CN105015355B - 基于能量消耗率最小的混合能源电动汽车的能量控制方法 - Google Patents

基于能量消耗率最小的混合能源电动汽车的能量控制方法 Download PDF

Info

Publication number
CN105015355B
CN105015355B CN201510429990.5A CN201510429990A CN105015355B CN 105015355 B CN105015355 B CN 105015355B CN 201510429990 A CN201510429990 A CN 201510429990A CN 105015355 B CN105015355 B CN 105015355B
Authority
CN
China
Prior art keywords
energy
power
electric automobile
battery
super capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510429990.5A
Other languages
English (en)
Other versions
CN105015355A (zh
Inventor
王艳
方斌
周健
毕月
周雪莹
曹浩
宋金龙
孙美玲
周炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201510429990.5A priority Critical patent/CN105015355B/zh
Publication of CN105015355A publication Critical patent/CN105015355A/zh
Application granted granted Critical
Publication of CN105015355B publication Critical patent/CN105015355B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本发明公开了一种基于能量消耗率最小的混合能源电动汽车能量控制方法。该方法包括以下步骤:(1)在实车行驶时,测量不同行驶工况下对应的各个能量源参数;(2)根据能量源参数得到三能源的效率随功率变化的情况,结合电动车动力系统能量消耗率,采用自适应遗传算法进行优化调整,获得最优的电动车动力系统功率分配比例;(3)能量切换系统根据混合动力系统的SOC参数和整车需求功率,结合步骤2获得的电动车动力系统功率分配比例,完成实车行驶时的能量分配。与现有技术相比,本发明可以根据实车系统的实际情况,快速改变各能源的分配参数,实现在线自调整,使新型多能源汽车保持最佳运行状态,具有很好的工程实用价值。

