CN105006878A - 在不可中断电源系统中提供增加的故障电流能力的系统和方法 - Google Patents

在不可中断电源系统中提供增加的故障电流能力的系统和方法 Download PDF

Info

Publication number
CN105006878A
CN105006878A CN201510277596.4A CN201510277596A CN105006878A CN 105006878 A CN105006878 A CN 105006878A CN 201510277596 A CN201510277596 A CN 201510277596A CN 105006878 A CN105006878 A CN 105006878A
Authority
CN
China
Prior art keywords
ups
switch
rectifier
inverter
fault
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510277596.4A
Other languages
English (en)
Other versions
CN105006878B (zh
Inventor
S·科隆比
A·曼努奇尼
H·B·汉林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Technology AG
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN105006878A publication Critical patent/CN105006878A/zh
Application granted granted Critical
Publication of CN105006878B publication Critical patent/CN105006878B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inverter Devices (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

本发明涉及一种在不可中断电源系统中提供增加的故障电流能力的系统和方法。提供一种系统。该系统包括环形总线,至少一个电压源,以及电耦合在该至少一个电压和该环形总线之间的多个不可中断电源(UPS),其中多个UPS中的至少一个UPS包括输入端,输出端,具有整流器输入端和整流器输出端的整流器,具有逆变器输入端和逆变器输出端的逆变器,其中整流器输出端电耦合至逆变器输入端,以及电耦合在整流器输入端和逆变器输出端之间的旁路开关,该旁路开关配置为响应于该环形总线上的故障的检测而闭合。

