CN104994375A - Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency - Google Patents
Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency Download PDFInfo
- Publication number
- CN104994375A CN104994375A CN201510396787.2A CN201510396787A CN104994375A CN 104994375 A CN104994375 A CN 104994375A CN 201510396787 A CN201510396787 A CN 201510396787A CN 104994375 A CN104994375 A CN 104994375A
- Authority
- CN
- China
- Prior art keywords
- image
- stereoscopic
- map
- distorted
- quality
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 57
- 230000000007 visual effect Effects 0.000 title claims description 25
- 238000000034 method Methods 0.000 claims abstract description 32
- 238000010586 diagram Methods 0.000 claims description 15
- 238000005457 optimization Methods 0.000 claims description 15
- 239000000284 extract Substances 0.000 description 14
- 238000013441 quality evaluation Methods 0.000 description 7
- 230000008569 process Effects 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- 238000013210 evaluation model Methods 0.000 description 4
- 230000035945 sensitivity Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000003986 cell retinal photoreceptor Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000001525 retina Anatomy 0.000 description 1
- 230000002207 retinal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Image Analysis (AREA)
Abstract
本发明公开了一种基于立体视觉显著性的立体图像质量客观评价方法,所述立体图像质量客观评价方法包括以下步骤:通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图;根据失真立体图像质量图、绝对差值图的质量图得到立体图像综合质量图;通过所述立体视觉显著图对所述立体图像综合质量图进行加权求和,获取失真立体图像质量客观评价值。本方法在立体图像质量客观评价方面整体性能优于现有技术中的算法,具有实际可行性,获取到了较高的立体图像质量客观评价指标,满足了实际应用中的多种需要。
The invention discloses a stereoscopic image quality objective evaluation method based on stereoscopic saliency. The stereoscopic image quality objective evaluation method includes the following steps: optimizing the stereoscopic saliency map by simulating the central offset and the central fovea characteristics, extracting The optimized stereoscopic saliency map; obtain the stereoscopic image comprehensive quality map according to the quality map of the distorted stereoscopic image quality map and the absolute difference map; carry out weighted summation to the stereoscopic image comprehensive quality map by the stereoscopic saliency map, and obtain Objective evaluation value of distorted stereoscopic image quality. The overall performance of the method in objective evaluation of stereoscopic image quality is superior to the algorithm in the prior art, has practical feasibility, obtains a relatively high objective evaluation index of stereoscopic image quality, and satisfies various needs in practical applications.
Description
技术领域technical field
本发明涉及立体图像领域,尤其涉及一种基于立体视觉显著性的立体图像质量客观评价方法。The invention relates to the field of stereoscopic images, in particular to an objective evaluation method of stereoscopic image quality based on stereoscopic salience.
背景技术Background technique
近年来,立体图像处理技术在娱乐行业和科学领域的应用越来越广泛,与平面图像带给人的视觉感受不同,立体图像为人们提供更加真实的立体视觉感受。但是立体图像在采集、压缩、储存、运输和显示等过程中会产生各种失真,影响人们的立体视觉感受。立体图像质量作为立体图像的固有属性是评判立体图像失真的一个重要指标。虽然主观质量评价方法的准确性较高,但是具有费时费力且成本较高的缺陷,因此建立一个能够准确高效模拟人眼主观评价结果的立体图像质量客观评价算法具有重要的意义。In recent years, stereoscopic image processing technology has been widely used in the entertainment industry and scientific fields. Different from the visual experience brought by flat images, stereoscopic images provide people with a more realistic stereoscopic visual experience. However, various distortions will occur in the process of collecting, compressing, storing, transporting and displaying stereoscopic images, which will affect people's stereoscopic vision experience. Stereoscopic image quality, as an inherent attribute of stereoscopic images, is an important index for judging the distortion of stereoscopic images. Although the accuracy of the subjective quality evaluation method is high, it is time-consuming, laborious and costly. Therefore, it is of great significance to establish an objective evaluation algorithm for stereoscopic image quality that can accurately and efficiently simulate the subjective evaluation results of human eyes.
经过多年的研究,国内外研究者已提出了许多立体图像质量客观评价算法。最初,将均方误差(Mean Squared Error,MSE)、峰值信噪比(Peak Signal Noise Ratio,PSNR)、结构相似度(Structural Similarity,SSIM)[1]等一些经典的平面图像质量评价算法直接应用于立体图像的左右视点,通过加权左右图像质量得到立体图像质量客观评价值[2]。文献[3]和文献[4]考虑深度感知对立体图像质量评价的影响,将2D评价方法融合立体图像的差异信息或深度信息进行立体图像质量评价。After years of research, researchers at home and abroad have proposed many objective evaluation algorithms for stereoscopic image quality. Initially, some classic planar image quality evaluation algorithms such as mean square error (Mean Squared Error, MSE), peak signal to noise ratio (Peak Signal Noise Ratio, PSNR), structural similarity (Structural Similarity, SSIM) [1] are directly applied Based on the left and right viewpoints of the stereo image, the objective evaluation value of the stereo image quality is obtained by weighting the quality of the left and right images [2]. Literature [3] and Literature [4] considered the impact of depth perception on stereoscopic image quality evaluation, and combined the 2D evaluation method with the difference information or depth information of stereoscopic images for stereoscopic image quality evaluation.
目前,研究者已将一些容易建模的人眼视觉特性,例如:亮度幅度非线性特性、多通道特性、对比度敏感度特性和掩盖效应等,用于立体图像质量客观评价算法中。随着各研究领域对人类视觉系统的认识逐渐加深,客观评价模型中融入更加复杂和高级的人眼视觉特性成为了必然的发展方向。视觉显著性作为一种人类视觉系统高级特性,是指人眼对图像不同区域分配的注意力强度不同。显著区域是人眼比较容易关注的区域,所以观看失真立体图像时,显著区域出现的失真对人眼的视觉感受影响更大。视觉显著图为立体图像质量客观评价提供了重要依据,文献[5-8]将视觉显著性的影响用到立体图像质量客观评价算法中。文献[6]结合立体显著性和SSIM算法[1]对绘制图像进行质量评价。文献[7]将相位一致性图和显著图作为失真立体图像的特征,使用局部匹配函数加权两个特征图的差异以计算左右视点间的相关性,进行立体图像质量经验值评价。文献[8]使用SSIM算法得到原始与失真立体图像的合成图像的结构相似度图,将其与立体显著图融合得到立体图像质量评价指标。文献[9]将原始和失真立体图像左右视图和其显著图结合,确定原始、失真立体图像左右视图的选择性显著图;然后对选择性显著图采用SSIM算法来获取显著结构相似度图,通过给其边缘区域、平滑区域和纹理区域的分配不同的权值来获取单视图的客观评价值;最后,加权平均左右视图的客观评价值得到立体图像质量客观评价值。文献[5][7]提取立体显著图时使用原始立体图像的视差图,忽略了失真立体图像的深度信息失真对失真立体图像的立体显著图检测的影响。At present, researchers have used some easy-to-model human vision characteristics, such as: nonlinear characteristics of brightness amplitude, multi-channel characteristics, contrast sensitivity characteristics and masking effects, etc., into the objective evaluation algorithm of stereoscopic image quality. With the gradual deepening of the understanding of the human visual system in various research fields, the integration of more complex and advanced human visual characteristics into the objective evaluation model has become an inevitable development direction. As an advanced feature of the human visual system, visual saliency refers to the different intensity of attention allocated by the human eye to different regions of the image. The salient area is an area that is easier for the human eye to pay attention to, so when watching a distorted stereoscopic image, the distortion in the salient area has a greater impact on the visual experience of the human eye. The visual saliency map provides an important basis for the objective evaluation of stereoscopic image quality. Literature [5-8] uses the influence of visual saliency in the objective evaluation algorithm of stereoscopic image quality. Literature [6] combines stereo saliency and SSIM algorithm [1] to evaluate the quality of rendered images. Literature [7] regards the phase consistency map and the saliency map as the features of the distorted stereo image, uses the local matching function to weight the difference between the two feature maps to calculate the correlation between the left and right viewpoints, and conducts the empirical value evaluation of the stereo image quality. Literature [8] used the SSIM algorithm to obtain the structural similarity map of the composite image of the original and distorted stereo images, and fused it with the stereo saliency map to obtain the stereo image quality evaluation index. Literature [9] combines the left and right views of the original and distorted stereo images with their saliency maps to determine the selective saliency maps of the left and right views of the original and distorted stereo images; then the SSIM algorithm is used for the selective saliency maps to obtain the salient structure similarity map, through Different weights are assigned to the edge area, smooth area and texture area to obtain the objective evaluation value of single view; finally, the objective evaluation value of stereoscopic image quality is obtained by weighting the objective evaluation value of the left and right views. Literature [5][7] used the disparity map of the original stereo image when extracting the stereo saliency map, ignoring the influence of the distortion of the depth information of the distorted stereo image on the detection of the stereo saliency map of the distorted stereo image.