Description

基于能量消耗率最小的混合能源电动汽车的能量控制方法
技术领域
本发明属于新能源汽车领域,涉及一种基于能量消耗率最小的混合能源电动汽车的能量控制方法及系统。
背景技术
能源是社会发展的动力,环境是人类赖以生存的载体。汽车工业的快速发展,给世界带来了现代的物质文明,同时也给人类带来了严重的问题,如尾气排放、噪音污染、燃油消耗等。电动汽车具有零排放、低噪声、综合利用能源等特点,是一种既环保又节能的绿色交通工具,具有十分广阔的发展前景。然而电动汽车的能量存储能力有限、能量利用率较低、续航里程不足等问题,直接制约着电动汽车的发展。
混合能源电动汽车由三种能源提供动力:燃料电池、蓄电池和超级电容。燃料电池优势在于长时间稳定输出供电,而对于频繁大范围变化地供电需求适应性有限;蓄电池的优势在于可实现高倍率放电,满足各种复杂的供电情况;在需要比较大的辅助功率时,超级电容发挥着主要作用。
采用燃料电池、蓄电池和超级电容混合储能的方式,不仅提高了能源利用率,增加了续航里程,还减缓了较大负载电流和制动电流对蓄电池的冲击,延长了电池寿命,也提高了动力系统在短时间内的输出功率等级。
但是,目前的电动汽车能量管理策略均采用离线方法制定策略控制规则,未考虑随着电动汽车使用寿命的增加,主要动力源发生性能衰减(改变),所制定的能量管理策略理应随之改变,从而获得最佳控制效果的问题。而且,也没有很好地做到根据路况、行驶模式、电能储存情况,自动切换工作模式。
为了使控制策略能够根据各个部件(蓄电池、燃料电池、超级电容)特性的变化而自动更新,从而获得与车载动力源部件实际特性更吻合的能量控制分配效果,需要实现对蓄电池、燃料电池、超级电容的参数实施实时测量及在线计算,即对混合能源动力电动汽车能量分配控制系统加以研究。但是现有技术中尚无相关报道。
发明内容
本发明的目的在于提供一种基于能量消耗率最小的混合能源电动汽车的能量控制方法及系统,能够根据路况、行驶模式、电能储存情况,自动切换工作模式,使新型多能源汽车保持最佳运行状态,达到最大节能环保效果。
实现本发明目的的技术解决方案为:一种基于能量消耗率最小的混合能源电动汽车的能量控制方法,包括以下步骤:
步骤1、在实车行驶时,测量不同行驶工况下对应的各个能量源参数;所述的能量源参数包括燃料电池的电堆输出电压U1(t)和电流I1(t)、蓄电池端电压U2(t)和电流I2(t)、超级电容电压U3(t)和电流I3(t)。
步骤2、根据能量源参数得到三能源的效率随功率变化的情况,结合电动车动力系统能量消耗率,采用自适应遗传算法进行优化调整,获得最优的电动车动力系统功率分配比例,在线更新数据;所述数据更新在线更新数据具体包括以下步骤:
步骤21,确定不同状态下的燃料电池功率P1(t)、蓄电池功率P2(t)和超级电容补偿功率P3(t),并确定能量系统提供的总功率P(t)=P1(t)+P2(t)+P3(t);
步骤22、结合电动车动力系统能量消耗率,构建燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型,所述数学模型为:
s.t.P(t)=P1(t)+P2(t)+P3(t)
P1(t)=η1U1(t)I1(t)
P2(t)=η2U2(t)I2(t)
P3(t)=η3U3(t)I3(t)
0.3≤SOC1(t)≤0.9
0.3≤SOC2(t)≤0.9
式中,ECR为电动车动力系统能量消耗率,L为汽车的行驶距离,单位为km;E_J为车辆行驶过程中消耗的能量,由功率对时间t的梯形积分求得,单位为J;1.1×10-7为单位换算系数;SOC1(t)为混合动力系统的蓄电池剩余电量,SOC2(t)为混合动力系统的超级电容剩余电量,η1为燃料电池的效率,η2为蓄电池的效率,η3为超级电容的效率;
步骤23、采用自适应遗传算法对步骤22中燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型进行优化,从而获得以蓄电池剩余电量SOC1(t)、超级电容剩余电量SOC2(t)和整车需求功率P(t)为输入变量,蓄电池输出功率P1(t)、燃料电池输出功率P2(t)和超级电容输出功率P3(t)为输出控制量的能量分配。
步骤3、根据混合动力系统的蓄电池剩余电量SOC1(t)、超级电容剩余电量SOC2(t)和整车需求功率P(t),结合步骤2获得的电动车动力系统功率分配比例,完成实车行驶时的能量分配。所述实车行驶时能量分配具体包括以下步骤:
步骤31,能量切换系统向CAN总线通讯系统询问所需剩余电量参数和整车需求功率值;
步骤32,数据采集控制系统从混合动力系统各部件向CAN总线通讯系统传输的数据中选取所需的剩余电量参数和整车需求功率值,并发送给能量切换系统;
步骤33,能量切换系统判断是否已接接收到完整的数据,是则执行步骤34,否则返回步骤32;
步骤34,能量切换系统根据接收到的数据,结合燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型,计算出最优功率分配;
步骤35,能量切换系统通过CAN总线通讯系统向动力系统控制器发送功率分配结果,动力系统控制器根据分配结果控制相应的能量源输出功率,至此完成了能量切换系统对动力系统各能量输出功率的分配。
一种混合能源动力电动汽车能量分配控制系统,包括电机驱动系统、数据采集控制系统、CAN总线通讯系统、氢燃料电池系统、超级电容系统、蓄电池系统及能量切换系统、DC/DC转换器;所述氢燃料电池系统、超级电容系统、蓄电池系统均通过DC/DC转换器与能量切换系统相连,在能量切换系统的控制下工作,所述能量切换系统通过DC/DC转换器与电机驱动系统相连,为其提供动力。
