CN104983386A - 空间万向旋转磁场方位误差的直线极化相位校正方法 - Google Patents

空间万向旋转磁场方位误差的直线极化相位校正方法 Download PDF

Info

Publication number
CN104983386A
CN104983386A CN201510263117.3A CN201510263117A CN104983386A CN 104983386 A CN104983386 A CN 104983386A CN 201510263117 A CN201510263117 A CN 201510263117A CN 104983386 A CN104983386 A CN 104983386A
Authority
CN
China
Prior art keywords
coil
phase
linear polarization
coils
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510263117.3A
Other languages
English (en)
Other versions
CN104983386B (zh
Inventor
张永顺
苏忠侃
迟明路
白建卫
杨振强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN201510263117.3A priority Critical patent/CN104983386B/zh
Publication of CN104983386A publication Critical patent/CN104983386A/zh
Application granted granted Critical
Publication of CN104983386B publication Critical patent/CN104983386B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00147Holding or positioning arrangements
    • A61B1/00158Holding or positioning arrangements using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

本发明属于自动化工程技术领域,涉及一种空间万向旋转磁场方位误差的相位校正方法——直线极化电压相位差补偿法。其特征是以大线圈的电压相位为测量基准,借助于两相正交谐波信号叠加的直线极化特性,分别测出小线圈和中间线圈输入电压的相位差,并对输入电压进行数字化补偿,消除三组线圈电学参数不同对旋转磁场方位误差的影响。本发明的效果和益处是采用直线极化电压相位差补偿法,消除了三组不同结构亥姆霍兹线圈的电学参数差异对所叠加旋转磁场产生的方位误差,提高了空间万向旋转磁场的方位精度,尤其消除了线圈互感对空间万向旋转磁场方位精度的影响,解决了线圈互感计算与补偿困难这一技术难题。

Description

空间万向旋转磁场方位误差的直线极化相位校正方法
技术领域
本发明属于自动化工程技术领域,涉及一种三轴正交亥姆霍兹线圈所叠加空间万向旋转磁场方位误差的校正方法,具体以大线圈的电压相位为测量基准,借助于两相正交谐波信号叠加的直线极化特性,分别测出小线圈和中间线圈的输入电压相位差,并对输入电压进行数字化补偿,使三组正交亥姆霍兹线圈产生的磁感应强度严格满足叠加理想旋转磁场的相位要求,消除三组亥姆霍兹线圈电学参数(电阻、电感)不一致以及线圈之间互感对空间万向旋转磁场方位精度的影响。
背景技术
随着科学技术的不断进步,机器人被越来越多的应用到医疗领域当中,可以完成对患者的诊断、治疗、手术和康复等工作。其中,胶囊机器人的发展和应用就是一个鲜明例子。胶囊机器人实际上是把药物、微型摄像头、微驱动器等装置装入胶囊大小的可食用的外壳内,帮助医生进行人体胃肠道的检查、诊断以及微创手术等工作。胶囊机器人可以实现人体胃肠道的遍历检查,克服了传统检查方式无法到达的盲区,同时可以避免传统内窥镜机械式插入对人体组织造成的损伤,达到无创的治疗目的,消除病人的痛苦,因此具有重要的应用价值。
