CN104992601A - 非均匀温度场中光传输热透镜效应实验装置与实验方法 - Google Patents

非均匀温度场中光传输热透镜效应实验装置与实验方法 Download PDF

Info

Publication number
CN104992601A
CN104992601A CN201510358995.3A CN201510358995A CN104992601A CN 104992601 A CN104992601 A CN 104992601A CN 201510358995 A CN201510358995 A CN 201510358995A CN 104992601 A CN104992601 A CN 104992601A
Authority
CN
China
Prior art keywords
semiconductor
laser
chilling plate
semiconductor chilling
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510358995.3A
Other languages
English (en)
Other versions
CN104992601B (zh
Inventor
张宗权
任俊鹏
黄育红
杨宗立
鲁琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Normal University
Original Assignee
Shaanxi Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Normal University filed Critical Shaanxi Normal University
Priority to CN201510358995.3A priority Critical patent/CN104992601B/zh
Publication of CN104992601A publication Critical patent/CN104992601A/zh
Application granted granted Critical
Publication of CN104992601B publication Critical patent/CN104992601B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种非均匀温度场中光传输热透镜效应实验装置,在底座上设内装有水的透明水槽,透明水槽右外侧面上设坐标纸,透明水槽内前侧壁和后侧壁上至少设1个安装有半导体制冷片的半导体制冷片支架,半导体制冷片的前侧面为热面或冷面、且与水平面垂直,半导体制冷片支架和半导体制冷片浸入水中,半导体制冷片上表面到水面的距离至少为100mm,在底座上透明水槽外的左侧设安装有半导体激光器的激光器支架,半导体激光器出射的发散角为10°~20°的激光束透过透明水槽的左侧壁,从两侧半导体制冷片之间水体中通过,投射到坐标纸上呈现圆形光斑。本发明装置结构简单、成本低,方法简便、直观性好,特别适合在实验室和课堂演示实验。