本发明的系统还包括数据采集控制系统,所述数据采集控制系统与氢燃料电池系统、超级电容系统、蓄电池系统及能量切换系统相连。
本发明与现有技术相比,其显著优点为:本发明可以根据实车系统的实际情况,快速改变各能源的分配参数,实现在线自调整,自动切换工作模式,具体可根据不同的工况要求和能量分配方案将电动汽车工作模式归结为5种基本工作模式:①超级电容和蓄电池联合驱动模式、②燃料电池单独驱动模式、③燃料电池与蓄电池联合驱动模式、燃料电池、④蓄电池和超级电容联合驱动模式、⑤再生制动模式,提高了电动汽车能量管理控制的准确性以及动力系统的经济性,具有良好的工程实用价值。
附图说明
图1为实施本发明的系统结构示意图。
图2为本发明实施提出的电动汽车的能量控制方法的步骤流程图。
具体实施方式
如图1所示,本发明的一种混合能源动力电动汽车能量分配控制系统,包括:电机驱动系统、数据采集控制系统、氢燃料电池系统、超级电容系统、蓄电池系统及能量切换系统。动力系统主要由以下几个单元组成:燃料电池单元、蓄电池组单元、超级电容单元、DC/DC转换器单元、驱动电机单元及各种相关的传感器。由于燃料电池本身适合长时间平稳供电,负载功率变化过大或者过快都会导致燃料电池性能降低,因此需要通过DC/DC转换器,将其电压转换成稳定、可控的直流电压,避免燃料电池频繁的大范围变功率输出,由此提高燃料电池的寿命。驱动电机单元中电机控制器驱动被测电机,被测电机通过连轴器与车辆车轮连接。CAN总线负责实现与蓄电池管理系统、燃料电池系统控制器、超级电容系统控制器、DC/DC转换器、电机控制器进行通信,协调各单元的工作,各种相关的传感器负责收集燃料电池系统、蓄电池、超级电容、DC/DC转换器、电机的关键数据。能量切换系统可以计算的出系统的功率需求,通过DC/DC输出功率的调节,可以合理地动态地分配燃料电池、蓄电池和超级电容的功率输出。
本发明的控制对象为混合动力系统中的三个能量源,通过CAN总线通讯系统在能量切换系统与动力系统控制器之间完成数据交互。由于考虑到电动车上的能量源随着使用寿命的增加而产生的性能的衰减,能量切换系统通过实车行驶时采集三能量源的状态数据,从而更新其内部数据,实现了电动汽车数据的在线自调整功能,提高了电动汽车能量管理控制的准确性。
如图2所示,本发明的一种基于能量消耗率最小的混合能源电动汽车的能量控制方法,包括以下步骤:
步骤1、在实车行驶时,测量不同行驶工况下对应的各个能量源参数;
所述的能量源参数包括燃料电池的电堆输出电压U1(t)和电流I1(t)、蓄电池端电压U2(t)和电流I2(t)、超级电容电压U3(t)和电流I3(t)。
步骤2、根据能量源参数得到三能源的效率随功率变化的情况,结合电动车动力系统能量消耗率,采用自适应遗传算法进行优化调整,获得最优的电动车动力系统功率分配比例。所述数据更新在线更新数据具体包括以下步骤:
步骤21,实车行驶时,能量切换系统向CAN总线通讯系统询问计算所需能量源参数;
步骤22,数据采集控制系统采集计算所需能量源参数数据,并将数据存储到只读存储器中;
步骤23,确定不同状态下的燃料电池功率P1(t)、蓄电池功率P2(t)和超级电容补偿功率P3(t),并确定能量系统提供的总功率P(t)=P1(t)+P2(t)+P3(t)。结合电动车动力系统能量消耗率,构建燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型,所述数学模型为:
s.t.P(t)=P1(t)+P2(t)+P3(t)
P1(t)=η1U1(t)I1(t)
P2(t)=η2U2(t)I2(t)
P3(t)=η3U3(t)I3(t)
0.3≤SOC1(t)≤0.9
0.3≤SOC2(t)≤0.9
式中,ECR为电动车动力系统能量消耗率,L为汽车的行驶距离,单位为km;E_J为车辆行驶过程中消耗的能量,由功率对时间t的梯形积分求得,单位为J;1.1×10-7为单位换算系数;SOC1(t)为混合动力系统的蓄电池剩余电量,SOC2(t)为混合动力系统的超级电容剩余电量,η1为燃料电池的效率,η2为蓄电池的效率,η3为超级电容的效率。采用自适应遗传算法对燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型进行优化,从而获得以蓄电池剩余电量SOC1(t)、超级电容剩余电量SOC2(t)和整车需求功率P(t)为输入变量,蓄电池输出功率P1(t)、燃料电池输出功率P2(t)和超级电容输出功率P3(t)为输出控制量的能量分配。
步骤3、根据混合动力系统的蓄电池剩余电量SOC1(t)、超级电容剩余电量SOC2(t)和整车需求功率P(t),结合步骤2获得的电动车动力系统功率分配比例,完成实车行驶时的能量分配。所述实车行驶时能量分配具体包括以下步骤:
步骤31,能量切换系统向CAN总线通讯系统询问所需剩余电量参数和整车需求功率值;
步骤32,数据采集控制系统从混合动力系统各部件向CAN总线通讯系统传输的数据中选取所需的剩余电量参数和整车需求功率值,并发送给能量切换系统;
步骤33,能量切换系统判断是否已接接收到完整的数据,是则执行步骤34,否则返回步骤32;
步骤34,能量切换系统根据接收到的数据,结合燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型,计算出最优功率分配;
步骤35,能量切换系统通过CAN总线通讯系统向动力系统控制器发送功率分配结果,动力系统控制器根据分配结果控制相应的能量源输出功率,至此完成了能量切换系统对动力系统各能量输出功率的分配。
本发明可以根据实车系统的实际情况,快速改变各能源的分配参数,实现在线自调整,自动切换工作模式。