目前,以色列Given Imaging公司生产的M2A、Pillcam SB、Pillcam ESO和Pillcam Colon胶囊机器人以及我国重庆金山公司生产的OMOM胶囊机器人都已相继投入临床应用,并取得了显著的医疗效果。然而,现有胶囊机器人的行走都是依靠胃肠道自身的蠕动,无法实现机器人姿态的主动控制,检查过程中存在视觉盲区。因此,寻求胶囊机器人安全、有效的驱动控制方法成为国内外的研究热点。
近年来,由于磁驱动能够有效地解决能量供应问题,并且操作简单,无缆磁控胶囊机器人的发展成为主流。意大利比萨大学Federico Carpi等人采用由圆环形磁铁旋转产生的均匀外磁场驱动胶囊机器人,但实现磁场旋转轴的改变不够灵便;日本K.Ishiyama等人提出采用三轴亥姆霍兹线圈提供旋转磁场,与机器人内部的永磁体产生磁耦合力矩驱动胶囊机器人,但其旋转磁场的轴线无法改变。中国科学院机械研究所提出用梯度线圈轴向拉动机器人前进,但该方式容易造成人体肠道组织的损伤。
为了满足胶囊机器人在人体蜿蜒曲折的肠道环境中自由行走,减少对人体肠道的损伤,本课题组在已获得的国家发明专利“体内医疗微型机器人万向旋转磁场驱动控制方法”中(专利授权号:ZL 200810011110.2),提出了旋转轴线可调的空间万向旋转磁场驱动控制方法,并设计、加工了如附图1所示的空间万向旋转磁场发生装置及控制系统。
下面结合附图1,对三轴正交方形亥姆霍兹线圈叠加的空间万向旋转磁场进行简单介绍。将小线圈组(1)、中间线圈组(2)和大线圈组(3)三组方形亥姆霍兹线圈相互正交嵌套安装,向DSP28335数字化控制系统操作界面(5)中输入与机器人轴线方位角相关的电流幅值和电压相位,从而通过控制器(4)控制三组线圈中分别产生严格满足公式(1)的磁感应强度交变分量,最终在三轴正交亥姆霍兹线圈装置包围的一定空间内叠加合成相应方位角旋转轴线的理想旋转磁场。
式中,
为了使胶囊机器人在行走过程中具有较好的方向性和稳定性,磁场的磁感应强度B必须始终位于与向量n垂直的旋转平面中,即其末端轨迹为一个近似圆,如附图2所示。空间单位向量n表示胶囊机器人的运动方向,也是要求叠加旋转磁场旋转轴线的方向,其中α、β、γ分别为n与空间笛卡尔坐标系的X、Y、Z轴的夹角。
在已获得的国家发明专利“空间万向叠加旋转磁场旋转轴线方位与旋向的控制方法”中(专利授权号:ZL 201210039753.4),通过以空间某一固定轴线方位角为输入变量的相关幅值和相位的同频率三相正弦电流信号的各种反相位电流的组合驱动方式与三轴正交嵌套亥姆霍兹线圈装置内叠加的空间万向均匀旋转磁场的旋转轴方位和旋向的变化规律为基础,实现了空间万向旋转磁场旋转轴线方位与旋向在空间坐标系各个象限内的唯一性控制。专利中提到可以采用幅值与相位补偿的电压信号通过数字化驱动叠加旋转磁场来消除线圈电学参数(电阻、电感)对叠加磁场的影响,然而要想使用专利中给出的方法进行补偿需要分别计算或者测量出三组线圈的电阻R1、R2、R3和组合电感值L1、L2、L3。其中组合电感的计算比较复杂,现结合附图3介绍单组亥母亥姆霍兹线圈的组合电感值的计算。
单组亥姆霍兹线圈是由完全相同的两个线圈A和C串联构成的亥姆霍兹线圈对,两者的绕线方向相同。为便于计算,引入辅助线圈B。单组亥姆霍兹线圈加载交变电流时,线圈中存在自感和互感,其组合电感值为:
L=LA+LC+2MAC   (2)
式中,LA为线圈A的自感,LC为线圈C的自感,LC=LA,MAC是线圈A、C之间的互感。
其中,线圈A和C的自感为:
L A = L C = 8 × 10 - 7 N ′ 2 ( 2 a ′ + t ′ ) ( ln 2 a ′ + t ′ l ′ + t ′ + 0.2235 l ′ + t ′ 2 a ′ + t ′ + 0.726 ) - - - ( 3 )
式中,a′为单个亥姆霍兹线圈内侧边长的一半,t′为单个亥姆霍兹线圈线圈厚度,l′为单个亥姆霍兹线圈的宽度,N′为单个亥姆霍兹线圈的匝数。