但是上述方法没有考虑人眼的其它视觉特性和深度信息对立体图像质量评价的影响,导致客观评价值不能有效的反映主观评价结果。However, the above method does not consider the influence of other visual characteristics of the human eye and depth information on the quality evaluation of the stereoscopic image, resulting in that the objective evaluation value cannot effectively reflect the subjective evaluation result.
发明内容Contents of the invention
本发明提供了一种基于立体视觉显著性的立体图像质量客观评价方法,本发明根据融合立体视觉显著图和立体图像综合质量图,准确有效地建立了反映主观评价结果的立体图像质量的客观评价模型,详见下文描述:The present invention provides an objective evaluation method of stereoscopic image quality based on stereoscopic saliency. According to the fusion of stereoscopic saliency map and stereoscopic image comprehensive quality map, the present invention accurately and effectively establishes the objective evaluation of stereoscopic image quality reflecting subjective evaluation results model, see the description below:
一种基于立体视觉显著性的立体图像质量客观评价方法,所述立体图像质量客观评价方法包括以下步骤:A stereoscopic image quality objective evaluation method based on stereoscopic salience, the stereoscopic image quality objective evaluation method comprises the following steps:
通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图;By simulating the characteristics of central offset and fovea, the stereoscopic saliency map is optimized, and the optimized stereoscopic saliency map is extracted;
根据失真立体图像质量图、绝对差值图的质量图得到立体图像综合质量图;Obtaining the comprehensive quality map of the stereo image according to the quality map of the distorted stereo image and the quality map of the absolute difference map;
通过所述立体视觉显著图对所述立体图像综合质量图进行加权求和,获取失真立体图像质量客观评价值。The stereoscopic image comprehensive quality map is weighted and summed through the stereoscopic saliency map to obtain an objective evaluation value of the distorted stereoscopic image quality.
其中,在所述通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图的步骤之前,所述立体图像质量客观评价方法还包括以下步骤:Wherein, before the step of optimizing the stereoscopic saliency map by simulating the central offset and the fovea characteristics, and extracting the optimized stereoscopic saliency map, the stereoscopic image quality objective evaluation method also includes the following steps:
通过模拟视觉显著性,获取失真立体图像的立体视觉显著图。Stereoscopic saliency maps of distorted stereo images are obtained by simulating visual saliency.
其中,所述通过模拟视觉显著性,获取失真立体图像的立体视觉显著图的步骤具体为:Wherein, the step of obtaining the stereoscopic saliency map of the distorted stereo image by simulating the visual saliency is specifically:
将失真立体图像右视图从RGB色彩空间转换到YCbCr色彩空间,划分为不重叠的图像块,对图像块进行离散余弦变换;Convert the right view of the distorted stereoscopic image from the RGB color space to the YCbCr color space, divide it into non-overlapping image blocks, and perform discrete cosine transform on the image blocks;
将亮度对比度特征显著图、色度对比度特征显著图、纹理对比度特征显著图和失真立体图像的绝对差值图进行归一化,通过将归一化后的这些图线性组合获取失真立体图像的立体视觉显著图。The luminance contrast feature saliency map, the chroma contrast feature saliency map, the texture contrast feature saliency map and the absolute difference map of the distorted stereo image are normalized, and the stereo of the distorted stereo image is obtained by linearly combining these normalized maps. Visual saliency map.
其中,所述通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图的步骤具体为:Wherein, the step of optimizing the stereoscopic saliency map by simulating the central offset and the fovea characteristics, and extracting the optimized stereoscopic saliency map is specifically:
模拟中央偏移因子,对立体视觉显著图进行初步优化;Preliminary optimization of stereoscopic saliency maps by simulating the central offset factor;
模拟中心凹特性,对初步优化后的立体视觉显著图进行最终优化。Simulate the characteristics of the fovea, and finally optimize the stereoscopic saliency map after the initial optimization.
其中,所述根据失真立体图像质量图、绝对差值图的质量图得到立体图像综合质量图的步骤具体为:Wherein, the step of obtaining the comprehensive quality map of the stereoscopic image according to the quality map of the distorted stereoscopic image quality map and the absolute difference map is specifically:
提取失真立体图像右视图的相位相似度;Extract the phase similarity of the right view of the distorted stereo image;
提取失真立体图像右视图的梯度相似度;Extract the gradient similarity of the right view of the distorted stereo image;
分别提取失真立体图像右视图的色度的相似度;Respectively extract the similarity of the chroma of the right view of the distorted stereo image;
计算原始立体图像右视图和失真立体图像右视图之间的相似度;Calculate the similarity between the original stereo image right view and the distorted stereo image right view;
计算失真立体图像左视图的相似度,将失真立体图像右视图的相似度、左视图的相似度图使用平均值法得到失真立体图像质量图;Calculating the similarity of the left view of the distorted stereo image, using the average value method to obtain the quality map of the distorted stereo image with the similarity of the right view of the distorted stereo image and the similarity map of the left view;
对原始立体图像的绝对差值图和失真立体图像的绝对差值图采用结构相似度算法,提取失真立体图像的绝对差值图的质量图;Using a structural similarity algorithm for the absolute difference map of the original stereo image and the absolute difference map of the distorted stereo image, extracting the quality map of the absolute difference map of the distorted stereo image;
将失真立体图像质量图与绝对差值图的质量图融合,得到立体图像综合质量图。The quality map of the distorted stereo image is fused with the quality map of the absolute difference map to obtain the comprehensive quality map of the stereo image.
本发明提供的技术方案的有益效果是:本方法在初始立体显著图的基础上,采用中央偏移与中心凹特性得到最优立体视觉显著图,更好地模拟了人类视觉系统提取显著区域的视觉过程。然后将立体视觉显著图和立体图像质量图加权相乘并归一化,获取立体图像客观评价值。与其它三种算法相比较,本算法避免了对整幅图像不同区域采用同等权重的缺陷。通过实验验证表明,本方法在立体图像质量客观评价方面整体性能优于3SIQA[8]算法、DSSIM[3]算法和SSIM[1]算法,具有实际可行性。The beneficial effect of the technical solution provided by the present invention is that: on the basis of the initial stereo saliency map, the method adopts the characteristics of central offset and fovea to obtain the optimal stereo vision saliency map, which better simulates the process of extracting salient regions by the human visual system visual process. Then the stereoscopic saliency map and the stereoscopic image quality map are weighted and multiplied and normalized to obtain the objective evaluation value of the stereoscopic image. Compared with the other three algorithms, this algorithm avoids the defect of using the same weight for different regions of the whole image. The experimental verification shows that the overall performance of this method is better than the 3SIQA[8] algorithm, DSSIM[3] algorithm and SSIM[1] algorithm in terms of objective evaluation of stereoscopic image quality, and it is practical.
附图说明Description of drawings
图1为源图像“tree2”的示意图;Figure 1 is a schematic diagram of the source image "tree2";
图2为源图像“girl”的示意图;Figure 2 is a schematic diagram of the source image "girl";
图3为源图像“tree1”的示意图;Figure 3 is a schematic diagram of the source image "tree1";
图4为源图像“tju”的示意图;Figure 4 is a schematic diagram of the source image "tju";
图5为源图像“family”的示意图;Figure 5 is a schematic diagram of the source image "family";
图6为降质图像“river”的示意图;Figure 6 is a schematic diagram of the degraded image "river";
图7为源图像“ox”的示意图;Fig. 7 is a schematic diagram of the source image "ox";
图8为源图像“woman”的示意图;Fig. 8 is a schematic diagram of the source image "woman";
图9为基于立体视觉显著性的立体图像质量评价方法框图;Fig. 9 is a block diagram of a stereoscopic image quality evaluation method based on stereoscopic saliency;
图10为原始显著图、结合两种影响因素的显著图对比图;Figure 10 is a comparison chart of the original saliency map and the saliency map combined with two influencing factors;
(a)为失真立体图像右视图;(b)为优化前的立体显著图SM1;(c)为经中央偏移优化后的立体显著图SM';(d)为SM'经中心凹优化后的立体显著图SM。(a) is the right view of the distorted stereo image; (b) is the stereo saliency map SM1 before optimization; (c) is the stereo saliency map SM' optimized by central offset; (d) is SM' optimized by the fovea The stereo saliency map SM.
图11为基于立体视觉显著性的立体图像质量客观评价方法的流程图。FIG. 11 is a flow chart of an objective evaluation method for stereoscopic image quality based on stereoscopic salience.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。In order to make the purpose, technical solution and advantages of the present invention clearer, the implementation manners of the present invention will be further described in detail below.