Description

非均匀温度场中光传输热透镜效应实验装置与实验方法
技术领域
本发明属于实验教学仪器技术领域,具体涉及一种非均匀温度场热透镜效应的实验装置。
背景技术
研究激光在大气湍流中传输特性具有重要的理论和实际应用意义。在许多激光应用领域中,如激光通讯、激光测距以及激光武器等,不可避免地会遇到激光束沿非均湍流的传输问题。
大气由气体分子、液态水、沙尘、电子、离子以及气溶胶等组成,由于温度变化、气压和水汽压起伏等条件的影响,大气的温度、湿度和密度等都在不断地变化。光波在大气中传播时,其性质之所以会发生改变,其物理本质上是由于空气折射率变化的影响。尽管大气的折射率和真空的折射率相差无几,但是光束在大气中长距离传输的累积效应却是非常巨大,往往会造成光线的畸变,即光束的弯曲、截面的变形、放大(扩散)或缩小(汇聚),使光束质量变差。引起空气折射率起伏变化的根本原因是大气中温度场的不均匀性,这就是光在非均匀场中传输时的热透镜效应。
如上所述,不均匀大气在光传输时的热透镜效应,是光经过长距离的传输才显现,同时由于大气的不均匀性,从物理角度看往往是连续渐变,而非突变,这使得在实验室很难实现这一条件。水作为另一种流体,其性质和运动规律与大气非常相近,同时水的热容量比空气大得多,容易在有限体积的水中建立高梯度温度场,即容易通过观察光线在非均匀温度分布的水中传输时的热透镜效应,但目前未见到相关的实验演示装置,学生在接受这一概念时,基本只能靠想象力来完成,影响对其的深刻理解。
发明内容
本发明所要解决的一个技术问题在于提供一种设计合理、结构简单、演示效果直观的非均匀温度场中光传输热透镜效应实验装置。
本发明所要解决的另一个技术问题在于提供一种使用非均匀温度场中光传输热透镜效应实验装置的演示实验方法。
解决上述技术问题所采用的技术方案是:在底座上设置内装有水的透明水槽,透明水槽右外侧面上设置有坐标纸,透明水槽内的前侧壁和后侧壁上至少设置1个安装有半导体制冷片的半导体制冷片支架,半导体制冷片的前侧面为热面或冷面、且与水平面垂直,半导体制冷片支架和半导体制冷片浸入水中,半导体制冷片上表面到水面的距离至少为100mm,在底座上透明水槽外的左侧设置安装有半导体激光器的激光器支架,半导体激光器出射的发散角为10°~20°的激光束透过水槽的左侧壁,从前后两侧的半导体制冷片之间的水体中通过,投射到坐标纸上呈现圆形光斑。
本发明的透明水槽和半导体制冷片的几何形状为长方体,半导体制冷片的上表面与水平面平行、热面与透明水槽的长度侧壁平行。
本发明的半导体激光器出射的发散角最佳为15°的发散激光束透过水槽的左侧壁,投射在坐标纸上。
使用上述的非均匀温度场中光传输热透镜效应实验装置的演示实验方法由下述步骤组成:
1)调整半导体激光器的位置、出射光方向,使半导体激光器出射的发散激光束中心线与透明水槽的纵向中心线相重合,投射到坐标纸上,调节半导体激光器出射发散角为10°~20°的激光束,透过透明水槽的左侧壁,从前后两侧的半导体制冷片之间的水体中通过,投射到坐标纸上呈现圆形光斑。
2)接通半导体制冷片的电源,20~40分钟后断电,手指由上向下缓慢插入水中,然后缓慢取出,感觉水中由上向下的温度变化情况。
3)观察坐标纸上投射的光斑形状和大小变化,并与半导体制冷片通电前圆形光斑的形状、大小进行比较;
4)移动半导体激光器,保持激光束中心线的水平方向;,使半导体激光器出射激光束在坐标纸上投射的光斑上下、左右移动,选择不同位置,观察光斑的形状和大小;
5)转动半导体激光器,使激光束中心线从不同方向穿过水槽,投射在坐标纸上,观察坐标纸上光斑的形状和大小变化;
6)半导体制冷片断电,搅拌水,待水温均匀后在坐标纸上观察光斑的形状和大小变化;
7)比较分析半导体制冷片通电前后步骤1)、3)、4)、5)、6)中坐标纸上投射的光斑形状和大小变化情况。
本发明采用通电并浸于水中的半导体制冷片3,在水槽中建立了温度上高下低的高梯度温度场,解决了传统方法难以在水中快速建立非均匀温度场的问题;同时采用发散的激光束穿过水中的高梯度温度场后,在坐标纸4投射光斑形状和大小的变化,简便、直观地演示了光线通过非均匀温度场时的热透镜效应。本发明装置结构简单、成本低,方法简便、学生参与性强、直观性好,特别适合在实验室和课堂条件下的实验演示。
附图说明
图1是本发明实施例1的主视图。
图2是图1的俯视图。
图3是透明水槽2内的水温均匀时坐标纸4上投射的圆形光斑照片。
图4是半导体制冷片3通电后水中形成梯度温度时坐标纸4上投射的椭圆形光斑照片。