Description

在不可中断电源系统中提供增加的故障电流能力的系统和方法
相关申请的交叉引用
本申请是非临时申请并要求了于2014年3月13日提交的关于“冗余的不可中断电源系统”的美国临时申请序列号61/952,543和于2014年3月13日提交的关于“冗余的不可中断电源系统”的美国临时申请序列号61/952,256的优先权,它们的全部内容通过引用的方式合并于此。
背景技术
本发明的领域一般涉及不可中断电源,尤其涉及增加环形总线架构中的不可中断电源的故障电流能力。
强健的电源系统能够将电能提供给一个或多个负载。这种电源系统可以包括发电,输电,整流,逆变和转换的组合来为电子的,光学的,机械的和/或核的应用装置和负载提供电能。在实现电力系统和系统结构时,实际考虑的包括实现的成本、尺寸、可靠性和容易性。
在至少一些已知的电源系统中,一个或多个不可中断电源(UPS)有助于提供电能至负载。UPS有助于确保电能持续地提供至一个或多个极重要的负载,甚至当电源系统的一个或多个组件失效时。相应地,UPS提供冗余的电源。UPS可以被利用在一些应用中(例如,公用变电站,化工厂,船舶系统,高安全性系统,医院,数据和电信中心,半导体制造基地,核电站,等)。而且,UPS可以被利用在高,中或低电源应用中。例如,UPS可以在相对小的电源系统中使用(如,娱乐或消费系统)或微系统(如,基于芯片的系统)。
发明内容
一方面,提供一种系统。该系统包括环形总线,至少一个电压源,和电耦合在该至少一个电压源和该环形总线之间的多个不可中断电源(UPS),其中多个UPS中的至少一个UPS包括输入端,输出端,具有整流器输入端和整流器输出端的整流器,具有逆变器输入端和逆变器输出端的逆变器,其中该整流器输出端电耦合至该逆变器输入端,和电耦合在该整流器输入端和该逆变器输出端之间的旁路开关,该旁路开关被配置为响应于该环形总线上的故障的检测而闭合。
另一方面,提供一种在环形总线系统中使用的不可中断电源(UPS)。该UPS包括被配置为电耦合至电压源的输入端,被配置为电耦合至环形总线的输出端,包括整流器输入端和整流器输出端的整流器,包括逆变器输入端和逆变器输出端的逆变器,和电耦合在所述整流器输入端和所述逆变器输出端之间的旁路开关,其中,所述整流器输出端电耦合至所述逆变器输入端,所述旁路开关被配置为响应于所述环形总线上的故障的检测而闭合。
另一方面,提供一种用于在电源系统中产生故障电流的方法。该电源系统包括环形总线,至少一个电压源,和电耦合在该至少一个电压源和该环形总线之间的多个不可中断电源(UPS),其中多个UPS中的至少一个UPS包括输入端,输出端,包含整流器输入端和整流器输出端的整流器,包含逆变器输入端和逆变器输出端的逆变器,其中该整流器输出端电耦合至该逆变器输入端,和电耦合在该整流器输入端和该逆变器输出端之间的旁路开关,该旁路开关被配置为响应检测该环形总线上的故障而闭合。该方法包括检测该环形总线上的故障,和响应于检测故障而闭合该旁路开关。
提供一种系统,包括:
环形总线;
至少一个电压源;和
多个不可中断电源(UPS),电耦合在所述至少一个电压源和所述环形总线之间,其中所述多个UPS的至少一个UPS包括:
输入端;
输出端;
包括整流器输入端和整流器输出端的整流器;
包括逆变器输入端和逆变器输出端的逆变器,其中所述整流器输出端电耦合至所述逆变器输入端;和
旁路开关,电耦合在所述整流器输入端和所述逆变器输出端之间,所述旁路开关配置为响应于所述环形总线上的故障的检测而闭合。
按照实施例1的系统进一步包括控制器,该控制器通信地耦合至所述至少一个UPS并且配置为:
检测该故障;和
在检测到该故障时命令该旁路开关闭合。
按照实施例2的系统,其中所述至少一个UPS进一步包括断开开关,该断开开关电耦合在所述UPS输入端和所述整流器输入端之间,所述断开开关被配置为响应于该故障的检测而断开。
按照实施例3的系统,其中所述控制器进一步被配置为在检测到该故障时命令断开开关断开。
按照实施例4的系统,其中所述断开开关包括晶闸管。
按照实施例5的系统,其中所述控制器进一步被配置为在检测该故障时改变用于所述整流器的参考电压的符号。
按照实施例3的系统,其中所述断开开关包括绝缘栅双极型晶体管开关和集成栅极换流晶闸管开关中的一个。
提供一种用于环形总线系统中的不可中断电源(UPS),所述UPS包括:
输入端,配置为电耦合至电压源;
输出端,配置为电耦合至环形总线;
整流器,包括整流器输入端和整流器输出端;
逆变器,包括逆变器输入端和逆变器输出端,其中所述整流器输出端电耦合至所述逆变器输入端;和
旁路开关,电耦合在所述整流器输出端和所述逆变器输出端之间,所述旁路开关被配置为响应于该环形总线上的故障的检测而闭合。
按照实施例8的UPS,其中所述旁路开关被配置为响应于接收来自检测故障的控制器的旁路命令而闭合。
按照实施例9的UPS,所述UPS进一步包括断开开关,电耦合在所述UPS输入端和所述整流器输入端之间,所述断开开关配置为响应于该故障的检测而断开。
按照实施例10的UPS,其中断开开关被配置为响应于接收来自控制器的断开指令而断开。
按照实施例11的UPS,其中所述断开开关包括晶闸管。
按照实施例11的UPS,其中所述断开开关包括绝缘栅双极型晶体管开关和集成栅极换流晶闸管开关中的一个。
提供一种用于在电源系统中产生故障电流的方法,该电源系统包括环形总线,至少一个电压源,和电耦合在该至少一个电压源和该环形总线之间的多个不可中断电源(UPS),其中该多个UPS中的至少一个UPS包括输入端,输出端,包含整流器输入端和整流器输出端的整流器,包含逆变器输入端和逆变器输出端的逆变器,其中该整流器输出端电耦合至逆变器输入端,和电耦合在该整流器输入端和该逆变器输出端之间的旁路开关,所述方法包括:
检测该环形总线上的故障;和
响应于检测该故障而闭合该旁路开关。
按照实施例14的方法,其中检测故障包括利用通信地耦合至该至少一个UPS的控制器检测故障。