Claims (4)

1.一种基于能量消耗率最小的混合能源电动汽车的能量控制方法,其特征在于,包括以下步骤:
步骤1、在实车行驶时,测量不同行驶工况下对应的各个能量源参数;
步骤2、根据能量源参数得到三能源的效率随功率变化的情况,结合电动车动力系统能量消耗率,采用自适应遗传算法进行优化调整,获得最优的电动车动力系统功率分配比例,在线更新数据;
步骤3、根据混合动力系统的蓄电池剩余电量SOC1(t)、超级电容剩余电量SOC2(t)和整车需求功率P(t),结合步骤2获得的电动车动力系统功率分配比例,完成实车行驶时的能量分配。
2.根据权利要求1所述的基于能量消耗率最小的混合能源电动汽车的能量控制方法,其特征在于,步骤1中所述的能量源参数包括燃料电池的电堆输出电压U1(t)和电流I1(t)、蓄电池端电压U2(t)和电流I2(t)、超级电容电压U3(t)和电流I3(t)。
3.根据权利要求1所述的基于能量消耗率最小的混合能源电动汽车的能量控制方法,其特征在于,步骤2所述在线更新数据具体包括以下步骤:
步骤21,确定不同状态下的燃料电池功率P1(t)、蓄电池功率P2(t)和超级电容补偿功率P3(t),并确定能量系统提供的总功率P(t)=P1(t)+P2(t)+P3(t);
步骤22、结合电动车动力系统能量消耗率,构建燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型,所述数学模型为:
m i n t ∈ ( 0 , T ) { E C R | P 1 ( t ) , P 2 ( t ) , P 3 ( t ) }
s.t. P(t)=P1(t)+P2(t)+P3(t)
P1(t)=η1U1(t)I1(t)
P2(t)=η2U2(t)I2(t)
P3(t)=η3U3(t)I3(t)
0.3≤SOC1(t)≤0.9
0.3≤SOC2(t)≤0.9
式中,ECR为电动车动力系统能量消耗率,L为汽车的行驶距离,单位为km;E_J为车辆行驶过程中消耗的能量,由功率对时间t的梯形积分求得,单位为J;1.1×10-7为单位换算系数;SOC1(t)为混合动力系统的蓄电池剩余电量,SOC2(t)为混合动力系统的超级电容剩余电量,η1为燃料电池的效率,η2为蓄电池的效率,η3为超级电容的效率;
步骤23、采用自适应遗传算法对步骤22中燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型进行优化,从而获得以蓄电池剩余电量SOC1(t)、超级电容剩余电量SOC2(t)和整车需求功率P(t)为输入变量,蓄电池输出功率P1(t)、燃料电池输出功率P2(t)和超级电容输出功率P3(t)为输出控制量的能量分配。
4.根据权利要求1所述的于能量消耗率最小的混合能源电动汽车的能量控制方法,其特征在于,步骤3实车行驶时能量分配具体包括以下步骤:
步骤31,能量切换系统向CAN总线通讯系统询问所需剩余电量参数和整车需求功率值;
步骤32,数据采集控制系统从混合动力系统各部件向CAN总线通讯系统传输的数据中选取所需的剩余电量参数和整车需求功率值,并发送给能量切换系统;
步骤33,能量切换系统判断是否已接接收到完整的数据,是则执行步骤34,否则返回步骤32;
步骤34,能量切换系统根据接收到的数据,结合燃料电池-蓄电池-超级电容三能量源纯电动汽车能量控制数学模型,计算出最优功率分配;
步骤35,能量切换系统通过CAN总线通讯系统向动力系统控制器发送功率分配结果,动力系统控制器根据分配结果控制相应的能量源输出功率,至此完成了能量切换系统对动力系统各能量输出功率的分配。
CN201510429990.5A 2015-07-21 2015-07-21 基于能量消耗率最小的混合能源电动汽车的能量控制方法 Expired - Fee Related CN105015355B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510429990.5A CN105015355B (zh) 2015-07-21 2015-07-21 基于能量消耗率最小的混合能源电动汽车的能量控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510429990.5A CN105015355B (zh) 2015-07-21 2015-07-21 基于能量消耗率最小的混合能源电动汽车的能量控制方法