为了解决背景技术中存在的问题,本发明旨在首先通过模拟视觉显著性以初步确定失真立体图像的立体视觉显著图,再通过模拟中央偏移和中心凹特性对初步确定的立体视觉显著图进行优化,提取较准确的立体视觉显著图;其次,融合左、右视图的质量图和绝对差值图的质量图得到立体图像综合质量图;最后,使用立体视觉显著图对立体图像综合质量图进行加权求和,得到失真立体图像质量的客观评价值,详见下文描述。In order to solve the problems existing in the background technology, the present invention aims to firstly determine the stereoscopic saliency map of the distorted stereo image by simulating the visual saliency, and then carry out the preliminary determination of the stereoscopic saliency map by simulating the central offset and the fovea characteristics. optimization to extract a more accurate stereoscopic saliency map; secondly, the quality map of the stereoscopic image is obtained by fusing the quality maps of the left and right views and the quality map of the absolute difference map; finally, the stereoscopic image comprehensive quality map is obtained by using the stereoscopic saliency map The weighted summation is used to obtain the objective evaluation value of the quality of the distorted stereoscopic image, as described below for details.
实施例1Example 1
一种基于立体视觉显著性的立体图像质量客观评价方法,参见图11,立体图像质量客观评价方法包括以下步骤:A stereoscopic image quality objective evaluation method based on stereoscopic salience, see Figure 11, the stereoscopic image quality objective evaluation method includes the following steps:
101:通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图;101: By simulating central offset and fovea characteristics, optimize the stereoscopic saliency map, and extract the optimized stereoscopic saliency map;
102:根据失真立体图像质量图、绝对差值图的质量图得到立体图像综合质量图;102: Obtain a stereoscopic image comprehensive quality map according to the quality map of the distorted stereoscopic image and the quality map of the absolute difference image;
103:通过立体视觉显著图对立体图像综合质量图进行加权求和,获取失真立体图像质量客观评价值。103: Perform weighted summation on the comprehensive quality map of the stereo image through the stereo vision saliency map to obtain an objective evaluation value of the quality of the distorted stereo image.
其中,在步骤101之前,该立体图像质量客观评价方法还包括:通过模拟视觉显著性,获取失真立体图像的立体视觉显著图,该步骤具体为:Wherein, before step 101, the stereoscopic image quality objective evaluation method further includes: obtaining a stereoscopic saliency map of the distorted stereoscopic image by simulating visual saliency, and this step is specifically:
将失真立体图像右视图从RGB色彩空间转换到YCbCr色彩空间,划分为不重叠的图像块,对图像块进行离散余弦变换(Discrete Cosine Transform,离散余弦)变换;Convert the right view of the distorted stereoscopic image from the RGB color space to the YCbCr color space, divide it into non-overlapping image blocks, and carry out discrete cosine transform (Discrete Cosine Transform, discrete cosine) transformation to the image blocks;
将亮度对比度特征显著图、色度对比度特征显著图、纹理对比度特征显著图和失真立体图像的绝对差值图进行归一化,获取失真立体图像的立体视觉显著图。The saliency map of the luminance contrast feature, the saliency map of the chroma contrast feature, the saliency map of the texture contrast feature and the absolute difference map of the distorted stereo image are normalized to obtain the stereo vision saliency map of the distorted stereo image.
其中,步骤101中的通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图的步骤具体为:Wherein, in step 101, by simulating the central offset and the fovea characteristics, the stereoscopic saliency map is optimized, and the steps of extracting the optimized stereoscopic saliency map are specifically:
模拟中央偏移因子,对立体视觉显著图进行初步优化;Preliminary optimization of stereoscopic saliency maps by simulating the central offset factor;
模拟中心凹特性,对初步优化后的立体视觉显著图进行最终优化。Simulate the characteristics of the fovea, and finally optimize the stereoscopic saliency map after the initial optimization.
其中,步骤102中的根据失真立体图像质量图、绝对差值图的质量图得到立体图像综合质量图的步骤具体为:Wherein, the step of obtaining the comprehensive quality map of the stereo image according to the quality map of the distorted stereo image quality map and the absolute difference map in step 102 is specifically:
提取失真立体图像右视图的相位相似度;Extract the phase similarity of the right view of the distorted stereo image;
提取原始立体图像右视图、失真立体图像右视图的梯度相似度;Extract the gradient similarity of the right view of the original stereo image and the right view of the distorted stereo image;
分别提取失真右视图的色度的相似度;Extract the similarity of the chroma of the distorted right view respectively;
计算原始立体图像右视图和失真立体图像右视图之间的相似度;Calculate the similarity between the original stereo image right view and the distorted stereo image right view;
计算失真立体图像左视图的相似度,将失真立体图像右视图的梯度相似度、左视图的相似度使用平均值法得到失真立体图像质量图;Calculate the similarity of the left view of the distorted stereo image, and use the average value method to obtain the quality map of the distorted stereo image by using the gradient similarity of the right view of the distorted stereo image and the similarity of the left view;
对原始立体图像的绝对差值图和失真立体图像的绝对差值图采用结构相似度算法,提取失真立体图像的绝对差值图的质量图;Using a structural similarity algorithm for the absolute difference map of the original stereo image and the absolute difference map of the distorted stereo image, extracting the quality map of the absolute difference map of the distorted stereo image;
将失真立体图像质量图与绝对差值图的质量图融合,得到立体图像综合质量图。The quality map of the distorted stereo image is fused with the quality map of the absolute difference map to obtain the comprehensive quality map of the stereo image.
综上所述,本方法通过步骤101-步骤103实现了对立体图像质量客观评价,准确有效地建立了反映主观评价结果的立体图像质量的客观评价模型,满足了实际应用中的多种需要。To sum up, this method realizes the objective evaluation of stereoscopic image quality through steps 101-103, accurately and effectively establishes an objective evaluation model of stereoscopic image quality reflecting subjective evaluation results, and satisfies various needs in practical applications.
实施例2Example 2
201:通过模拟视觉显著性,获取失真立体图像的立体视觉显著图;201: Obtain a stereoscopic saliency map of a distorted stereo image by simulating visual saliency;
本方法根据文献[9],提取失真立体图像右视图的亮度对比度特征、色度对比度特征和纹理对比度特征。According to the literature [9], this method extracts the brightness contrast feature, chroma contrast feature and texture contrast feature of the right view of the distorted stereo image.
(1)将失真立体图像右视图从RGB转换到YCbCr色彩空间,划分为不重叠的图像块,对图像块进行离散余弦变换;(1) Convert the right view of the distorted stereoscopic image from RGB to YCbCr color space, divide it into non-overlapping image blocks, and carry out discrete cosine transform to the image blocks;
将失真立体图像右视图从RGB色彩空间转换到YCbCr色彩空间,Y通道表示亮度信息,Cb和Cr通道表示色度信息;将失真立体图像右视图分成8*8不重叠的图像块,对图像块进行离散余弦(DCT)变换;用Y通道的直流(DC)系数L=YDC表示亮度特征,Cb通道的直流(DC)系数CbDC、Cr通道的直流(DC)系数CrDC分别表示色度特征C1和色度特征C2,即C1=CbDC和C2=CrDC;用Y通道的前9个低频交流(AC)系数{YAC1,YAC2,...,YAC9}表示纹理特征T即T={YAC1,YAC2,...,YAC9}。Convert the right view of the distorted stereo image from the RGB color space to the YCbCr color space, the Y channel represents brightness information, and the Cb and Cr channels represent chrominance information; the right view of the distorted stereo image is divided into 8*8 non-overlapping image blocks, and the image blocks are Carry out discrete cosine (DCT) transform; Express the luminance feature with the direct current (DC) coefficient L=Y DC of Y channel, the direct current (DC) coefficient Cb DC of Cb channel, the direct current (DC) coefficient Cr DC of Cr channel represent chromaticity respectively Feature C 1 and chrominance feature C 2 , namely C 1 =Cb DC and C 2 =Cr DC ; use the first 9 low-frequency AC (AC) coefficients of the Y channel {Y AC1 , Y AC2, ..., Y AC9 } Indicates the texture feature T, that is, T={Y AC1 , Y AC2, ..., Y AC9 }.
Y=0.299R+0.578G+0.114BY=0.299R+0.578G+0.114B
Cr=0.5R-0.4178G-0.0813B+128 (1)Cr=0.5R-0.4178G-0.0813B+128 (1)
Cb=-0.1687R-0.3313G+0.5B+128Cb=-0.1687R-0.3313G+0.5B+128
对图像块进行离散余弦变换的详细操作步骤为本领域技术人员所公知,例如,可以参见文献[10]中的变换方法,本发明实施例对此不做赘述。The detailed operation steps of performing discrete cosine transform on an image block are well known to those skilled in the art. For example, reference may be made to the transform method in document [10], which will not be repeated in this embodiment of the present invention.
(2)计算图像块i的显著值,得到亮度对比度特征显著图FL、色度对比度特征显著图和纹理对比度特征显著图T;(2) Calculate the saliency value of the image block i, and obtain the luminance contrast feature saliency map F L and the chroma contrast feature saliency map and Texture contrast feature saliency map T;
该计算过程为本领域技术人员所公知,例如,可以参考文献[9]中的计算方法获取各个特征显著图,本发明实施例对此不做赘述。The calculation process is well known to those skilled in the art. For example, each feature saliency map can be obtained by referring to the calculation method in document [9], which will not be described in this embodiment of the present invention.