按照实施例15的方法,其中闭合该旁路开关包括从该控制器发送旁路命令至该至少一个UPS。
按照实施例16的方法,进一步包括响应于检测故障而断开电耦合在该UPS输入端和该整流器输入端之间的断开开关。
按照实施例17的方法,其中断开切断开关包括断开具有晶闸管的断开开关。
按照实施例18的方法,进一步包括响应于检测该故障而改变用于该整流器的参考电压的符号。
按照实施例17的方法,其中断开断开开关包括断开具有绝缘栅双极型晶体管开关和集成栅极换流晶闸管开关中之一的断开开关。
附图说明
图1是示范性环形总线架构的示意图。
图2是示范性单相电压源两电平逆变器的电路图。
图3是示范性单相电压源三电平逆变器的电路图。
图4是单相逆变器的简化电路图。
图5是描述故障电流的行为的曲线图。
图6是耦合至电压源的示范性UPS的示意图。
图7是包括断开开关和耦合至电压源的示范性UPS的示意图。
图8是描述图7中所示的该UPS的整流器的性能的曲线图。
图9A-9C是描述图7中所示的UPS的工作的示意图。
图10是图7中所示的UPS的电路图。
图11是图7中所示的UPS的电路图。
具体实施方式
本文描述的该系统和方法有助于在环形总线系统中增加UPS的故障电流能力。这允许减少环形总线系统中的扼流圈尺寸。本文中描述的系统和方法还提供了至少一些附属优点,包括关于静态UPS环形总线系统的成本,可行性和相应地生存力的改善。
本文描述了不可中断电源系统的示范性实施例。该多个不可中断电源设置成环形总线架构和配置为提供电能至至少一个负载。一个或多个控制装置通信地耦合至多个不可中断电源。该控制装置计算用于多个不可中断电源的每一个的输出电压频率,和控制不可中断电源使得每个不可中断电源工作在其各自的计算频率下以提供电能至该至少一个负载。尤其,许多UPS的工作频率在暂态条件下不同(如,跟随一个或多个负载的变化)。然而,一旦下垂控制处于稳态状态,所有UPS工作在相同频率,但是具有跨越相关扼流圈的相偏移,该扼流圈平衡由每个UPS提供的有功功率。下垂控制,正如本文所述,确定每个UPS的输出电压的瞬时频率和幅值。
图1是示范性的冗余隔离并联(isolated-parallel(IP))不可中断电源(UPS)环形总线架构300的示意图。在示范性实施例中,架构300包括设置成环形结构或并联结构的多个UPS302,如文本所描述。特别地,在该示范性实施例中体系结构300包括4个UPS 302。可选的,架构300可以包括任意数量的UPS 302其使架构300能够如文中所描述的那样运行。在示范性实施例中,体系结构300是三线系统。可选的,架构300可以是四线系统(示范性的供应需要中线的负载)。
在示范性实施例中,UPS 302是静态双变换UPS(即真正的在线系统系统)。静态和旋转UPS二者可需要用于电压和频率两者的下垂控制技术。在一些情况中,单独用于频率的下垂控制可以被满足。在一些实施例中,修改下垂控制技术以控制非线性负载。
架构300有助于提供电能至一个或多个负载304。在正常工作下,一个或多个设备作为电压源303运行,并且提供交流电(AC)功率至负载304。发电机也可以作为电压源303运行。尤其,电压源303不必须在架构300中同步。这是有利的,由于每个UPS302可以通过独立的发电机和/或设备被馈电,因此不需要增加额外设备以同步电压源303。
在电压源303或者UPS整流器的失效的事件中,UPS302利用连接到UPS302的能量存储装置358(如,带其变换器的电池,飞轮等)以保持电能流向负载304,如文中所描述。而且,如果指定的UPS302失效,负载304通过环形总线306馈电,如文本描述。在示范性实施例中,架构300包括四个负载304。可选的,架构300可以包括任意合适数量的负载304,这使架构300能够如文中所描述的那样运行。
在示范性实施例中,每一个UPS 302电耦合至相关负载304,和通过相关扼流圈308(如,电感器)耦合至环形总线306。在架构300中,由于不合需要的环流电流,没有正常的同步,UPS 302就不能正常地工作。相应地,在该示范性实施例中,至少一个控制器309控制UPS 302的操作。更具体地,至少一个控制器309控制每一个UPS 302的输出电压的频率,如文中所描述。用于每一个UPS 302的频率是作为功率的函数被计算得到,如文中所描述。
在一些实施例中,架构300包括用于每一个UPS 302的独立的、专用的控制器309。可选择的,系统可以包括控制所有的UPS 302的操作的单个控制器309。每一个控制器309可以包括它自己的电源系统(未示出),比如专用能量源(如电池)。在一些实施例中,每一个控制器309耦合至可以在控制器309失效的事件中使用的替代的控制器(未示出)。
在示范性实施例中,每一个控制器309由与存储器装置313通信地耦合的用于执行指令的处理器311实现。在一些实施例中,可执行的指令保存在存储器装置313中。可选择的,控制器309可以利用使控制器309能够如文中所描述的控制UPS302的操作的任意电路实现。例如,在一些实施例中,控制器309可以包括静态机械,其学习或预先编程以确定关于哪个负载304需要电能的信息。
在示范性实施例中,控制器309通过编程处理器311进行一个或多个如文中所描述的操作。例如,编程处理器311,可以通过编译操作如一个或多个可执行的指令以及被提供在存储器装置313中的该可执行的指令而编程。处理器311可以包括一个或多个处理单元(如,在多内核配置中)。而且,利用一个或多个不同种类的处理器系统,可以实现处理器311,在处理器系统中,主处理器以带在单独芯片上的第二个处理器存在。如另一个描述的例子,处理器311可以是对称的多处理器系统,其包含多个同种类型的处理器。而且,可以利用任意合适的可编程电路实现处理器311,包括一个或多个系统和微控制器,微处理器,精简指令集电路(RISC),特定用途集成电路(ASIC),可编程逻辑电路,现场可编程门阵列(FPGA)和任意能够执行如文中描述的功能的其他电路。在该示范性实施例中,处理器311使得控制器309操作UPS 302,如文中所描述。