Publications (2)

Publication Number Publication Date
CN105015355A CN105015355A (zh) 2015-11-04
CN105015355B true CN105015355B (zh) 2017-05-10

Family

ID=54405792

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510429990.5A Expired - Fee Related CN105015355B (zh) 2015-07-21 2015-07-21 基于能量消耗率最小的混合能源电动汽车的能量控制方法

Country Status (1)

Country Link
CN (1) CN105015355B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993957A (zh) * 2020-08-04 2020-11-27 河南科技大学 一种等效消耗最小策略的混合动力汽车能量管理方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016201212A1 (de) * 2016-01-27 2017-07-27 Bayerische Motoren Werke Aktiengesellschaft Steuerungsvorrichtung und Verfahren zur Steuerung eines Brennstoffzellenbasierten Kraftfahrzeugantriebs
CN106218419B (zh) * 2016-08-24 2018-08-07 武汉地和智能有限公司 一种前后轴驱动电动汽车再生制动过程的控制方法
CN107415730B (zh) * 2017-07-11 2019-11-19 电子科技大学 一种车用燃料电池电源系统的功率控制方法
CN107679268B (zh) * 2017-08-23 2020-11-27 同济大学 一种燃料电池汽车能量管理控制策略的定量综合评价方法
CN107798472B (zh) * 2017-10-20 2021-11-30 重庆长安汽车股份有限公司 整车能量流分布及油耗影响因子评价的分析方法
CN108099635B (zh) * 2017-11-13 2019-09-24 山东斯博科特电气技术有限公司 燃料电池混合动力有轨电车多能量源耦合惩罚控制系统
CN110816537B (zh) * 2018-08-14 2022-04-12 东风特汽(十堰)专用车有限公司 一种燃料电池混动车的控制方法
CN109245102A (zh) * 2018-11-14 2019-01-18 上海宝钢节能环保技术有限公司 一种行车用储能控制系统及装置
CN109546644A (zh) * 2018-12-04 2019-03-29 中国科学技术大学 一种混合能源系统的功率分配方法及装置
CN109823235B (zh) * 2019-02-20 2021-10-01 中国科学技术大学 电池、超级电容与燃料电池混合储能装置能量管理系统
CN111942218B (zh) * 2019-05-17 2024-01-30 株式会社日立制作所 车用复合电池的电流分配装置及电流分配方法
CN110635154B (zh) * 2019-09-25 2021-02-23 潍柴动力股份有限公司 缩短固态氧化物燃料电池启动时间的方法及装置
CN112109594B (zh) * 2020-08-31 2021-12-28 上汽大众汽车有限公司 用于混合动力车的能量管理控制方法和系统
CN112757916B (zh) * 2020-12-31 2023-07-18 武汉格罗夫氢能汽车有限公司 一种氢燃料电池汽车多能源动力系统能量平衡的控制方法
CN113147726B (zh) * 2021-04-22 2023-09-12 安徽锐能科技有限公司 用于确定混合动力汽车燃料消耗量的方法及系统
CN113611902B (zh) * 2021-07-09 2023-01-06 东风柳州汽车有限公司 一种氢燃料电池车总剩余能量的计算方法及装置
CN113721154A (zh) * 2021-08-31 2021-11-30 潍柴动力股份有限公司 一种燃料电池工况点选取方法及装置
CN114312790B (zh) * 2022-01-17 2023-11-24 北京格睿能源科技有限公司 一种电动汽车动力模式选取方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271706A (ja) * 1997-03-24 1998-10-09 Toyota Motor Corp 電源装置および電気自動車
CN1475378A (zh) * 2002-08-14 2004-02-18 上海燃料电池汽车动力系统有限公司 电-电混合燃料电池汽车的动力系统
KR20100051511A (ko) * 2008-11-07 2010-05-17 현대자동차주식회사 연료전지 차량의 시동 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10271706A (ja) * 1997-03-24 1998-10-09 Toyota Motor Corp 電源装置および電気自動車
CN1475378A (zh) * 2002-08-14 2004-02-18 上海燃料电池汽车动力系统有限公司 电-电混合燃料电池汽车的动力系统
KR20100051511A (ko) * 2008-11-07 2010-05-17 현대자동차주식회사 연료전지 차량의 시동 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111993957A (zh) * 2020-08-04 2020-11-27 河南科技大学 一种等效消耗最小策略的混合动力汽车能量管理方法

