superparamagnetic nano particle in situ adsorptive separation-immobilized Rhodococcus biological desulphurization process |
CN101804968A (en) * | 2010-03-19 | 2010-08-18 | 清华大学 | Direct synthesis method of nanometer oxide powder |
CN102285692A (en) * | 2011-06-16 | 2011-12-21 | 西南大学 | Preparation of colloid with strong magneto optic effect |
CN103740365A (en) * | 2014-01-14 | 2014-04-23 | 重庆三峡学院 | A kind of FeOOH-ZnFe2O4 mixed magnetic liquid and preparation method thereof |
Non-Patent Citations (3)
Title |
---|
DAVID Y,ET AL: "Ultrasonic properties of magnetic fluids", 《JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS》 * |
FLAVLA C.C,ET AL: "Magnetic Fluids Based on γ-Fe2O3 and CoFe2O4 Nanoparticles Dispersed in Ionic Liquids", 《J.PHYS.CHEM.C》 * |
SWAPNA NAIR,ET AL: "Proposed multiferroic/magneto electric fluids:prospects,techniques and probable candidates", 《CHAOS AND COMPLEXITY LETTERS》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108254413A (en) * | 2018-01-29 | 2018-07-06 | 重庆科技学院 | A kind of device and method for testing multiferroic liquid |
CN108254412A (en) * | 2018-01-29 | 2018-07-06 | 重庆科技学院 | A kind of test device and method of multiferroic liquid |
CN108267483A (en) * | 2018-01-29 | 2018-07-10 | 重庆科技学院 | A kind of device and method for testing multiferroic liquid properties |
CN108287179A (en) * | 2018-01-29 | 2018-07-17 | 重庆科技学院 | A kind of performance testing device and method of multiferroic liquid |
CN108267483B (en) * | 2018-01-29 | 2023-10-27 | 重庆科技学院 | Device and method for testing multiferroic liquid performance |
CN108254413B (en) * | 2018-01-29 | 2023-10-27 | 重庆科技学院 | Device and method for testing multiferroic liquid |
CN108254412B (en) * | 2018-01-29 | 2023-10-27 | 重庆科技学院 | Testing device and method for multiferroic liquid |
CN108287179B (en) * | 2018-01-29 | 2023-10-27 | 重庆科技学院 | Performance test device and method for multiferroic liquid |
CN108445058A (en) * | 2018-03-07 | 2018-08-24 | 重庆科技学院 | Multiferroic liquid physics characteristic test device |
CN108445058B (en) * | 2018-03-07 | 2023-06-06 | 重庆科技学院 | Multiferroic liquid physical property testing device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105006329B (en) | A kind of multiferroic liquid and preparation method thereof | |
CN105023692A (en) | Multiferroic liquid and preparation method thereof | |
Ahmad et al. | Optical, dielectric and magnetic properties of Mn doped SnO2 diluted magnetic semiconductors | |
Basun et al. | Dipole moment and spontaneous polarization of ferroelectric nanoparticles in a nonpolar fluid suspension | |
Máthé et al. | Ferroelectric nematic liquid crystal thermomotor | |
Ge et al. | Magnetically responsive colloidal photonic crystals | |
Wang et al. | Mineralizer‐assisted hydrothermal synthesis and characterization of BiFeO3 nanoparticles | |
Gao et al. | Anomalous magnetoelectric coupling effect of CoFe2O4–BaTiO3 binary mixed fluids | |
Meron et al. | Ferromagnetism in colloidal Mn2+-doped ZnO nanocrystals | |
Lu et al. | Morin temperature and Néel temperature of hematite nanocrystals | |
CN105097177A (en) | Multiferroic liquid and preparation method thereof | |
Li et al. | Multiferroic and magnetoelectronic polarizations in BaFe12O19 system | |
Zhang et al. | Liquid crystalline order and magnetocrystalline anisotropy in magnetically doped semiconducting ZnO nanowires | |
Holt et al. | A 106-fold enhancement in the conductivity of a discotic liquid crystal doped with only 1%(w∕ w) gold nanoparticles | |
Reznikov et al. | Ferromagnetic and ferroelectric nanoparticles in liquid crystals | |
Del Barco et al. | Free rotation of magnetic nanoparticles in a solid matrix | |
CN105016396A (en) | Multiferroic liquid and preparation method thereof | |
Nourani et al. | Preparation of a stable nanocomposite phase change material (NCPCM) using sodium stearoyl lactylate (SSL) as the surfactant and evaluation of its stability using image analysis | |
Rasras et al. | Study of the magnetocaloric effect in single-phase antiferromagnetic GdMnO3 | |
Chen et al. | Ethanol‐Assisted Hydrothermal Synthesis and Characterization of BiFeO 3 Nanopowders | |
Freeda et al. | Synthesis at room temperature and characterization of pure and Mn2+ doped CuS nanocrystals | |
Khan et al. | Magnetic properties of Ni/BiFeO3 hybrid nanostructures | |
Jin et al. | Magnetization of magnetite ferrofluid studied by using a magnetic balance | |
Dolgov et al. | Effect of electrooptical memory in suspensions of carbon nanotubes in liquid crystals | |
Zhang et al. | Evolution of the electronic phase separation with magnetic field in bulk and nanometer Pr0. 67Ca0. 33MnO3 particles |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20151104 |