在该示范性实施例中,存储器装置313是一个或多个装置,能够存储和检索诸如可执行指令的信息和/或其他数据。存储器装置313可以包括一个或多个计算机可读介质,例如但不限于,动态随机存取存储器(DRAM),静态随机存取存储器(SRAM),固态盘,和/或硬盘。存储器装置313可以被配置为存储,但不限于,应用源代码,应用对象代码,感兴趣的源代码部分,感兴趣的对象代码部分,配置数据,执行事件和/或任意其他类型的数据。
在该示范性实施例中,如下详细的描述,一个或多个控制器309,和多个特定处理器311,计算用于每一个UPS 302的输出电压频率,以及一个或多个控制器309在该计算的频率下操作每个UPS 302。操作每一个UPS302在它们各自的如通过该下垂控制确定的计算出的频率,使得在架构300中达到负载共享和稳定成为可能。涵盖多个UPS 302的操作的频率在瞬态条件(如,跟随一个或多个负载304的变化)下是不同的。一旦该下垂控制处在稳定状态中,所有UPS 302工作在相同的频率,但是具有跨越扼流圈308的相偏移,该扼流圈308平衡由每个UPS 302提供的有功功率。
在架构300中,每一个UPS 302能够提供功率至相关的本地负载304,以及经由相关扼流圈308传输有功和无功功率至环形总线306。在该示范性实施例中,架构300有助于在UPS 302之间平等地共享本地负载304,而不借助任何下垂控制的信息,以及更特殊的,频率与有功功率相对和电压与无功功率相对。这消除了在架构300中UPS 302的数量的限制。
在该示范性实施例中,架构300包括一定数量的电路断路器。具体地,对于每一个UPS 302,第一电路断路器310电耦合在UPS 302和扼流圈308之间,第二电路断路器312电耦合在第一电路断路器310和本地负载304之间,第三电路断路器314电耦合在第一电路断路器310和环形总线306之间,以及第四电路断路器316耦合在扼流圈308和环形总线306之间。而且,环形总线306,中心电路断路器320,左电路断路器322和右电路断路器324与每一个UPS 302相关联,以及有助于从环线总线306中隔离UPS 302和/或与环形总线306上的其他UPS 302相隔离。每一个电路断路器310,312,314,316,320,322和324包括用于操作的关联的逻辑和继电器(都未示出)。由个电路断路器310,312,314,316,320,322和324提供的保护系统有助于在架构300中定位故障以及通过断开该适当的断路器隔离那些故障。而且,第三电路断路器314,还作为旁路断路器,有助于在该相关UPS 302失效时或处于维修中旁路扼流圈308。由于移除了扼流圈308上的电压下降,这有助于提高在该相关的本地负载304上的电压的质量。
对于环形总线应用,规定扼流圈308的尺寸,使得在足够长的时间内承受环形总线306上的栓接故障,以确保通过触发架构300中的该特定断路器该故障的隔离。而且,对于不能断开断路器的情形,应该嵌入另外的时间以确定和执行代替故障隔离策略。相应地,为了有助于最大化在该关联的UPS302中的该逆变器能够承受环形总线306上的栓接故障的持续时间,可以规定扼流圈308的尺寸,使得该逆变器在环形总线306上的短路电路下处于线性方式。文中描述的该系统和方法有助于在故障情况下增加UPS302的故障电流能力。
如图1中所示,每一个UPS302包括逆变器330和整流器332。用于逆变器330的不同设计是可能的。比如,用于无变压器的设计,图2是示范性的单相电压源两电平逆变器400的电路图,图3是示范性的单相电压源三电平逆变器500的电路图。
如图2中所示,逆变器400包括第一开关装置402和第二开关装置404。第一开关装置402包括与第一二极管406电耦合并联的第一开关405(如,晶体管),以及第二开关装置404包括与第二二极管408电耦合并联的第二开关407(如,晶体管)。在文中,下部的或第二开关装置404两端的电压被作为公共电压,ucmd。第一和第二开关装置402和404之间的节点410,经过电感器412和电阻器414输出桥电流,is。桥电流is分裂为流向负载416(诸如本地负载304)的负载电流iL和流经电容器418的电流。总负载电流是负载电流iL和潜在的故障电流之和。电容器418两端的电压被作为电容器电压uc。逆变器400包括电耦合在第一开关装置402和中性点420之间的第一DC电容器430和电耦合在第二开关装置404和中性点420之间的第二DC电容器432。第一DC电容器430两端的电压是上DC链电压,VdcP以及第二DC电容器432两端的电压是下DC链电压,VdcN
除非另外指出,否则逆变器500与逆变器400实质上相同。如图3中所示,逆变器500包括在节点410和中性点420之间电耦合串联的第三开关装置502和第四开关装置504。第三开关装置502包括与第三二极管506并联电耦合的第三开关505(如,晶体管),以及第四开关装置504包括与第四二极管508并联电耦合的第四开关507(如,晶体管)。第三和第四开关装置502和504实现双向开关装置。可选的,该双向开关装置可以利用其他组件(如,利用反向截止装置)实现。逆变器400和逆变器500的拓扑结构可以通过利用三支路的三相变换器实现。
对于逆变器400和逆变器500二者,图4是单相逆变器的等效电路600的电路图。电路600包括描绘成电压源602的公共电压ucmd。该不连续的公共电压ucmd模拟该两电平或三电平逆变器。因此,这个电压可以具有在两个或三个可能值之间的方波变化。在该示范性实施例中,控制器604,诸如控制器309(图1中所示),控制电路600中的一个或多个组件的操作。
返回参考图1为了有助于最大化在关联的UPS302中的逆变器330能够承受环形总线306上的栓接故障的持续时间,示范性地规定扼流圈308的尺寸,使得在环形总线306上的短路下以线性模式操作逆变器330。