Also Published As

Publication number Publication date
CN105015355A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN105015355B (zh) 基于能量消耗率最小的混合能源电动汽车的能量控制方法
CN110040004B (zh) 一种增程式纯电动汽车的功率跟随控制方法和系统
Geng et al. Simulation research on a novel control strategy for fuel cell extended-range vehicles
CN112046486B (zh) 一种燃料电池汽车输出功率修正方法、系统及存储介质
CN109693578B (zh) 一种燃料电池车整车功率分配控制方法和系统
CN101125548B (zh) 并联式混合动力系统的能量流控制方法
CN104139709B (zh) 一种燃料电池增程器的控制系统及控制方法
Škugor et al. A series-parallel hybrid electric vehicle control strategy including instantaneous optimization of equivalent fuel consumption
CN102951144B (zh) 基于最小功率损失算法的自调整神经网络能量管理方法
CN111251908B (zh) 增程式电动汽车控制系统和控制方法
CN102963353B (zh) 基于神经网络的混合动力系统能量管理方法
CN103863311A (zh) 基于能量优化的混合动力汽车发动机与电机扭矩分配方法
CN109849693B (zh) 一种基于自适应小波转换的电动汽车混合能源管理系统及其控制方法
CN113581019B (zh) 一种混合驱动无人驾驶矿用卡车的能量管理方法
CN104627167A (zh) 一种考虑电池寿命的混合动力车能量管理方法及系统
CN105667499A (zh) 一种电动汽车增程模式下的能量管理方法
CN106427527A (zh) 拖拉机增程控制方法、控制装置及其动力系统
CN104494416A (zh) 一种串联式混合动力电动车能量管理系统及方法
Hofman et al. Rule-based energy management strategies for hybrid vehicle drivetrains: A fundamental approach in reducing computation time
CN103661355A (zh) 一种混合动力汽车动力总成智能控制系统
CN111137171B (zh) 一种复合电源系统模糊控制器的参数优化设计方法
CN112498332A (zh) 一种并联式混合动力汽车模糊自适应能量管理控制方法
CN112572168A (zh) 一种基于充电管理的增程式电动汽车能量管理控制方法
CN110949186A (zh) 燃料电池动力系统分层协调控制方法与系统
CN116811831A (zh) 一种增程式动力系统能量稳定输出控制策略

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170510

Termination date: 20190721