(3)将特征显著图FL、和T和失真立体图像的绝对差值图Δ进行归一化,利用公式(2)初步得到立体视觉显著图SM1:(3) The feature saliency map F L , and T and the absolute difference map Δ of the distorted stereo image are normalized, and the stereo vision saliency map SM1 is preliminarily obtained by using the formula (2):
其中,Δ=|L-R|,L和R分别为失真立体图像的左视图和右视图。Wherein, Δ=|L-R|, L and R are the left view and the right view of the distorted stereo image, respectively.
202:通过模拟中央偏移和中心凹特性,对立体视觉显著图进行优化,提取优化后的立体视觉显著图;202: Optimizing the stereoscopic saliency map by simulating central offset and fovea characteristics, and extracting the optimized stereoscopic saliency map;
(1)模拟中央偏移因子,对立体视觉显著图进行初步优化;(1) Simulate the central offset factor to perform preliminary optimization on the stereoscopic saliency map;
其中,CB(i,j)表示失真立体图像像素点(i,j)对其中心点(i0,j0)的偏移信息;(i0,j0)表示失真右视图的中心点坐标,(i,j)为像素点x坐标,σh和σv分别表示失真立体图像水平方向和垂直方向的标准差,定义为σh=W/3,σv=H/3,W和H表示失真立体图像的水平像素和垂直像素个数。Among them, CB(i,j) represents the offset information of the distorted stereo image pixel point (i,j) to its center point (i 0 ,j 0 ); (i 0 ,j 0 ) represents the center point coordinates of the distorted right view , (i, j) is the x-coordinate of the pixel point, σ h and σ v represent the standard deviation of the distorted stereoscopic image in the horizontal direction and vertical direction respectively, defined as σ h =W/3, σ v =H/3, W and H Indicates the number of horizontal pixels and vertical pixels of the distorted stereo image.
利用公式(4)对立体视觉显著图SM1进行初步优化:Preliminary optimization of the stereo vision saliency map SM1 using formula (4):
SM'=αSM1+(1-α)CB (4)SM'=αSM1+(1-α)CB (4)
其中,CB为公式(3)得到的中央偏移图,α为控制参数,定义为α=0.7。Among them, CB is the central offset map obtained by formula (3), and α is the control parameter, which is defined as α=0.7.
(2)模拟中心凹特性,对初步优化后的立体视觉显著图进行最终优化。(2) Simulate the characteristics of the fovea, and finally optimize the stereoscopic saliency map after the initial optimization.
利用公式(5)模拟中心凹特性:Use formula (5) to simulate the central fovea characteristics:
其中,e的单位为度(degree);f是空间频率,其单位是周/度(cycle/degree);C0为对比度阈值;δ为空间频率衰减参数;e2为半分辨率离心度常数。根据实验拟合结果[10],取δ=0.106,e2=2.3,C0=1/64。Among them, the unit of e is degree (degree); f is the spatial frequency, and its unit is cycle/degree; C 0 is the contrast threshold; δ is the spatial frequency attenuation parameter; e 2 is the half-resolution eccentricity constant . According to the experimental fitting results [10], δ=0.106, e 2 =2.3, C 0 =1/64.
用最大类间方差法确定阈值,将初步优化后的立体视觉显著图分为显著区域和非显著区域。假设任一像素坐标为(i1,j1),距其最近的显著像素点坐标为(i2,j2),则视网膜离心度e:The threshold is determined by the maximum between-class variance method, and the preliminary optimized stereo vision saliency map is divided into salient regions and non-salient regions. Suppose any pixel coordinate is (i 1 , j 1 ), and the coordinate of the nearest significant pixel point is (i 2 , j 2 ), then the retinal eccentricity e:
其中,v为观看距离,本方法取值为5(单位为图像宽度),d为像素点(i1,j1)与像素点(i2,j2)的欧式距离:
利用公式(7)对初步优化后的立体视觉显著图SM'优化,得到最终的立体视觉显著图SM,并将SM扩展到与失真立体图像右视图大小相同。Use formula (7) to optimize the preliminary optimized stereoscopic saliency map SM' to obtain the final stereoscopic saliency map SM, and extend SM to the same size as the right view of the distorted stereo image.
SM=SM'×C(f,e) (7)SM=SM'×C(f,e) (7)
203:根据失真立体图像质量图、绝对差值图的质量图得到立体图像综合质量图;203: Obtain a stereoscopic image comprehensive quality map according to the quality map of the distorted stereoscopic image and the quality map of the absolute difference image;
本发明结合相位一致性特征、图像梯度特征和色度特征,在YIQ色彩空间分别对图像的亮度信息和色度信息独立进行处理,采用特征相似度算法[11]获取失真立体图像单视图的质量图。其中,Y代表图像的亮度信息,I和Q代表图像的色度信息,以右视图为例。The present invention combines phase consistency features, image gradient features and chromaticity features to independently process the luminance information and chromaticity information of the image in the YIQ color space, and uses the feature similarity algorithm [11] to obtain the quality of a single view of a distorted stereoscopic image picture. Wherein, Y represents the brightness information of the image, and I and Q represent the chrominance information of the image, taking the right view as an example.
(1)提取失真立体图像右视图的相位相似度SPC(x);(1) Extract the phase similarity S PC (x) of the right view of the distorted stereo image;
即,利用Reter Kovesi[12]算法提取失真立体图像右视图在像素点x的相位一致性特征PCd(x),如公式(8)。采用同样方法获取原始立体图像右视图在像素点x的相位一致性特征PCo(x)。That is, use the Reter Kovesi [12] algorithm to extract the phase consistency feature PC d (x) of the right view of the distorted stereo image at the pixel point x, as shown in formula (8). The same method is used to obtain the phase consistency feature PC o (x) of the right view of the original stereo image at the pixel point x.
其中,θl=lπ/L,l={0,1,...,L-1}是滤波器的方向角,Among them, θ l =lπ/L, l={0,1,...,L-1} is the orientation angle of the filter,
L是方向数且定义为L=4,为方向θl和尺度n上响应向量的振幅,为方向θl上的局部能量函数,ε是很小的常量。L is the number of directions and is defined as L=4, is the amplitude of the response vector in direction θ l and scale n, is the local energy function on the direction θ l , ε is a very small constant.
利用公式(9)确定失真立体图像右视图的相位相似度:Use formula (9) to determine the phase similarity of the right view of the distorted stereo image:
其中,PCo(x)和PCd(x)分别为原始立体图像右视图、失真立体图像右视图在像素点x处的相位一致性值。T1为防止分母为零的常数。Among them, PC o (x) and PC d (x) are the phase consistency values at the pixel point x of the right view of the original stereo image and the right view of the distorted stereo image, respectively. T 1 is a constant that prevents the denominator from being zero.
(2)提取失真立体图像右视图的梯度相似度;(2) Extract the gradient similarity of the right view of the distorted stereo image;
采用Scharr算子分别对原始立体图像右视图、失真立体图像右视图的亮度信息Y进行滤波,像素点x在失真立体图像右视图的水平和垂直方向的滤波值分别为G1(x)和G2(x),利用公式(10)计算失真立体图像右视图在像素点x的梯度幅度GMd(x),采用同样方法得到原始立体图像右视图在像素点x的梯度幅度GMo(x)。Use the Scharr operator to filter the brightness information Y of the right view of the original stereo image and the right view of the distorted stereo image respectively, and the filter values of pixel x in the horizontal and vertical directions of the right view of the distorted stereo image are G 1 (x) and G 2 (x), use the formula (10) to calculate the gradient magnitude GM d (x) of the right view of the distorted stereo image at the pixel point x , and use the same method to obtain the gradient magnitude GM o (x) of the right view of the original stereo image at the pixel point x .
利用公式计算失真立体图像右视图的梯度相似度:Use the formula to calculate the gradient similarity of the right view of the distorted stereo image:
其中,GMo(x)和GMd(x)分别为原始立体图像右视图、失真立体图像右视图在像素点x处的梯度幅度值,T2为常数,与T1的含义相同。Among them, GM o (x) and GM d (x) are the gradient amplitude values at the pixel point x of the right view of the original stereo image and the right view of the distorted stereo image respectively, and T 2 is a constant, which has the same meaning as T 1 .
(3)分别提取失真右视图的色度I和Q的相似度;(3) Extract the similarity of the chroma I and Q of the distorted right view respectively;
其中,T3和T4为常数,与T1的含义相同。Io、Qo为原始立体图像右视图的色度信息,Id、Qd分别为失真立体图像右视图的色度信息。Wherein, T 3 and T 4 are constants, which have the same meaning as T 1 . I o , Q o are the chromaticity information of the right view of the original stereo image, and I d , Q d are the chromaticity information of the right view of the distorted stereo image, respectively.