图5是描述故障电流的行为的曲线图700。曲线图700包括在经过环形总线306上的栓接故障期间的时间内绘制的电感性的故障电流曲线702和电压曲线704。如图5中所示,基于环形总线306上的短路电路的相角度,流经扼流圈308的电感性的故障电流能够包括相对大的DC分量(见,如电感性故障电流曲线702中初始的下降)。这个DC分量在时间内以扼流圈308的L/R时间常数衰减至“再次回到中心(re-center)”。如图5所示,电感性故障电流702相对较慢地再次回到中心。相应地,暂态尖峰故障电流可以两次达到稳态故障电流(见,如在电感性故障电流曲线702中初始的下降)。
为了保持UPS 302的逆变器330以线性模式操作,一种途径是增加(如,双倍)扼流圈308的尺寸。这个可能是做不到的,因为静态UPS可以具有受限的故障电流能力,这可需要相对较大的扼流圈。
另一种途径是提供增加的故障电流能力。具体地,通过增加经由相关的扼流圈308注入的故障电流的量,可以减小扼流圈308的尺寸。文中该实施例提供用于增加故障电流的量的系统和方法。
图6是UPS 800的示意图,诸如与电压源303耦合的UPS 302(图1中所示)。UPS800包括输入端801,输出端803,整流器332,逆变器330和能量存储装置358。整流器332包括整流器输入端802和整流器输出端804,以及逆变器330包括逆变器输入端806和逆变器输出端808。能量存储装置358耦合在整流器输出端804和逆变器输入端806之间。
在图6中所示的示范性实施例中,UPS 800包括电耦合在整流器输入端802和逆变器输出端808之间的旁路开关810。旁路开关810有助于UPS 800的增加故障电流能力,如文中所描述。尤其,当架构300中的所有UPS 302共享公共设备(即,与每一个UPS 302关联的电压源303是相同的电压源303)时,图6的实施例是可适用的。
在正常工作下(即,不存在故障),旁路开关810为断开状态。然而,当检测到故障,闭合旁路开关810,使得功率从电压源303流过旁路开关810。旁路逆变器330和整流器332以提供增强的故障电流。该故障可以被控制器309检测到,并且控制器309可以控制断开或者闭合旁路开关810(如,通过发送旁路命令或信号至UPS 800)。例如,控制器309可以把相电压与接地相比较以检测架构300中的故障。
当电压源303的工作频率和逆变器330的输出电压频率之间的频率差相对较大时,旁路逆变器330和整流器332可能成为问题。相应地,在该示范性实施例中,使用修改的下垂控制,以在负载304间共享电能,尽管相对较缓慢地将逆变器330的输出电压频率带回到公共电压源303的工作频率。这是可能的,因为经过扼流圈308的有功功率的传递与在扼流圈308之前和之后的电压间的相移是成比例的。在这种设定下,逆变器330的相位将相对地接近公共电压源303的相位。相应地,当公共设备是可利用的,可以使用旁路开关810提供增加的故障电流能力。
图7是与电压源303耦合的UPS900的示意图。当公共设备是不可利用的或者没有设备可以利用(如在电池工作期间)时,可以使用UPS 900提供增加的故障电流能力。除非另外指出,否则UPS 900包括与UPS 800(图6中所示)相同的组件。如图6中所示,对比UPS 800,UPS 900包括电耦合在整流器输入端802和电压源303之间的断开开关902。也就是,断开开关902电耦合在UPS输入端801和整流器输入端802之间。对于图7中的实施例,应该利用UPS 800的结构实现架构300中的每一个UPS 302。
在正常工作下(即,不存在故障),在UPS800中,断开旁路开关810以及闭合断开开关902。当检测到故障时,断开断开开关902,以及闭合旁路开关810以提供增加的故障电流。具体地,通过断开断开开关902以及闭合旁路开关810,将电压源303与UPS 800断开的以及由整流器332提供额外的故障电流能力,如文中所描述。由整流器332提供的该额外的无功电流和功率维持相关负载304上的电压。
断开开关902和旁路开关810可以是任意类型的开关装置,包括,但不局限于,静态开关,机械开关和电机械开关。为了有助于快速地断开UPS 800脱离电压源300,断开开关902应该是相对快速的开关装置。例如,断开开关902可以是绝缘栅双极型晶体管(IGBT)开关或集成栅极换流晶闸管(IGCT)开关。
在一些实施例中,断开开关902包括一个或多个晶闸管。晶闸管不即刻关断,只在流经晶闸管的电流经过零点时才关断。相应地,在该实施例中,为了有助于断开断开开关902,当控制器309命令断开开关断开902(如,通过发送断开命令或信号至UPS 900),控制器309还反相用于整流器332的参考电流。这本质上命令整流器332注入功率到电网,还导致整流器输入端802处(以及断开开关902处)的电流较快地经过零点,导致一个或多个晶闸管被断开。图8是描述单相整流器的性能的曲线图1000,其中参考电流1002的信号在25毫秒(md)的位置被改变。如图7中所述,一旦参考电流1002改变信号,大约在1.7ms之后整流器电流1004经过零点。
图9A-9C是描述UPS800的工作的示意图。在正常工作期间(即,不存在故障),如图9A中所示,闭合断开开关902和断开旁路开关810,并且在被引导至关联的负载304之前将来自电压源303的功率被整流器332和逆变器330变换。利用下垂控制,在架构300中平等地共享负载304,不借助UPS 302之间的通信。在正常工作期间,监控环形总线306以检测故障,特别是,相到相或相到地的短路。如上面所描述,一旦检测到故障,命令断开开关902断开,以及如果断开开关902是由晶闸管实现,用于整流器332的参考电流的信号被改变。