根据三部分定理,线圈A和线圈C之间的互感为:
MAC=(LABC+LB-LAB-LBC)/2   (4)
式中,LABC为线圈A、线圈B和线圈C相串联形成线圈ABC的自感。LB为线圈B的自感。LAB是线圈A和线圈B串联形成线圈AB的自感,LBC是线圈B和线圈C串联组成线圈BC的自感,LBC=LAB
L ABC = 8 × 10 - 7 ( 2 l ′ + b ′ ) 2 l ′ 2 N ′ 2 ( 2 a ′ + t ′ ) ( ln 2 a ′ + t ′ 2 l ′ + b ′ + t ′ + 0.2235 2 l ′ + b ′ + t ′ 2 a ′ + t ′ + 0.726 ) - - - ( 5 )
L B = 8 × 10 - 7 b ′ 2 l ′ 2 N ′ 2 ( 2 a ′ + t ′ ) ( ln 2 a ′ + t ′ b ′ + t ′ + 0.2235 b ′ + t ′ 2 a ′ + t ′ + 0.726 ) - - - ( 6 )
L AB = 8 × 10 - 7 ( l ′ + b ′ ) 2 l ′ 2 N ′ 2 ( 2 a ′ + t ′ ) ( ln 2 a ′ + t ′ l ′ + b ′ + t ′ + 0.2235 l ′ + b ′ + t ′ 2 a ′ + t ′ + 0.726 ) - - - ( 7 )
通过以上计算过程,可以看出亥姆霍兹线圈组合电感L1、L2、L3的计算十分复杂,并且得到的结果只是一个理论估算值。不难发现,其中互感的大小除了与两线圈的几何尺寸、形状、匝数及导磁材料的导磁性能有关外,还与两线圈的相对位置有关。因此,由于线圈加工、装配的误差,会使得互感的计算值与真实值不相符。而且,由于线圈的尺寸较大,互感值的实际测量较困难。故上述专利所述采用电压驱动关系式进行补偿的方法,在实际操作中存在困难,并且无法使三组线圈中产生的磁感应强度分量的相位严格满足公式(1)中三个磁感应强度分量的相位关系,因而无法保证叠加得到满足公式(1)的理想旋转磁场,无法彻底消除旋转磁场方位精度的误差,进而影响胶囊机器人运动的方向性和稳定性。
为了得到准确、稳定的理想旋转磁场,下面对空间万向旋转磁场方位误差产生的原因进行简要分析,并对方位误差的校正方法进行介绍。
由于机器人在驱动的过程中,主要使用空间旋转磁场的中间均匀区域,而磁场均匀区域内各点的磁感应强度的变化规律具有一致性,因此可以通过研究磁场中心磁感应强度的变化规律来代表磁场整个均匀区域。
DSP控制系统输入的控制参数分别为电流的幅值和电压的相位,通过PID电流反馈控制保证三组线圈中的电流幅值始终与相应的控制参数保持一致,而电压的相位为开环。之前,在控制系统的设计过程中,没有考虑三组线圈结构参数和电学参数(电阻、电感)的不同,也没有考虑线圈之间互感,而是将三组线圈视为完全一致的理想线圈,三组线圈输入的电流幅值分别为I0sinα、-I0sinβ、I0sinγ,电压相位分别为π/2。
当线圈中通入交流电时,由于电感的作用会使线圈中电流与电压的相位产生一个差值——相位差,电压相位超前于电流相位。其中三组线圈的相位差分别为:
式中,ω为交流电的频率,L1、L2、L3分别为小线圈、中间线圈和大线圈的组合电感值,R1、R2、R3分别为小线圈、中间线圈和大线圈的电阻值。故三组线圈中实际得到的电流的关系式为:
根据毕奥萨伐尔定律得单组方形亥姆霍兹线圈中心点磁感应强度与电流及线圈结构参数之间关系为:
B = 4 μ 0 N ( a + t 2 ) 2 π [ ( a + t 2 ) 2 + d 2 ] 2 ( a + t 2 ) 2 + d 2 · I - - - ( 12 )
式中,a为方形亥姆霍兹线圈内侧边长的一半,t为方形线圈厚度,d为两线圈中心距的一半,I为通入线圈的电流值,N为单个亥姆霍兹线圈的匝数,μ0=4π×10-7N/A2代表真空磁导率。经过序列二次规划方法得到的单组线圈结构如附图4所示。
对于经过序列二次规划得到的三组方形亥姆霍兹线圈,其各结构参数均为定值,为便于分析引入变量Ki