(4)计算原始立体图像右视图和失真立体图像右视图之间的相似度;(4) Calculate the similarity between the original stereoscopic image right view and the distorted stereoscopic image right view;
按照如下公式将Spc(x)、SGM(x)、SI(x)和SQ(x)结合,计算原始立体图像右视图、失真立体图像右视图之间的相似度:Combine S pc (x), S GM (x), S I (x) and S Q (x) according to the following formula to calculate the similarity between the right view of the original stereo image and the right view of the distorted stereo image:
SR(x)=[Spc(x)]τ[SGM(x)]β[SI(x)SQ(x)]λ (14)S R (x) = [S pc (x)] τ [S GM (x)] β [S I (x)S Q (x)] λ (14)
其中,τ,β,λ是调节参数,将τ,β,λ均定义为1。Among them, τ, β, λ are adjustment parameters, and τ, β, λ are all defined as 1.
(5)按照(1)至(4)步建立的计算失真立体图像右视图的特征相似度方法,计算失真立体图像左视图的相似度SL(x),将SR(x)和SL(x)使用平均值法得到失真立体图像质量图S0(x)。(5) According to the feature similarity method of calculating the right view of the distorted stereo image established in steps (1) to (4), calculate the similarity S L (x) of the left view of the distorted stereo image, and combine S R (x) and S L (x) The distorted stereoscopic image quality map S 0 (x) is obtained by using the mean value method.
(6)对原始立体图像的绝对差值图和失真立体图像的绝对差值图采用结构相似度[1](SSIM)算法,提取失真立体图像的绝对差值图的质量图D(x)。然后,采用AlexandreBenoit[4]提出的算法,将失真立体图像质量图S0(x)与绝对差值图的质量图D(x)融合,得到立体图像综合质量图:(6) Structural similarity [1] (SSIM) algorithm is used for the absolute difference map of the original stereo image and the absolute difference map of the distorted stereo image to extract the quality map D(x) of the absolute difference map of the distorted stereo image. Then, using the algorithm proposed by AlexandreBenoit[4], the quality map S 0 (x) of the distorted stereo image is fused with the quality map D(x) of the absolute difference map to obtain the comprehensive quality map of the stereo image:
Q0(x)=S0(x)·(1+D(x)) (15)Q 0 (x)=S 0 (x)·(1+D(x)) (15)
204:通过立体视觉显著图对立体图像综合质量图进行加权求和,获取失真立体图像质量客观评价值。204: Perform weighted summation on the comprehensive quality map of the stereo image through the stereo vision saliency map to obtain an objective evaluation value of the quality of the distorted stereo image.
将失真立体图像的立体视觉显著图SM和立体图像综合质量图Q0(x)加权求和并归一化,得到立体图像质量客观评价值Q。The stereoscopic saliency map SM of the distorted stereo image and the stereo image comprehensive quality map Q 0 (x) are weighted and summed and normalized to obtain the objective evaluation value Q of the stereo image quality.
其中,Ω表示图像的整个空域,SM(x)是立体视觉显著图SM在像素点x处的值。Among them, Ω represents the entire spatial domain of the image, and SM(x) is the value of the stereoscopic saliency map SM at the pixel point x.
综上所述,本方法通过步骤201-步骤204实现了对立体图像质量客观评价,准确有效地建立了反映主观评价结果的立体图像质量的客观评价模型,满足了实际应用中的多种需要。To sum up, this method realizes the objective evaluation of stereoscopic image quality through steps 201-204, accurately and effectively establishes an objective evaluation model of stereoscopic image quality reflecting subjective evaluation results, and meets various needs in practical applications.
实施例3Example 3
下面结合技术方案详细说明本方法:本发明具体包括提取立体视觉显著图、提取立体图像综合质量图和将二者融合三个部分,具体步骤如下:The method is described in detail below in conjunction with the technical solution: the present invention specifically includes three parts: extracting a stereoscopic salience map, extracting a stereoscopic image comprehensive quality map and merging the two, and the specific steps are as follows:
301:初步提取立体视觉显著图;301: Initially extract a stereoscopic saliency map;
(1)按照公式(1)将失真立体图像右视图从RGB色彩空间转换到YCbCr(4:2:0)色彩空间,Y通道表示亮度信息,Cb和Cr通道表示色度信息;将右视图分成8*8不重叠的图像块,根据公式(17)对图像块进行离散余弦变换;(1) Convert the right view of the distorted stereoscopic image from the RGB color space to the YCbCr (4:2:0) color space according to formula (1), the Y channel represents the brightness information, and the Cb and Cr channels represent the chroma information; the right view is divided into 8*8 non-overlapping image blocks, carry out discrete cosine transform to image blocks according to formula (17);
Y=0.299R+0.578G+0.114BY=0.299R+0.578G+0.114B
Cr=0.5R-0.4178G-0.0813B+128Cr=0.5R-0.4178G-0.0813B+128
Cb=-0.1687R-0.3313G+0.5B+128Cb=-0.1687R-0.3313G+0.5B+128
其中,m和n均为[0,N-1],N=8。F(m,n)表示离散余弦变换后的系数。在YCbCr色彩空间,Y(m,n),Cb(m,n),Cr(m,n)分别表示亮度信息Y、色度信息Cb和Cr经离散余弦变换后的系数。当m=n=0时,计算直流(DC)系数进而得到亮度特征L=YDC和色度特征。其余的即63个系数为交流(AC)系数。利用zig-zag扫描法获取通道的前9个低频交流(AC)系数{Y(0,1),Y(1,0),Y(2,0),Y(1,1),Y(0,2),Y(0,3),Y(1,2),Y(2,1),Y(3,0)},进而得到纹理特征T={YAC1,YAC2,...,YAC9}。Wherein, both m and n are [0, N-1], N=8. F(m,n) represents the coefficient after the discrete cosine transform. In the YCbCr color space, Y(m,n), Cb(m,n), and Cr(m,n) respectively represent the coefficients of the brightness information Y, chrominance information Cb and Cr after the discrete cosine transform. When m=n=0, calculate the direct current (DC) coefficient Then get the brightness feature L=Y DC and the chrominance feature. The remaining 63 coefficients are alternating current (AC) coefficients. Use the zig-zag scanning method to obtain the first 9 low-frequency AC (AC) coefficients of the channel {Y(0,1), Y(1,0), Y(2,0), Y(1,1), Y(0 ,2), Y(0,3), Y(1,2), Y(2,1), Y(3,0)}, and then get the texture feature T={Y AC1, Y AC2, ..., Y AC9 }.
(2)利用公式(19)计算图像块i与其余图像块的对比度来估计图像块i的显著值,得到亮度对比度特征显著图FL、色度对比度特征显著图和纹理对比度特征显著图T。(2) Use formula (19) to calculate the contrast between image block i and other image blocks to estimate the saliency value of image block i, and obtain the luminance contrast feature saliency map FL and chroma contrast feature saliency map and Texture contrast feature saliency map T.
其中,k表示特征且k∈{L,C1,C2,T},σ为参数且定义σ=20,lij为图像块i和j之间的欧式距离,表示在特征k上图像块i和j的特征对比度。where k represents a feature and k∈{L,C 1 ,C 2 ,T}, σ is a parameter and defines σ=20, l ij is the Euclidean distance between image blocks i and j, Indicates the feature contrast of image patches i and j on feature k.
利用公式(20)计算亮度特征和色度特征对比度,利用公式(21)计算纹理特征对比度 Use formula (20) to calculate the contrast ratio of brightness features and chroma features, and use formula (21) to calculate the contrast ratio of texture features
其中,和分别在特征d上图像块i与图像块j的特征值,t为交流(AC)系数且in, and The eigenvalues of image block i and image block j on feature d respectively, t is the AC coefficient and
t∈{1,2,2,...,9},表示在纹理特征T上图像块i的系数t。t ∈ {1,2,2,...,9}, Indicates the coefficient t of the image block i on the texture feature T.
(3)将公式(19)得到的特征显著图FL,T和失真立体图像的绝对差值图Δ进行Max-Min归一化操作,根据公式(22)初步得到立体显著图SM1:(3) The feature saliency map F L obtained by formula (19), T and the absolute difference map Δ of the distorted stereo image are subjected to the Max-Min normalization operation, and the stereo saliency map SM1 is preliminarily obtained according to the formula (22):
其中,Δ=|L-R|,L和R分别为失真立体图像的左视图和右视图的灰度图Among them, Δ=|L-R|, L and R are the grayscale images of the left view and right view of the distorted stereo image, respectively
302:优化立体显著图;302: Optimizing the stereo saliency map;
(1)模拟中央偏移因子[13]并对显著图SM1进行优化。(1) Simulate the central offset factor [13] and optimize the saliency map SM1.