在这个时刻,闭合旁路开关810,以及整流器332提供额外的故障电流,如图9B中所示。尤其,逆变器330和整流器332二者提供故障电流给相关的扼流圈308。当该故障已经被定位和隔离(如,通过断开适当的电路断路器310,312,314,316,320,322和324),断开旁路开关810。在这个时刻,如图9C所示,逆变器330由能量存储装置358供电。然后,闭合断开开关902,以及整流器332倾斜上升直到逆变器330再次得到由来自整流器332的电能供电。在一个实施中,假设在时间t=0ms时刻发生故障,在t≈0.3ms时刻检测到该故障,命令断开开关902断开,以及整流器参考电流的信号被改变,在t≈2.0ms时刻实际上断开切断开关902,命令旁路开关810闭合,以及整流器322将电流注入到相关的扼流圈308,以及在t≈50ms时刻,隔离该故障,通过断开适当的电路断路器310,312,314,316,320,322和324。
如图9B中所示,当故障发生时,整流器332提供额外的故障电流。相应地,当额外的故障电流被提供时,电路600(图4中所示)的等效电路如图10中电路1100所示。具体地,整流器332充当电流源1102,其提供额外的电流iR。电感1104代表相关的扼流圈308
图11是电路1200的示意图,是电路1100(图10中所示)的更详细的表示。特殊的,电路1200对应于,以额外的UPS整流器332作为电流源工作以向相关负载304和扼流圈308供电的,UPS逆变器330的单相等效电路。如上面描述的,在环形总线306上的故障事件中,整流器332提供额外的电流iR。在电路1200中,整流器332由表示为电压源1204的额外命令电压ucmd1,电阻器1206,第一电感器1208,第二电感器1210和电容器1212表示。
电路1200的控制可以以多种方式实现。在一个实施例中,执行级联的控制结构。例如,控制器,诸如控制器309,控制电容器418两端的电压uc以跟随参考电压uref,以及确定总的参考电流irtref。这个总的参考电流分为两个相等的部分,以形成参考电流iRref和isref,用于两个内部电流控制。第一电流控制确定额外命令电压ucmd1以为了电流iR跟随参考电流iRref。。第二电流控制确定命令电压ucmd以为了电流is跟随参考电流isref。本领域的技术人员能理解同样可以执行的其他控制策略。
与至少一个已知的电源系统相比,文中描述的系统和方法有助于增加在环形总线系统中的UPS的故障电流能力。在故障事件中,通过注入流过相关扼流圈的额外的故障电流,扼流圈的尺寸可以被减小,还仍能取得相关负载处的理想电压。相对于至少一些已知的电源系统,减小扼流圈尺寸有助于改善环形总线系统的成本,可行性和生存力。
尤其,文中描述的系统和方法,是不依赖电压等级可适用的,并且更特殊的,在低压(LV)(如,相间电压为480V)和中压(MV)(如,相间电压为13.8kV)应用中都可适用。
上面详细地描述了用于不可中断电源的系统和方法的示范性实施例。但该系统和方法不限于文中描述的具体实施例,而是,可以独立地和脱离文中描述的其他组件和/或操作地利用该系统的组件和/或该方法的操作。而且,描述的组件和或操作还可以在于其他系统、方法和/或装置的结合中被定义或使用,而不是限制成只在文中描述的系统中实行。
本文中所示出和描述的实施例中的操作的执行或实现的顺序不是必需的,除非另外指定。即,除非另外指定,否则可以按任何顺序执行操作,且实施例可以包括与本文中所公开的操作相比额外的或更少的操作。例如,可以预期的是在一个操作之前、与一个操作同时地或在一个操作之后执行或实施另一个具体操作是在所描述的实施例的范围之内的。
尽管在某些附图中可能示出了本发明的各种实施例的具体特征而在其他附图中可能没有示出,然而这仅是为了方便。根据本发明的原理,可与附图的任何特征组合地引用和/或要求保护任何其他附图的任何特征。
所撰写本说明书使用示例来公开包括最佳方式的本发明,并且还使得本领域技术人员能够实践本发明,包括制作和使用任何设备或系统,并执行任何所结合的方法。本发明的可专利范围由权利要求书来限定,并且可包括本领域技术人员想到的其他示例。此类其他示例旨在落在权利要求书的范围内,如果此类其他示例具有不偏离权利要求书的字面语言的结构元件,或者如果它们包括非本质上异于权利要求书的字面语言的等效结构元件。
部件列表
300  架构
302  UPS
303  电压源
304  负载
306  环形总线
308  扼流圈
309  控制器
310  第一电路断路器
311  处理器
312  第二电路断路器
313  存储器装置
314  第三电路断路器
316  第四电路断路器
320  中心电路断路器
322  左电路断路器
324  右电路断路器
330  逆变器
332  整流器
358  能量存储装置
400  逆变器
402  第一开关装置
404  第二开关装置
405  第一开关
406  第一二极管
407  第二开关
408  第二二极管
410  节点
412  电感器
414  电阻器
416  负载
418  电容器
420  中性点
430  第一直流电容器
432  第二直流电容器
500  逆变器
502  第三开关装置
504  第四开关装置
505  第三开关
506  第三二极管
507  第四开关
508  第四二极管
600  电路
602  电压源
604  控制器
700  曲线图
702  电感性的故障电流曲线
704  电压曲线
800  UPS
801  UPS输入端
802  整流器输入端
803  UPS输出端
804  整流器输出端
806  逆变器输入端
808  逆变器输出端
810  旁路开关
900  UPS
902  断开开关
1000 曲线图
1002  参考电流
1004  整流器电流
1100  电路
1102  电流源
1104  电感
1200  电路
1204  电压源
1206  电阻器
1208  第一电感器
1210  第二电感器
1212  电容器