具体实施方式
下面结合附图和实施例对本发明进一步详细说明,但本发明不限于这些实施例。
实施例1
在图1、2中,本实施例的非均匀温度场中光传输热透镜效应实验装置由半导体激光器1、透明水槽2、半导体制冷片3、坐标纸4、底座5、激光器支架6、半导体制冷片支架7联接构成。
在底座5上放置有透明水槽2,透明水槽2采用有机玻璃制成,也可采用石英玻璃制成,透明水槽2的几何形状为长方体,透明水槽2内装满水,透明水槽2的右外侧面上用透明胶粘贴有坐标纸4,坐标纸4用于显示投射光斑的形状。在透明水槽2内的前侧壁上固定安装有1个半导体制冷片支架7,透明水槽2内的后侧壁上固定安装有1个半导体制冷片支架7,每个半导体制冷片支架7上用胶粘接有半导体制冷片3,半导体制冷片支架7和半导体制冷片3浸入水中,半导体制冷片3上表面到水面的距离为100mm,两个半导体制冷片3的几何形状为长方体,半导体制冷片3的前侧面为热面,通过电源连接极性的调整,也可使半导体制冷片3的前侧面为冷面,也可使一个半导体制冷片3的前侧面为热面、另一个半导体制冷片3的前侧面为冷面,半导体制冷片3的热面与水平面垂直,半导体制冷片3的热面与透明水槽2的前侧壁平行,两个半导体制冷片3的水平中心平面在同一个水平平面内。
在水槽左侧底座5上放置有激光器支架6,激光器支架6上安装有半导体激光器1,半导体激光器1可在半导体激光器1支架上转动,半导体激光器1用于产生出射光方向和发散角可调的激光束,半导体激光器1出射的发散角为15°的激光束透过透明水槽的左侧壁,经两个半导体制冷片3之间的水体投射在坐标纸4上,在坐标纸4上呈现出圆形光斑。
使用本实施例非均匀温度场中光传输热透镜效应实验装置的演示实验方法步骤如下:
1、调整半导体激光器1的位置、出射光方向,使半导体激光器1出射的发散激光束中心线与透明水槽2的纵向中心线相重合,投射到坐标纸4上,调节激光器出射激光束的发散角为15°,激光束透过透明水槽2的左侧壁,,从前后两侧的半导体制冷片3之间的水体中通过,投射在坐标纸4上呈现出圆形光斑。
2、接通半导体制冷片3的电源,20~40分钟后断电,手指由上向下缓慢插入水中,然后缓慢取出,感觉水中由上向下的温度变化情况。
3、观察坐标纸4上投射的光斑形状和大小变化,并与半导体制冷片3通电前圆形光斑的形状、大小进行比较。
4、移动半导体激光器1,保持激光束中心线的水平方向,使半导体激光器1出射激光束在坐标纸4上投射的圆形光斑上下、左右移动,选择不同位置,观察光斑的形状和大小。
5、转动半导体激光器1,使激光束中心线从不同方向穿过水槽,投射在坐标纸4上,观察坐标纸4上光斑的形状和大小变化。
6、半导体制冷片3断电,搅拌水,待水温均匀后在坐标纸4上观察光斑的形状和大小变化。
7、比较半导体制冷片3通电前后步骤1、3、4、5、6中坐标纸4上投射的圆形光斑形状和大小变化情况,如图3、4所示,由图3、4可见,半导体制冷片3未通电且水温均匀时,发散激光束透过水在光屏上投射的光斑为圆形,说明发散激光束中所有光线在温度均匀的水中保持直线传输;半导体制冷片3通电后,水温形成梯度分布,发散激光束在坐标纸4上投射的圆形光斑变为椭圆形光斑,说明发散激光束中部分光线在水中传输时发生了类似光束透过透镜时的折射弯曲现象,实现了非均匀温度场对激光束传输的热透镜效应的直观演示。
实施例2
在透明水槽2内的前侧壁上固定安装有1个半导体制冷片支架7,透明水槽2内的后侧壁上固定安装有1个半导体制冷片支架7,每个半导体制冷片支架7上用螺纹紧固联接件固定联接有1个半导体制冷片3,半导体制冷片支架7和半导体制冷片3浸入水中,半导体制冷片3上表面到水面的距离为100mm,两个半导体制冷片3的几何形状以及在透明水槽2内的位置与实施例1相同,两个半导体制冷片3的前侧面为热面,前侧面与水平面垂直、与透明水槽2的长度前侧壁平行,两个半导体制冷片3的水平中心平面在同一个水平平面内。
在半导体制冷片3长度方向的水槽左侧底座5上放置有激光器支架6,激光器支架6上安装有半导体激光器1,半导体激光器1出射光的发散角为10°的发散激光束透过水槽的左侧壁,经两个半导体制冷片3之间,投射在坐标纸4上,在坐标纸4上呈现出圆形光斑。
其他零部件以及零部件的联接关系与实施例1相同。
使用本实施例的非均匀温度场中光传输热透镜效应实验装置的实验方法步骤如下:
1、调整半导体激光器1的位置、出射光方向,使半导体激光器1出射的发散激光束中心线与透明水槽2的纵向中心线相重合,投射到坐标纸4上,调节激光器出射激光束的发散角为10°,激光束透过透明水槽2的左侧壁,,从前后两侧的半导体制冷片3之间的水体中通过,投射在坐标纸4上呈现出圆形光斑。