(2)视网膜光感受器的密度由中心凹向外周迅速降低[14][15]。因此,当图像映射到视网膜上时,人眼对中心凹区域的空间频率分辨率较高,这部分区域就是人眼集中注视的区域,即显著区域;随着离心度e的增加,人眼的空间分辨率会降低。利用对比度敏感度函数(Contrast Sensitivity Function,CSF)[15]模拟此特性,根据实验拟合结果[10],取δ=0.106,e2=2.3,C0=1/64。(2) The density of retinal photoreceptors decreases rapidly from the fovea to the periphery [14][15]. Therefore, when the image is mapped onto the retina, the spatial frequency resolution of the human eye to the fovea area is relatively high, and this part of the area is the area that the human eye focuses on, that is, the salient area; with the increase of the eccentricity e, the human eye's Spatial resolution will be reduced. This characteristic is simulated by using the contrast sensitivity function (Contrast Sensitivity Function, CSF) [15], and according to the experimental fitting result [10], δ=0.106, e 2 =2.3, C 0 =1/64.
用最大类间方差法确定阈值,将立体显著图分为显著区域和非显著区域。将SM'和C(f,e)点乘,对立体视觉显著图SM'优化,得到最终的立体视觉显著图,并将其扩展到与失真立体图像右视图大小相同。The threshold is determined by the method of maximum between-class variance, and the stereo saliency map is divided into salient regions and non-salient regions. Multiply SM' and C(f,e) to optimize the stereoscopic saliency map SM' to obtain the final stereoscopic saliency map, and expand it to the same size as the right view of the distorted stereo image.
其中,该步骤的具体操作参见实施例2,本发明实施例对此不做赘述。For the specific operation of this step, refer to Embodiment 2, which will not be repeated in this embodiment of the present invention.
303:计算失真立体图像的质量图。303: Calculate the quality map of the distorted stereo image.
本发明结合相位一致性特征、图像梯度特征和色度特征,在YIQ色彩空间分别对图像的亮度信息和色度信息独立进行处理,采用特征相似度算法[11]获取失真立体图像单视图的质量图,以右视图为例。The present invention combines phase consistency features, image gradient features and chromaticity features to independently process the luminance information and chromaticity information of the image in the YIQ color space, and uses the feature similarity algorithm [11] to obtain the quality of a single view of a distorted stereoscopic image Figure, take the right view as an example.
(1)将图像从RGB色彩空间转换到YIQ色彩空间,利用Reter Kovesi[12]算法提取原始和失真右视图的在像素点x的相位一致性信息。确定失真右视图的相位相似度。(1) Convert the image from the RGB color space to the YIQ color space, and use the Reter Kovesi[12] algorithm to extract the phase consistency information at the pixel point x of the original and distorted right views. Determines the phase similarity of the distorted right view.
(2)提取原始和失真右视图的梯度相似度。(2) Extract the gradient similarity of the original and distorted right views.
(3)提取失真右视图的色度相似度。(3) Extract the chroma similarity of the distorted right view.
(4)计算原始立体图像右视图和失真右视图之间的相似度。(4) Calculate the similarity between the original stereo image right view and the distorted right view.
(5)按照(1)至(4)步建立的计算失真右视图的特征相似度方法,计算失真左视图的相似度SL(x)。(5) Calculate the similarity S L (x) of the distorted left view according to the method for calculating the feature similarity of the distorted right view established in steps (1) to (4).
(6)对原始立体图像的绝对差值图和失真立体图像的绝对差值图采用结构相似度[1](SSIM)算法,提取失真立体图像的绝对差值图的质量图D(x)。采用Alexandre Benoit[4]算法,将图像质量图S0(x)与绝对差值图的质量图D(x)融合,得到立体图像的综合质量图Q0(x)。(6) Structural similarity [1] (SSIM) algorithm is used for the absolute difference map of the original stereo image and the absolute difference map of the distorted stereo image to extract the quality map D(x) of the absolute difference map of the distorted stereo image. Using the Alexandre Benoit[4] algorithm, the image quality map S 0 (x) is fused with the quality map D(x) of the absolute difference map to obtain the comprehensive quality map Q 0 (x) of the stereo image.
其中,该步骤的具体操作参见实施例2,本发明实施例对此不做赘述。For the specific operation of this step, refer to Embodiment 2, which will not be repeated in this embodiment of the present invention.
304:获取立体图像质量客观评价值。304: Obtain an objective evaluation value of stereoscopic image quality.
将失真立体图像的立体视觉显著图SM和立体图像质量图加权求和并归一化,得到立体图像质量客观评价值。The weighted sum of the stereoscopic saliency map SM and the stereoscopic image quality map of the distorted stereoscopic image is summed and normalized to obtain the objective evaluation value of the stereoscopic image quality.
综上所述,本方法通过步骤301-步骤304实现了对立体图像质量客观评价,准确有效地建立了反映主观评价结果的立体图像质量的客观评价模型,满足了实际应用中的多种需要。To sum up, this method realizes the objective evaluation of stereoscopic image quality through steps 301 to 304, accurately and effectively establishes an objective evaluation model of stereoscopic image quality reflecting subjective evaluation results, and satisfies various needs in practical applications.
实施例4Example 4
本设计使用的参考实验素材均取自宽带无线通信与立体成像研究所提供的立体信息库,选取图像库中未压缩、未加噪和未模糊的原始图像共8幅,分别为“tree2”、“family”、“girl”、“river”、“tree1、“ox”、“tju”、“woman”,如图1~8所示。对8幅标准立体图像对进行JPEG压缩失真、高斯模糊失真和高斯加噪失真处理,共得到260幅失真立体图像对。每一幅图像分辨率为2560×1024。对所有失真图像对做主观评价,记录平均意见值(MeanOpinion Score,MOS)。在406幅立体图像样本中,选取150幅图像作为训练样本,256幅图像作为测试样本。The reference experimental materials used in this design are all taken from the stereo information database provided by the Institute of Broadband Wireless Communication and Stereo Imaging. A total of 8 uncompressed, non-noised and unblurred original images in the image database are selected, namely "tree2", "family", "girl", "river", "tree1", "ox", "tju", "woman", as shown in Figures 1 to 8. Perform JPEG compression distortion and Gaussian blur distortion on 8 standard stereoscopic image pairs And Gaussian plus noise distortion processing, a total of 260 distorted stereo image pairs are obtained. Each image resolution is 2560 × 1024. Subjective evaluation is made on all distorted image pairs, and the average opinion value (MeanOpinion Score, MOS) is recorded. In 406 Among the stereoscopic image samples, 150 images are selected as training samples and 256 images are selected as testing samples.
图10是优化前和优化后的立体显著图的对比示意图,图10(a)是失真立体图像右视图,(b)是优化前的立体显著图SM1,(c)是(b)经中央偏移优化后的立体显著图SM',(d)是(c)经中心凹优化后的立体显著图SM。由于中央偏移因素的的存在,距图像的中间区域较近的像素越容易引起观看者的注意,所以对比(b)与(c)发现引入中央偏移因子后图像中央区域的像素的显著性增加了;在中心凹特特性的影响下,人眼对距显著区域的较远区域的分辨率低,所以对(c)优化后(d)的非显著区域的像素的显著性减小了。所以,采用中央偏移因子和中心凹特性优化后的立体视觉显著图更加符合人眼视觉特性。Figure 10 is a schematic diagram of the comparison of the stereo saliency map before and after optimization, Figure 10 (a) is the right view of the distorted stereo image, (b) is the stereo saliency map SM1 before optimization, (c) is the center partial Stereo saliency map SM' after shift optimization, (d) is (c) stereo saliency map SM after foveo optimization. Due to the existence of the central offset factor, the pixels closer to the middle area of the image are more likely to attract the attention of the viewer, so comparing (b) and (c), it is found that the pixels in the central area of the image are notable after the introduction of the central offset factor Increased; under the influence of the central fovea characteristics, the resolution of the human eye to the area farther away from the salient area is low, so the saliency of the pixels in the non-salient area of (d) after (c) optimization is reduced. Therefore, the stereoscopic saliency map optimized by using the central offset factor and the central foveal characteristics is more in line with the human visual characteristics.
表1列出了本算法与SSIM[1]、DSSIM[3]算法、3SIQA[8]算法的主观、客观评价值之间的性能指标。Table 1 lists the performance indicators between this algorithm and the subjective and objective evaluation values of SSIM[1], DSSIM[3] and 3SIQA[8] algorithms.