Claims (10)

1.一种系统(300),包括:
环形总线(306);
至少一个电压源(303);和
多个不可中断电源(UPS)(302),电耦合在所述至少一个电压源和所述环形总线之间,其中所述多个UPS中的至少一个UPS包括:
输入端(801);
输出端(803);
整流器(332),包括整流器输入端(802)和整流器输出端(804);
逆变器(330),包括逆变器输入端(806)和逆变器输出端(808),其中所述整流器输出端电耦合至所述逆变器输入端;和
旁路开关(810),其电耦合在所述整流器输入端和所述逆变器输出端之间,所述旁路开关配置为响应于所述环形总线上的故障的检测而闭合。
2.根据权利要求1的系统(300),进一步包括控制器(309),其通信地耦合至所述至少一个UPS(302)并且配置为:
检测该故障;和
在检测到该故障时命令该旁路开关(810)闭合。
3.根据权利要求2的系统(300),其中所述至少一个UPS(302)进一步包括断开开关(902),其电耦合在所述UPS输入端(801)和所述整流器输入端(802)之间,所述断开开关配置为响应该故障的检测而断开。
4.根据权利要求3的系统(300),其中所述控制器(309)进一步配置为在检测到该故障时命令该断开开关(902)断开。
5.根据权利要求4的系统(300),其中所述断开开关(902)包括晶闸管。
6.根据权利要求5的系统(300),其中所述控制器(309)进一步配置为在检测到该故障时改变用于所述整流器(332)的参考电压的符号。
7.根据权利要求3的系统(300),其中所述断开开关(902)包括绝缘栅双极型晶体管开关和集成栅极换流晶闸管开关中的一个。
8.一种用于在环形总线系统(300)中使用的不可中断电源(UPS)(302),所述UPS包括:
输入端(801),配置为电耦合至电压源(303);
输出端(803),配置为电耦合至环形总线(306);
整流器(332),包括整流器输入端(802)和整流器输出端(804);
逆变器(330),包括逆变器输入端(806)和逆变器输出端(808),其中所述整流器输出端电耦合至所述逆变器输入端;和
旁路开关(810),电耦合在所述整流器输入端和所述逆变器输出端之间,所述旁路开关被配置为响应于该环形总线上的故障的检测而闭合。
9.根据权利要求8的UPS(302),其中所述旁路开关(810)被配置为响应于接收来自检测故障的控制器(309)的旁路命令而闭合。
10.根据权利要求9的UPS(302),所述UPS进一步包括断开开关(902),断开开关(902)电耦合在所述UPS输入端(801)和所述整流器输入端(802)之间,所述断开开关配置为响应于该故障的检测而断开。
CN201510277596.4A 2014-03-13 2015-03-13 在不可中断电源系统中提供增加的故障电流能力的系统和方法 Active CN105006878B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201461952256P 2014-03-13 2014-03-13
US201461952543P 2014-03-13 2014-03-13
US61/952543 2014-03-13
US61/952256 2014-03-13