步骤2~7与实施例1相同。
实施例3
在透明水槽2内的前侧壁上固定安装有1个半导体制冷片支架7,透明水槽2内的后侧壁上固定安装有1个半导体制冷片支架7,每个半导体制冷片支架7上用螺纹紧固联接件固定联接有1个半导体制冷片3,半导体制冷片支架7和半导体制冷片3浸入水中,半导体制冷片3上表面到水面的距离为100mm,两个半导体制冷片3的几何形状以及在透明水槽2内的位置与实施例1相同,两个半导体制冷片3的前侧面为热面,前侧面与水平面垂直、与透明水槽2的长度前侧壁平行,两个半导体制冷片3的水平中心平面在同一个水平平面内。
在半导体制冷片3长度方向的水槽左侧底座5上放置有激光器支架6,激光器支架6上安装有半导体激光器1,半导体激光器1出射光的发散角为20°的发散激光束透过水槽的左侧壁,经两个半导体制冷片3之间,投射在坐标纸4上,在坐标纸4上形成圆形光斑。
其他零部件以及零部件的联接关系与实施例1相同。
使用本实施例的非均匀温度场中光传输热透镜效应实验装置的实验方法步骤如下:
1、调整半导体激光器1的位置、出射光方向,使半导体激光器1出射的发散激光束中心线与透明水槽2的纵向中心线相重合,投射到坐标纸4上,调节激光器出射激光束的发散角为20°,激光束透过透明水槽2的左侧壁,从前后两侧的半导体制冷片3之间的水体中通过,投射在坐标纸4上呈现出圆形光斑。
步骤2~7与实施例1相同。
实施例4
在以上的实施例1~3中,在透明水槽2内的前侧壁上固定安装有1个半导体制冷片支架7,透明水槽2内的后侧壁上固定安装有1个半导体制冷片支架7,每个半导体制冷片支架7上用螺纹紧固联接件固定联接有1个半导体制冷片3,半导体制冷片支架7和半导体制冷片3浸入水中,半导体制冷片3上表面到水面的距离为120mm,两个半导体制冷片3的几何形状以及在透明水槽2内的位置与实施例1相同,两个半导体制冷片3的前侧面为热面,前侧面与水平面垂直、与透明水槽2的长度前侧壁平行,两个半导体制冷片3的水平中心平面在同一个水平平面内。
在半导体制冷片3长度方向的水槽左侧底座5上放置有激光器支架6,激光器支架6上安装有半导体激光器1,半导体激光器1出射光发散激光束的发散角与相应的实施例相同,发散激光束透过水槽的左侧壁,经两个半导体制冷片3之间,投射在坐标纸4上,在坐标纸4上形成圆形光斑。
其他零部件以及零部件的联接关系与实施例1相同。
使用本实施例的非均匀温度场中光传输热透镜效应实验装置的实验方法步骤如下:
1、调整半导体激光器1的位置、出射光方向,使半导体激光器1出射的发散激光束中心线与透明水槽2的纵向中心线相重合,投射到坐标纸4上,调节激光器出射激光束的发散角与相应的实施例相同,激光束透过透明水槽2的左侧壁投射在坐标纸4上呈现出圆形光斑。
步骤2~7与实施例1相同。
实施例5
在以上的实施例1~4中,在透明水槽2内的前侧壁上固定安装有2个半导体制冷片支架7,透明水槽2内的后侧壁上固定安装有2个半导体制冷片支架7,每个半导体制冷片支架7上用螺纹紧固联接件固定联接有1个半导体制冷片3,半导体制冷片3的几何形状、在透明水槽2内的位置以及半导体激光器1出射光发散激光束的发散角与相应的实施例相同。
其他零部件以及零部件的联接关系与实施例1相同。
使用本实施例的非均匀温度场中光传输热透镜效应实验装置的实验方法步骤如下:
1、调整半导体激光器1的位置、出射光方向,使半导体激光器1出射的发散激光束中心线与透明水槽2的纵向中心线相重合,投射到坐标纸4上,调节激光器出射激光束的发散角与相应的实施例相同,激光束透过透明水槽2的左侧壁投射在坐标纸4上呈现出圆形光斑。
步骤2~7与实施例1相同。
本发明的工作原理如下:
浸于水中的半导体制冷片3通电后,半导体制冷片3冷面不断吸热,与冷面接触的水被吸热降温,降温后的水密度增大,在重力的作用下向流动,而半导体制冷片3热面不断放热,靠近热面的水被加热升温,加热后的水密度变小,在浮力的作用下向上迁移,持续一段时间后,即在水槽的水中形成相对均匀的上高下低的梯度温度场。本专业领域技术人员公知,水在4℃以上其温度高,则密度小,而水的密度大,其折射率就大,即水的温度低,则折射率大,水的温度高则折射率小。由于光线在介质中传输时,总是向折射率大的区域偏折,因此本演示装置及方法中,激光束以发散形式通过温度在垂直方向梯度分布的水体时,发散光中不同光线产生不同的弯曲度,导致坐标纸4上光斑的形状和大小发生变化,以此直观演示了非均匀温度场的热透镜效应。