表1 不同评价算法的性能指标Table 1 Performance indicators of different evaluation algorithms
由表1的数据可以看出,针对不同的失真类型,本算法的PLCC指标和RMSE指标均有不同程度的提高,PLCC值均在0.95以上,RMSE值均在0.45以下。虽然本算法对高斯噪声失真和高斯模糊失真的KROCC值略低于文献[8]算法,但本算法的总体性能指标远远高于其余三种算法,这是由于文献[8]和[1]算法没有考虑深度信息,文献[3]和SSIM[1]算法没有考虑立体视觉显著性的影响,本算法考虑了立体视觉显著性和深度信息的影响,所以针对不同的失真类型与失真强度,本算法的客观评价值与主观评价结果具有较好的一致性。It can be seen from the data in Table 1 that for different distortion types, the PLCC index and RMSE index of this algorithm have been improved to varying degrees, the PLCC value is above 0.95, and the RMSE value is below 0.45. Although the KROCC value of this algorithm for Gaussian noise distortion and Gaussian blur distortion is slightly lower than that of the literature [8] algorithm, the overall performance index of this algorithm is much higher than the other three algorithms, which is due to the literature [8] and [1] The algorithm does not consider depth information. The literature [3] and SSIM [1] algorithms do not consider the influence of stereoscopic saliency. This algorithm considers the influence of stereoscopic saliency and depth information. Therefore, for different distortion types and distortion strengths, this The objective evaluation value of the algorithm is in good agreement with the subjective evaluation results.
参考文献references
[1]Z.Wang,A.C.Bovik A,H.R.Sheikh,et al.Image Quality Assessment:From Error Visibilityto Structural Similarity[J].IEEE Transactions on Image Processing,Vol.13,No.4,April 2004.[1] Z.Wang, A.C.Bovik A, H.R.Sheikh, et al. Image Quality Assessment: From Error Visibility to Structural Similarity [J]. IEEE Transactions on Image Processing, Vol.13, No.4, April 2004.
[2]Patrizio Campisi,Patrick Le Callet,Enrico Marini.STEREOSCOPIC IMAGES QUALITYASSESSMENT[C].15th European Signal Processing Conference(EUSIPCO 2007),Poznan,Poland,September 3-7,2007.[2]Patrizio Campisi,Patrick Le Callet,Enrico Marini.STEREOSCOPIC IMAGES QUALITYASSESSMENT[C].15th European Signal Processing Conference(EUSIPCO 2007),Poznan,Poland,September 3-7,2007.
[3]de Miranda Cardoso,J.V.,Danilo Miranda Regis,C.,Sampaio de Alencar,M.On thepreference of disparity-based weighting technique applied to 3D image quality assessment[C].Broadband Multimedia Systems and Broadcasting(BMSB),2014 IEEE internationalSymposium on,Beijing,25-27June 2014.[3] de Miranda Cardoso, J.V., Danilo Miranda Regis, C., Sampaio de Alencar, M. On the preference of disparity-based weighting technique applied to 3D image quality assessment [C]. Broadband Multimedia Systems and Broadcasting (BMSB), 2014 IEEE international Symposium on, Beijing, 25-27 June 2014.
[4]Alexandre Benoit,Patrick Le Callet,Patrizio Campisi,et al.Using disparity for qualityassessment of stereoscopic images[C].15th IEEE International Conference on Image Processing(ICIP).San Diego,CA,2008:389-392.[4] Alexandre Benoit, Patrick Le Callet, Patrizio Campisi, et al. Using disparity for quality assessment of stereoscopic images [C]. 15th IEEE International Conference on Image Processing (ICIP). San Diego, CA, 2008: 389-392.
[5]Dongdong Zhang,Jiahe Huang,Di Zang,et al.An quality metric for 3D rendered image basedon stereo saliency and structural similarity[C].Global High Tech Congress on Electronics(GHTCE),2013IEEE,Shenzhen,17-19Nov.2013:170-174.[5]Dongdong Zhang, Jiahe Huang, Di Zang, et al.An quality metric for 3D rendered image based on stereo saliency and structural similarity[C].Global High Tech Congress on Electronics(GHTCE),2013IEEE,Shenzhen,17-19Nov. 2013:170-174.
[6]Qi F,Jiang T T,Ma S W,et al.Quality of experience assessment for stereoscopic images[C].2012IEEEInternationalSymposiumonCirruitsandSystems(ISCAS),Seoul,Korea,2012:1712–1715.[7]Shao Feng,Duan Fen-fang,et al.3D Visual attention for stereoscopic imagequalityassessment[J].Journal of software,2014,Vol 9,No 7:1841-1847.[6] Qi F, Jiang T T, Ma S W, et al. Quality of experience assessment for stereoscopic images [C]. 2012 IEEE International Symposium on Cirruits and Systems (ISCAS), Seoul, Korea, 2012:1712–1715. [7] Shao Feng, Duan Fen-fang, et al. 3D Visual attention for stereoscopic image quality assessment [J]. Journal of software, 2014, Vol 9, No 7:1841-1847.
[8]Xiu-qin Chu,Yuan-Yuan Wu,Qian Li.Saliency structure stereoscopic image quality assessmentmethod[J].Optik-International Journal for Light and Electron Optics,2014,125(2):704-709.[8]Xiu-qin Chu, Yuan-Yuan Wu, Qian Li.Saliency structure stereoscopic image quality assessment method[J].Optik-International Journal for Light and Electron Optics,2014,125(2):704-709.
[9]Yuming Fang,Junle Wang,Manish Narwaria,et al.Saliency Detection for StereoscopicImages[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.23,NO.6,JUNE 2014.[9]Yuming Fang, Junle Wang, Manish Narwaria, et al.Saliency Detection for Stereoscopic Images[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.23,NO.6,JUNE 2014.
[10]W.S.Geisler and J.S.Perry,A real-time foveated multiresolution system for low-bandwidthvideo communication,Proc.SPIE,vol.3299,pp.294–305,July 1998.[10] W.S.Geisler and J.S.Perry, A real-time foveated multiresolution system for low-bandwidth video communication, Proc. SPIE, vol.3299, pp.294–305, July 1998.
[11]Lin Zhang,Lei Zhang,Xuanqin Mou,et al.FSIM:A Feature Similarity Index for ImageQuality Assessmen[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.20,NO.8,AUGUST 2011.[11]Lin Zhang, Lei Zhang, Xuanqin Mou, et al.FSIM: A Feature Similarity Index for ImageQuality Assessment[J].IEEE TRANSACTIONS ON IMAGE PROCESSING,VOL.20,NO.8,AUGUST 2011.
[12]Kovesi P.Image features from phase congruency[J].Videre:Journal of Computer VisionResearch,1999,1(3):1-30.[12]Kovesi P.Image features from phase congruency[J].Videre:Journal of Computer VisionResearch,1999,1(3):1-30.
[13]Le Meur O.,Le Callet,P.,Barba,et al.A coherent computational approach to modelbottom-up visual attention[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2006,28(5):802-817.[13]Le Meur O.,Le Callet,P.,Barba,et al.A coherent computational approach to model bottom-up visual attention[J].Pattern Analysis and Machine Intelligence,IEEE Transactions on,2006,28(5): 802-817.
[14]P.Tseng,R.Carmi,I.G.M.Camerson,et al.Quantifying center bias of observers in freeviewing of dynamic natural scenes[J].Journal of Vision,2009,vol.9,no.7.[14]P.Tseng, R.Carmi, I.G.M.Camerson, et al.Quantifying center bias of observers in freeviewing of dynamic natural scenes[J].Journal of Vision,2009,vol.9,no.7.
[15]Zhou Wang,Ligang Lu,Alan Conrad Bovik.Foveation Scalable Video Coding WithAutomatic Fixation Selection [J].IEEE TRANSACTIONS ON IMAGE PROCESSING,FEBRUARY 2003,VOL.12,NO.2:243-254.[15] Zhou Wang, Ligang Lu, Alan Conrad Bovik. Foveation Scalable Video Coding With Automatic Fixation Selection [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, FEBRUARY 2003, VOL.12, NO.2:243-254.
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。In the embodiments of the present invention, unless otherwise specified, the models of the devices are not limited, as long as they can complete the above functions.