Publications (2)

Publication Number Publication Date
CN105006878A true CN105006878A (zh) 2015-10-28
CN105006878B CN105006878B (zh) 2020-06-30

Family

ID=54379439

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510277596.4A Active CN105006878B (zh) 2014-03-13 2015-03-13 在不可中断电源系统中提供增加的故障电流能力的系统和方法

Country Status (1)

Country Link
CN (1) CN105006878B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814334A (zh) * 2015-12-02 2017-06-09 山特电子(深圳)有限公司 不间断电源开机的自检方法和自检装置
CN107332340A (zh) * 2017-06-30 2017-11-07 广船国际有限公司 一种电压穿越的破冰船
EP3293852A1 (en) * 2016-09-13 2018-03-14 General Electric Company Isolated parallel ups system with fault location detection
CN109565275A (zh) * 2016-08-11 2019-04-02 西门子股份公司 配电系统和方法
CN109643909A (zh) * 2016-09-01 2019-04-16 赖茵豪森机械制造公司 用于控制无中断供电的方法和用于无中断供电的设备
CN110784005A (zh) * 2018-07-24 2020-02-11 伊顿智能动力有限公司 不间断电源、灭弧装置、降低电弧能量的电器及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006641A2 (en) * 1998-11-06 2000-06-07 Kling Lindquist Partnership Inc. System and method for providing an uninterruptible power supply to a critical load
JP4462230B2 (ja) * 2006-05-09 2010-05-12 富士電機システムズ株式会社 無停電電源システム
CN202034819U (zh) * 2011-03-31 2011-11-09 昆山弗尔赛能源有限公司 基于燃料电池的不间断电源供电系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006641A2 (en) * 1998-11-06 2000-06-07 Kling Lindquist Partnership Inc. System and method for providing an uninterruptible power supply to a critical load
US6191500B1 (en) * 1998-11-06 2001-02-20 Kling Lindquist Partnership, Inc. System and method for providing an uninterruptible power supply to a critical load
JP4462230B2 (ja) * 2006-05-09 2010-05-12 富士電機システムズ株式会社 無停電電源システム
CN202034819U (zh) * 2011-03-31 2011-11-09 昆山弗尔赛能源有限公司 基于燃料电池的不间断电源供电系统

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106814334A (zh) * 2015-12-02 2017-06-09 山特电子(深圳)有限公司 不间断电源开机的自检方法和自检装置
CN106814334B (zh) * 2015-12-02 2021-02-19 山特电子(深圳)有限公司 不间断电源开机的自检方法和自检装置
CN109565275A (zh) * 2016-08-11 2019-04-02 西门子股份公司 配电系统和方法
CN109565275B (zh) * 2016-08-11 2023-01-20 西门子能源有限责任公司 配电系统和方法
CN109643909A (zh) * 2016-09-01 2019-04-16 赖茵豪森机械制造公司 用于控制无中断供电的方法和用于无中断供电的设备
CN109643909B (zh) * 2016-09-01 2023-06-13 赖茵豪森机械制造公司 用于控制无中断供电的方法和用于无中断供电的设备
EP3293852A1 (en) * 2016-09-13 2018-03-14 General Electric Company Isolated parallel ups system with fault location detection
CN107332340A (zh) * 2017-06-30 2017-11-07 广船国际有限公司 一种电压穿越的破冰船
WO2019000747A1 (zh) * 2017-06-30 2019-01-03 广船国际有限公司 一种电压穿越的破冰船
CN110784005A (zh) * 2018-07-24 2020-02-11 伊顿智能动力有限公司 不间断电源、灭弧装置、降低电弧能量的电器及方法
CN110784005B (zh) * 2018-07-24 2023-09-29 伊顿智能动力有限公司 不间断电源、灭弧装置、降低电弧能量的电器及方法

Also Published As

Publication number Publication date
CN105006878B (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
EP2919350B1 (en) Systems and methods for providing increased fault current capability in uninterruptible power supply systems
US11355957B2 (en) Isolated parallel UPS system with choke bypass switch
CN105006878A (zh) 在不可中断电源系统中提供增加的故障电流能力的系统和方法
JP6448882B1 (ja) 電力変換装置
CN107819357B (zh) 带有故障位置检测的隔离并联ups系统
Jovcic et al. Offshore DC grids as an interconnection of radial systems: Protection and control aspects
US6879062B2 (en) Electrical substation
Liang et al. Current source modular multilevel converter for HVDC and FACTS
JP5645864B2 (ja) 三相不平衡抑制システム
US10637371B2 (en) Interface arrangement between an alternating current power system and a direct current power system with control of converter valve for fault protection
WO2019003290A1 (ja) 電力変換装置
CN105305532B (zh) 用于管理不间断电源系统中的反向馈电的系统和方法
EP2471164B1 (en) Converter cell module with autotransformer bypass, voltage source converter system comprising such a module and a method for controlling such a system
CN105322642B (zh) 用于开发在静态ups中的电流容量的系统和方法
CN105322524B (zh) 对于静态ups系统中的混合电压和电流控制的系统和方法
CN104868579A (zh) 冗余不间断电力供应系统
CN105720677A (zh) 用于实现在静态ups中的串联补偿器的系统和方法
Lazzari et al. Selectivity and security of DC microgrid under line-to-ground fault
Sahoo et al. Decentralised control and fault ride‐through of a multi‐microgrid system
Di Tommaso et al. Fault tolerant ancillary function of power converters in distributed generation power system within a microgrid structure
Nguyen et al. A new distributed algorithm for integrated volt-VAR control in smart grids
Abdali et al. Novel method of low and high impedance fault detection in LVDC microgrids
Elserougi Input‐voltage and output‐current equalization of series‐in parallel‐out three‐phase multi‐module voltage source converter‐based high voltage direct current shunt tap
Grillo et al. Storage system control for correct operation of fault protections of single phase load in grids dominated by inverters

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20190729

Address after: Baden, Switzerland

Applicant after: ABB TECHNOLOGY LTD.

Address before: American New York

Applicant before: General Electric Company

GR01 Patent grant
GR01 Patent grant