Claims (4)

1.一种非均匀温度场中光传输热透镜效应实验装置,其特征在于:在底座(5)上设置内装有水的透明水槽(2),透明水槽(2)右外侧面上设置有坐标纸(4),透明水槽(2)内的前侧壁和后侧壁上至少设置1个安装有半导体制冷片(3)的半导体制冷片支架(7),半导体制冷片(3)的前侧面为热面或冷面、且与水平面垂直,半导体制冷片支架(7)和半导体制冷片(3)浸入水中,半导体制冷片(3)上表面到水面的距离至少为100mm,在底座(5)上透明水槽(2)外的左侧设置安装有半导体激光器(1)的激光器支架(6),半导体激光器(1)出射的发散角为10°~20°的激光束透过水槽的左侧壁,从前后两侧的半导体制冷片(3)之间的水体中通过,投射到坐标纸(4)上呈现圆形光斑。
2.根据权利要求1所述的非均匀温度场中光传输热透镜效应实验装置,其特征在于:所述的透明水槽(2)和半导体制冷片(3)的几何形状为长方体,半导体制冷片(3)的上表面与水平面平行、热面与透明水槽(2)的长度侧壁平行。
3.根据权利要求1所述的非均匀温度场中光传输热透镜效应实验装置,其特征在于:所述的半导体激光器(1)出射的发散角为15°的发散激光束透过水槽的左侧壁,投射在坐标纸(4)上。
4.一种使用权利要求1所述的非均匀温度场中光传输热透镜效应实验装置的演示实验方法,其特征在于由下述步骤组成:
1)调整半导体激光器(1)的位置、出射光方向,使半导体激光器(1)出射的发散激光束中心线与透明水槽(2)的纵向中心线相重合,投射到坐标纸(4)上,调节半导体激光器(1)出射发散角为10°~20°的激光束,透过透明水槽(2)的左侧壁,从前后两侧的半导体制冷片(3)之间的水体中通过,投射到坐标纸(4)上呈现圆形光斑;
2)接通半导体制冷片(3)的电源,20~40分钟后断电,手指由上向下缓慢插入水中,然后缓慢取出,感觉水中由上向下的温度变化情况;
3)观察坐标纸(4)上投射的光斑形状和大小变化,并与半导体制冷片(3)通电前圆形光斑的形状、大小进行比较;
4)移动半导体激光器(1),保持激光束中心线的水平方向,使半导体激光器(1)出射激光束在坐标纸(4)上投射的光斑上下、左右移动,选择不同位置,观察光斑的形状和大小;
5)转动半导体激光器(1),使激光束中心线从不同方向穿过水槽,投射在坐标纸(4)上,观察坐标纸(4)上光斑的形状和大小变化;
6)半导体制冷片(3)断电,搅拌水,待水温均匀后在坐标纸(4)上观察光斑的形状和大小变化;
7)比较分析半导体制冷片(3)通电前后步骤1)、3)、4)、5)、6)中坐标纸(4)上投射的光斑形状和大小变化情况。
CN201510358995.3A 2015-06-25 2015-06-25 非均匀温度场中光传输热透镜效应实验装置与实验方法 Expired - Fee Related CN104992601B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510358995.3A CN104992601B (zh) 2015-06-25 2015-06-25 非均匀温度场中光传输热透镜效应实验装置与实验方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510358995.3A CN104992601B (zh) 2015-06-25 2015-06-25 非均匀温度场中光传输热透镜效应实验装置与实验方法

Publications (2)

Publication Number Publication Date
CN104992601A true CN104992601A (zh) 2015-10-21
CN104992601B CN104992601B (zh) 2017-05-17

Family

ID=54304408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510358995.3A Expired - Fee Related CN104992601B (zh) 2015-06-25 2015-06-25 非均匀温度场中光传输热透镜效应实验装置与实验方法

Country Status (1)