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。Those skilled in the art can understand that the accompanying drawing is only a schematic diagram of a preferred embodiment, and the serial numbers of the above-mentioned embodiments of the present invention are for description only, and do not represent the advantages and disadvantages of the embodiments.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510396787.2A CN104994375A (en) | 2015-07-08 | 2015-07-08 | Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510396787.2A CN104994375A (en) | 2015-07-08 | 2015-07-08 | Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104994375A true CN104994375A (en) | 2015-10-21 |
Family
ID=54306123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510396787.2A Pending CN104994375A (en) | 2015-07-08 | 2015-07-08 | Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104994375A (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105282543A (en) * | 2015-10-26 | 2016-01-27 | 浙江科技学院 | Total blindness three-dimensional image quality objective evaluation method based on three-dimensional visual perception |
CN105744256A (en) * | 2016-03-31 | 2016-07-06 | 天津大学 | Three-dimensional image quality objective evaluation method based on graph-based visual saliency |
CN105959684A (en) * | 2016-05-26 | 2016-09-21 | 天津大学 | Stereo image quality evaluation method based on binocular fusion |
CN105976351A (en) * | 2016-03-31 | 2016-09-28 | 天津大学 | Central offset based three-dimensional image quality evaluation method |
CN106504230A (en) * | 2016-10-11 | 2017-03-15 | 华侨大学 | Complete based on phase equalization refers to color/graphics image quality measure method |
CN106778772A (en) * | 2016-11-23 | 2017-05-31 | 浙江科技学院 | A kind of notable extracting method of stereo-picture vision |
CN106920232A (en) * | 2017-02-22 | 2017-07-04 | 武汉大学 | Gradient similarity graph image quality evaluation method and system based on conspicuousness detection |
CN108470336A (en) * | 2018-03-29 | 2018-08-31 | 天津大学 | Stereo image quality evaluation method based on stacking-type autocoder |
CN109272479A (en) * | 2017-07-12 | 2019-01-25 | 天津大学 | Stereoscopic image quality evaluation method based on stereo perception characteristics |
CN109510981A (en) * | 2019-01-23 | 2019-03-22 | 杭州电子科技大学 | A kind of stereo-picture comfort level prediction technique based on multiple dimensioned dct transform |
CN109872305A (en) * | 2019-01-22 | 2019-06-11 | 浙江科技学院 | A reference-free stereo image quality assessment method based on quality map generation network |
CN110858286A (en) * | 2018-08-23 | 2020-03-03 | 杭州海康威视数字技术股份有限公司 | Image processing method and device for target recognition |
CN111882516A (en) * | 2020-02-19 | 2020-11-03 | 南京信息工程大学 | Image quality evaluation method based on visual saliency and deep neural network |
CN112233089A (en) * | 2020-10-14 | 2021-01-15 | 西安交通大学 | A Reference-Free Stereo Hybrid Distortion Image Quality Evaluation Method |
CN113920115A (en) * | 2021-12-13 | 2022-01-11 | 北京中新绿景科技有限公司 | Video image quality evaluation method and system |
CN117115160A (en) * | 2023-10-24 | 2023-11-24 | 四川省交通勘察设计研究院有限公司 | Detection method, detection terminal and storage medium for pouring quality of tunnel lining |
-
2015
- 2015-07-08 CN CN201510396787.2A patent/CN104994375A/en active Pending
Non-Patent Citations (1)
Title |
---|
ALEXANDRE BENOIT ET AL.: "《Using disparity for quality assessment of stereoscopic images》", 《15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING(ICIP)》 * |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105282543A (en) * | 2015-10-26 | 2016-01-27 | 浙江科技学院 | Total blindness three-dimensional image quality objective evaluation method based on three-dimensional visual perception |
CN105976351B (en) * | 2016-03-31 | 2019-04-12 | 天津大学 | Stereo image quality evaluation method based on central offset |
CN105744256A (en) * | 2016-03-31 | 2016-07-06 | 天津大学 | Three-dimensional image quality objective evaluation method based on graph-based visual saliency |
CN105976351A (en) * | 2016-03-31 | 2016-09-28 | 天津大学 | Central offset based three-dimensional image quality evaluation method |
CN105959684A (en) * | 2016-05-26 | 2016-09-21 | 天津大学 | Stereo image quality evaluation method based on binocular fusion |
CN105959684B (en) * | 2016-05-26 | 2019-05-14 | 天津大学 | Stereo image quality evaluation method based on binocular fusion |
CN106504230A (en) * | 2016-10-11 | 2017-03-15 | 华侨大学 | Complete based on phase equalization refers to color/graphics image quality measure method |
CN106504230B (en) * | 2016-10-11 | 2019-02-26 | 华侨大学 | A full-reference color screen image quality assessment method based on phase consistency |
CN106778772A (en) * | 2016-11-23 | 2017-05-31 | 浙江科技学院 | A kind of notable extracting method of stereo-picture vision |
CN106778772B (en) * | 2016-11-23 | 2019-07-26 | 浙江科技学院 | A kind of significant extracting method of stereo-picture vision |
CN106920232A (en) * | 2017-02-22 | 2017-07-04 | 武汉大学 | Gradient similarity graph image quality evaluation method and system based on conspicuousness detection |
CN109272479B (en) * | 2017-07-12 | 2021-11-02 | 天津大学 | Stereoscopic image quality evaluation method based on stereo perception characteristics |
CN109272479A (en) * | 2017-07-12 | 2019-01-25 | 天津大学 | Stereoscopic image quality evaluation method based on stereo perception characteristics |
CN108470336B (en) * | 2018-03-29 | 2021-06-29 | 天津大学 | Stereoscopic Image Quality Evaluation Method Based on Stacked Autoencoder |
CN108470336A (en) * | 2018-03-29 | 2018-08-31 | 天津大学 | Stereo image quality evaluation method based on stacking-type autocoder |
CN110858286A (en) * | 2018-08-23 | 2020-03-03 | 杭州海康威视数字技术股份有限公司 | Image processing method and device for target recognition |
CN110858286B (en) * | 2018-08-23 | 2023-08-11 | 杭州海康威视数字技术股份有限公司 | Image processing method and device for target recognition |
CN109872305A (en) * | 2019-01-22 | 2019-06-11 | 浙江科技学院 | A reference-free stereo image quality assessment method based on quality map generation network |
CN109872305B (en) * | 2019-01-22 | 2020-08-18 | 浙江科技学院 | No-reference stereo image quality evaluation method based on quality map generation network |
CN109510981B (en) * | 2019-01-23 | 2020-05-05 | 杭州电子科技大学 | A Stereoscopic Image Comfort Level Prediction Method Based on Multi-scale DCT Transform |
CN109510981A (en) * | 2019-01-23 | 2019-03-22 | 杭州电子科技大学 | A kind of stereo-picture comfort level prediction technique based on multiple dimensioned dct transform |
CN111882516A (en) * | 2020-02-19 | 2020-11-03 | 南京信息工程大学 | Image quality evaluation method based on visual saliency and deep neural network |
CN111882516B (en) * | 2020-02-19 | 2023-07-07 | 南京信息工程大学 | An Image Quality Assessment Method Based on Visual Saliency and Deep Neural Networks |
CN112233089A (en) * | 2020-10-14 | 2021-01-15 | 西安交通大学 | A Reference-Free Stereo Hybrid Distortion Image Quality Evaluation Method |
CN113920115A (en) * | 2021-12-13 | 2022-01-11 | 北京中新绿景科技有限公司 | Video image quality evaluation method and system |
CN113920115B (en) * | 2021-12-13 | 2022-03-04 | 北京中新绿景科技有限公司 | Video image quality evaluation method and system |
CN117115160A (en) * | 2023-10-24 | 2023-11-24 | 四川省交通勘察设计研究院有限公司 | Detection method, detection terminal and storage medium for pouring quality of tunnel lining |
CN117115160B (en) * | 2023-10-24 | 2024-02-02 | 四川省交通勘察设计研究院有限公司 | Detection method, detection terminal and storage medium for pouring quality of tunnel lining |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104994375A (en) | Three-dimensional image quality objective evaluation method based on three-dimensional visual saliency | |
Fang et al. | Objective quality assessment of screen content images by uncertainty weighting | |
Tian et al. | NIQSV+: A no-reference synthesized view quality assessment metric | |
CN105744256B (en) | Based on the significant objective evaluation method for quality of stereo images of collection of illustrative plates vision | |
Niu et al. | 2D and 3D image quality assessment: A survey of metrics and challenges | |
Shao et al. | Blind image quality assessment for stereoscopic images using binocular guided quality lookup and visual codebook | |
CN109255358B (en) | 3D image quality evaluation method based on visual saliency and depth map | |
Wang et al. | Novel spatio-temporal structural information based video quality metric | |
Wang et al. | Quaternion representation based visual saliency for stereoscopic image quality assessment | |
Khan et al. | Estimating depth-salient edges and its application to stereoscopic image quality assessment | |
Zheng et al. | No-reference quality assessment for screen content images based on hybrid region features fusion | |
CN105959684A (en) | Stereo image quality evaluation method based on binocular fusion | |
CN109345502B (en) | Stereo image quality evaluation method based on disparity map stereo structure information extraction | |
CN105654142B (en) | Based on natural scene statistics without reference stereo image quality evaluation method | |
CN109523506A (en) | The complete of view-based access control model specific image feature enhancing refers to objective evaluation method for quality of stereo images | |
CN109242834A (en) | It is a kind of based on convolutional neural networks without reference stereo image quality evaluation method | |
CN107146220B (en) | A kind of universal non-reference picture quality appraisement method | |
Shao et al. | Models of monocular and binocular visual perception in quality assessment of stereoscopic images | |
CN114648482A (en) | Quality evaluation method and system for three-dimensional panoramic image | |
CN108447059B (en) | A full-reference light field image quality evaluation method | |
Sazzad et al. | Objective No‐Reference Stereoscopic Image Quality Prediction Based on 2D Image Features and Relative Disparity | |
CN110853027A (en) | Three-dimensional synthetic image no-reference quality evaluation method based on local variation and global variation | |
CN103841410A (en) | Half reference video QoE objective evaluation method based on image feature information | |
CN105976351A (en) | Central offset based three-dimensional image quality evaluation method | |
Shao et al. | No-reference view synthesis quality prediction for 3-D videos based on color–depth interactions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20151021 |