Country Link
CN (1) CN104992601B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057036A (zh) * 2016-07-30 2016-10-26 陕西师范大学 热平衡过程可视化实验装置与实验方法
CN106057037A (zh) * 2016-07-30 2016-10-26 陕西师范大学 温差对热传递速度影响的实时可视化实验装置与演示方法
CN106057038A (zh) * 2016-07-30 2016-10-26 陕西师范大学 热传递过程与方向同步实时光学演示装置及实验方法
CN106290455A (zh) * 2016-07-30 2017-01-04 陕西师范大学 材料导热性能差异的光学观测实验装置与实验方法
CN107316551A (zh) * 2017-07-05 2017-11-03 陕西师范大学 扩展水中线性梯度温度场尺度的实验装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096984A (ja) * 1995-04-21 1997-01-10 Sony Corp 画像表示装置及び方法、情報記録媒体及び情報伝送媒体
JP2009300983A (ja) * 2008-06-11 2009-12-24 Hiroshi Fukumoto 航空機グローリー現象生成観察及びブロッケンの妖怪現象生成観察器。
CN201812424U (zh) * 2010-11-23 2011-04-27 陈健波 呈现空间光路的光学演示仪
CN202855161U (zh) * 2012-04-20 2013-04-03 黄声会 球形几何光学实验仪
CN203325304U (zh) * 2013-04-30 2013-12-04 郭云峰 光的反射、折射演示仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH096984A (ja) * 1995-04-21 1997-01-10 Sony Corp 画像表示装置及び方法、情報記録媒体及び情報伝送媒体
JP2009300983A (ja) * 2008-06-11 2009-12-24 Hiroshi Fukumoto 航空機グローリー現象生成観察及びブロッケンの妖怪現象生成観察器。
CN201812424U (zh) * 2010-11-23 2011-04-27 陈健波 呈现空间光路的光学演示仪
CN202855161U (zh) * 2012-04-20 2013-04-03 黄声会 球形几何光学实验仪
CN203325304U (zh) * 2013-04-30 2013-12-04 郭云峰 光的反射、折射演示仪

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057036A (zh) * 2016-07-30 2016-10-26 陕西师范大学 热平衡过程可视化实验装置与实验方法
CN106057037A (zh) * 2016-07-30 2016-10-26 陕西师范大学 温差对热传递速度影响的实时可视化实验装置与演示方法
CN106057038A (zh) * 2016-07-30 2016-10-26 陕西师范大学 热传递过程与方向同步实时光学演示装置及实验方法
CN106290455A (zh) * 2016-07-30 2017-01-04 陕西师范大学 材料导热性能差异的光学观测实验装置与实验方法
CN106057036B (zh) * 2016-07-30 2018-12-04 陕西师范大学 热平衡过程可视化实验装置与实验方法
CN106057037B (zh) * 2016-07-30 2018-12-04 陕西师范大学 温差对热传递速度影响的实时可视化实验装置与演示方法
CN106057038B (zh) * 2016-07-30 2018-12-07 陕西师范大学 热传递过程与方向同步实时光学演示装置及实验方法
CN106290455B (zh) * 2016-07-30 2019-03-05 陕西师范大学 材料导热性能差异的光学观测实验装置与实验方法
CN107316551A (zh) * 2017-07-05 2017-11-03 陕西师范大学 扩展水中线性梯度温度场尺度的实验装置
CN107316551B (zh) * 2017-07-05 2019-06-25 陕西师范大学 扩展水中线性梯度温度场尺度的实验装置

Also Published As

Publication number Publication date
CN104992601B (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN104992601A (zh) 非均匀温度场中光传输热透镜效应实验装置与实验方法
CN104992600B (zh) 在水中建立梯度温度场的实验装置
CN105044032B (zh) 液体折射率与温度关系的实验装置与实验方法
CN205028553U (zh) 一种光学折射教学演示装置
CN105047054A (zh) 光线弯曲度与温度梯度方向关系实验装置与实验方法
CN103150955A (zh) 几何光学综合演示仪
CN104933931B (zh) 液体中热流光分束效应实验装置与实验方法
CN104933932A (zh) 光线在正梯度温度场中弯曲方向演示装置与实验方法
CN105023490A (zh) 液体中冷流聚光效应实验装置与实验方法
CN104791665B (zh) 背光模组、显示装置以及扩散板
Pan et al. Design of a hybrid light guiding plate with high luminance for backlight system application
CN104916198B (zh) 自聚焦透镜聚光原理模拟演示装置与实验方法
CN104916192A (zh) 冰在水中消融过程光学观测实验装置与实验方法
CN208400371U (zh) 一种教学用光学仪
CN202996151U (zh) 教学用光反射演示装置
CN104933930B (zh) 负梯度温度场中光线弯曲方向演示装置与实验方法
CN204257093U (zh) 多功能光学演示箱
CN205692446U (zh) 一种液体折射演示教具组件
CN201199399Y (zh) 雾、液式中学物理光学实验仪
CN106057035B (zh) 热体近表面梯度温度场实时可视化实验装置与实验方法
CN103672626B (zh) 一种背光模组调试装置
CN106057039A (zh) 液体对流传热过程光学实时观测装置与实验演示方法
CN206349049U (zh) 光的折射实验演示装置
CN204422415U (zh) 用于大学物理教学的等厚干涉实验装置
CN109637313B (zh) 透明固体介质热光效应演示实验装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170517

Termination date: 20200625

CF01 Termination of patent right due to non-payment of annual fee