K i = 4 μ 0 N i ( a i + t i 2 ) 2 π [ ( a i + t i 2 ) 2 + d i 2 ] 2 ( a i + t i 2 ) 2 + d i 2 , i = x , y , z - - - ( 13 )
故三组线圈产生的磁感应强度分量的实际值为:
由于三组不同结构参数线圈的电阻与电感值不同,故也不相同。因此,三组线圈所产生磁感应强度分量的相位不满足公式(1)中的相位关系。
以下证明公式(14)三组线圈产生的旋转磁场末端轨迹为平面曲线,并求出因三路相位差异所导致的旋转磁场轴线方位误差。
将三组线圈产生磁感应强度分量的实际值公式(14)看作空间曲线p(t)的参数方程:
将公式(15)分别代入公式(16)、(17)、(18)中计算空间曲线的曲率k和挠率τ,
τ = ( p · × p · · ) · p · · · | p · × p · · | 2 - - - ( 18 )
通过化简计算发现,k>0且τ≡0。根据曲线论定理:若空间曲线p(t)的曲率k>0,则p在某平面中的充要条件是τ≡0。故可以证明公式(14)三组线圈产生的实际旋转磁场末端轨迹为平面曲线,其轨迹所在平面的法向量即为实际旋转磁场的旋转轴方向向量。
为便于求取该法向量,取曲线在t等于0,T/4,T/2,3T/4(其中T=2π/ω)时对应的A、B、C、D四个特殊点,构成平面内的两个向量,这两个向量的向量积就是该曲线所在平面的法向量,也是实际磁场旋转轴的方向向量。其中,A、B、C、D四个点对应坐标分别为:
由A点和C点构成向量n1,由B点和D点构成向量n2,分别为:
则实际旋转磁场旋转轴的方向向量n′为:
理想旋转磁场旋转轴的方向向量n为(cosα,cosβ,cosγ),且满足cos2α+cos2β+cos2γ=1,故线圈产生的实际旋转磁场转轴与理想旋转磁场转轴之间的误差为:
为了减小或者消除磁场方位误差,需要对控制系统输入的电压相位进行补偿,消除由于不同以及线圈互感对磁感应强度相位所产生的影响。
实际补偿时,无法直接测得三组线圈之间磁感应强度的相位关系,因而直接对三组线圈的输入电压相位进行补偿,使其严格满足公式(1)中的相位关系具有一定难度。显而易见,为了严格满足公式(1)中的相位关系,最直接的方法就是通过连接电感或者电阻的方法使三组线圈的电感与电阻相匹配,即电感和电阻完全相同,或者满足相同的比例关系。实践证明这并非易事,因为连接电感在满足电感匹配关系的同时,由于电感本身有电阻,所以又破坏了电阻的匹配关系。并且由于线圈之间的互感值计算、测量十分困难,通过对三组线圈分别单独进行补偿的方式无法有效的消除线圈互感所引起的磁场方位误差。为此,必须另辟蹊径。本专利将给出一种简便的输入电压相位补偿方法,从而对由三组线圈电阻和电感值不同和线圈互感所引起的空间万向旋转磁场的方位误差进行校正。
综上所述,空间万向旋转磁场驱动技术是实现胶囊机器人在人体胃肠道复杂弯曲环境内驱动和实用化的关键技术,具有广阔的应用前景。通过有效手段,对空间万向旋转磁场的方位误差进行校正,保证胶囊机器人行走方向的准确性和行走过程的稳定性,是旋转磁场驱动胶囊机器人走向实用化的关键。
发明内容
本发明要解决的技术问题是:提供一种对空间万向旋转磁场控制系统输入电压相位进行数字化补偿的方法,消除三组不同结构亥姆霍兹线圈的电学参数差异及线圈互感对旋转磁场方位误差的影响,提高旋转磁场的方位精度。
本发明的技术方案是:
提出一种直线极化电压相位差补偿法,即以大线圈的电压相位为测量基准,借助于两相正交谐波信号叠加的直线极化特性,分别测出其余两组线圈内正弦信号所叠加磁场发生直线极化时的电压相位,求出其输入电压相位差,并进行数字化补偿。
具体操作过程如下:
(1)利用直线极化时两相正交谐波信号相位特性确定小线圈和中间线圈的输入电压相位差θ1和θ2
以大线圈的电压相位为测量基准,小线圈和中间线圈的输入电压相位差θ1和θ2分别为:
其中,输入电压相位差θ1和θ2的获得,可借助于电磁波的直线极化特性规律进行测量。现结合附图5对两组正交线圈内正弦信号叠加的定轴旋转磁场的极化规律进行简要说明。
两组正交线圈中产生的磁感应强度满足如下关系式:
B x = B 0 · sin ( ωt + θ 1 + ψ ) B z = B 0 · sin ωt - - - ( 25 )
式中,Bz为大线圈产生的磁场,以其电压相位为基准,则相位可视为零;ψ为小线圈或者中间线圈输入电压的可调校准相位。
ψ+θ1由π/2逐渐增大到3π/2时,得到的极化特性图形如附图5所示。当ψ+θ1=π/2时,所叠加磁场为右旋圆极化;当π/2<ψ+θ1<π时,所叠加磁场为右旋椭圆极化;当ψ+θ1=π时,所叠加磁场为直线极化;当π<ψ+θ1<3π/2时,所叠加磁场为左旋椭圆极化;当ψ+θ1=3π/2时,所叠加磁场为左旋圆极化。
输入电压相位差θ1的测量可借助当ψ+θ1=π时的直线极化特性,即所叠加磁场为直线极化,而直线极化位相左右两边磁场的旋转方向相反。实际测量过程中,控制系统大线圈的输入电压相位始终为0,通过控制器不断改变小线圈的输入电压的可调校准相位ψ,通过观察磁场旋转方向,直至找到叠加磁场为直线极化时小线圈的可调校准相位,记为ψ0。此时,两组线圈产生的磁感应强度分量的相位必定相差π,即满足等式:
故ψ0的补角就是小线圈的输入电压相位差,即θ1=π-ψ0。同理,可测得θ2
(2)控制系统输入电压相位的补偿与磁场叠加效果分析
以大线圈的电压相位为基准,分别测得小线圈和中间线圈输入电压相位差θ1和θ2后,对控制系统的输入电压相位进行数字化补偿,即三组线圈的输入电压相位由原来的π/2变为π/2。
经过补偿之后,三组线圈产生的磁感应强度分量分别为:
由于即磁感应强度分量为:
此时三组线圈磁感应强度相位中的可以相互抵消,从而使三者的相位严格满足公式(1)中理想旋转磁场的磁感应强度相位要求,消除了三组亥姆霍兹线圈电学参数(电阻、电感)不一致对空间万向旋转磁场方位精度的影响,也消除了线圈互感对空间万向旋转磁场方位精度的影响。
本发明通过采用直线极化电压相位差补偿法对空间万向旋转磁场控制系统的输入电压相位参数进行补偿,消除了三组不同结构亥姆霍兹线圈的电学参数对所叠加旋转磁场产生的方位误差,提高了空间万向旋转磁场的方位精度,保证了胶囊机器人行走的方向性和稳定性,对胶囊机器人的临床应用具有重要意义,尤其消除了线圈互感对空间万向旋转磁场方位精度的影响,解决了线圈互感计算与补偿困难这一技术难题。
附图说明
图1是本发明所校正的空间万向旋转磁场装置用于体内介入医疗的技术方案示意图。
图1中:1小线圈组,由沿X轴方向放置的两个相同线圈组成;2中间线圈组,由沿Y轴方向放置的两个相同线圈组成;3大线圈组,由沿Z轴方向放置的两个相同线圈组成;同一方向的两个相同线圈为串联关系,但三个方向的控制信号相互独立;4控制器;5控制系统操作界面。
图2是理想空间万向旋转磁场的示意图。
图2中:向量n为胶囊机器人的运动方向,也是旋转磁场的轴线方向;α、β、γ为向量n分别与X、Y、Z三个坐标轴之间的夹角;向量B表示理想旋转磁场的磁感应强度,其末端轨迹为圆。
图3是亥姆霍兹线圈互感计算模型。
图3中:A和C为构成单组亥姆霍兹线圈的两个相同线圈;B为辅助线圈,便于计算;a′为单个亥姆霍兹线圈边长之半;b′为辅助线圈的宽度;t′为单个亥姆霍兹线圈厚度;l′为单个亥姆霍兹线圈宽度。
图4是经过序列二次规划方法优化得到的单组方形亥姆霍兹线圈结构图。
图4中:a为优化后单个亥姆霍兹线圈边长之半;t为优化后单个亥姆霍兹线圈厚度;l为优化后单个亥姆霍兹线圈宽度;b为优化后两个亥姆霍兹线圈之间的距离;d为优化后两个亥姆霍兹线圈中心距离之半,标准的方形亥姆霍兹线圈中心距满足d=0.5445(a+t/2)。
图5是ψ+θ1由π/2增大到3π/2过程中,所叠加定轴旋转磁场的极化特性图形。
图5中:图5(1)为ψ+θ1=π/2时,所叠加磁场为右旋圆极化;图5(2)为π/2<ψ+θ1<π时,所叠加磁场为右旋椭圆极化;图5(3)为ψ+θ1=π时,所叠加磁场为直线极化;图5(4)为π<ψ+θ1<3π/2时,所叠加磁场为左旋椭圆极化;图5(5)为ψ+θ1=3π/2时,所叠加磁场为左旋圆极化。
具体实施方式
以下结合技术方案详细叙述本发明的具体实施例。
实施例:
以叠加频率为10Hz、空间方向角为(45°,60°,60°)旋转磁场的方位误差校正为例,对方位误差的大小进行理论估算并介绍利用直线极化电压相位差补偿法对控制系统输入电压相位进行数字化补偿的详细过程。
(1)空间万向旋转磁场方位误差的估算
通过序列二次规划得到的方形亥姆霍兹线圈的结构如附图4所示,其结构参数如表1所示。
表1 优化后的亥姆霍兹线圈参数
根据亥姆霍兹线圈的结构参数,可以计算得到三组线圈电阻、电感的理论值。同时,通过数字电桥可以测得三组线圈电阻、电感的实际值,如表2所示将两者进行对比。
表2 三组线圈电阻、电感理论值与测量值
通过理论值与实际值的对比,可以看出线圈电阻、电感的理论计算值不准确。同时,由于线圈之间存在互感,在使用数字电桥测量线圈电感时无法准确测量出线圈在实际工况下的互感值,因此测量值仍然存在误差。采用本文提出的直线极化电压相位差补偿法则可以解决电阻、电感值的计算测量存在误差的问题,并对互感的影响予以消除。
此处,对旋转磁场的方位误差进行估算时,三组线圈的电阻、电感值选取其理论值。由ω=2πf=62.8rad/s,同时将电阻、电感值代入公式(8)、(9)、(10)得三组线圈的相位差:
将亥姆霍兹线圈的结构参数值代入公式(13)得,Kx=9.10747×10-4N/(A2m),Ky=8.97703×10-4N/(A2m),Kz=8.90422×10-4N/(A2m)。
由理想旋转磁场轴线方位角α、β、γ分别为(45°,60°,60°),得
将以上数值结果代入公式(22),即可得到频率为10Hz,方位角为(45°,60°,60°)时,叠加得到的实际旋转磁场轴线与理想旋转磁场轴线之间的方位误差估算值为:δ=3.82°。
当旋转磁场的频率以及轴线的方位角发生变化时,叠加得到的实际旋转磁场轴线与理想旋转磁场轴线之间方位误差的大小也会发生变化,但仍可按照上述计算过程对其值进行估算。
(2)测量小线圈输入电压相位差θ1
在对小线圈进行相位补偿时以大线圈为基准,两组线圈输入的电流幅值均为12A,大线圈的输入电压相位始终为0,通过不断调整小线圈的输入电压相位(即通过控制器不断改变小线圈的输入电压可调校准相位ψ),同时观测磁场的旋向,实验数据如表3所示:
表3 小线圈可调校准相位对应实验数据
通过对表3中数据进行观察发现在170.1°和170.2°处磁场的旋转方向相反,在两者之间存在一点使两组线圈叠加磁场为附图5中所示的直线极化,即磁场为直线极化时对应的小线圈输入电压相位ψ0可近似取为170.1°,因此小线圈的输入电压相位差θ1约为9.9°。
(3)测量中间线圈输入电压相位差θ2
在对中间线圈进行相位补偿时仍然以大线圈作为基准,两组线圈输入的电流幅值均为12A,大线圈的输入电压相位始终为0,通过不断调整中间线圈的输入电压相位(即通过控制器不断改变中间线圈的输入电压的可调校准相位ψ),同时观测磁场的旋向,实验数据如表4所示:
表4 中间线圈可调校准相位对应实验数据
通过对表4中数据进行观察发现在174.3°和174.4°处磁场的旋转方向相反,在两者之间存在一点使两组线圈叠加磁场为附图5中所示的直线极化,即磁场为直线极化时对应的中间线圈输入电压相位ψ0可近似取为174.3°,因此中间线圈的输入电压相位差θ2约为5.7°。
(4)控制系统输入电压相位补偿
以大线圈的电压相位为基准,借助两相正交叠加信号的直线极化特性,分别测得小线圈输入电压相位差θ1和中间线圈输入电压相位差θ2后,对空间万向旋转磁场控制系统的输入电压相位进行补偿。
此时,若想叠加得到旋转轴方向角分别为α、β、γ的旋转磁场,则控制系统输入电压相位参数理应由原来的π/2变为π/2。有效消除了三组亥姆霍兹线圈电学参数(电阻、电感)不一致对空间万向旋转磁场方位精度的影响,也消除了线圈互感对空间万向旋转磁场方位精度的影响。
当磁场频率值发生变化时,小线圈、中间线圈的输入电压相位差θ1和θ2也会发生相应变化。此时,仍然可以按照上述方法进行测量,根据相应的测量值对空间万向旋转磁场控制系统的输入电压相位进行数字化补偿,使其方位误差得到校正,最终保证叠加出理想的旋转磁场。

Claims (2)

1.一种空间万向旋转磁场方位误差的直线极化相位校正方法,其特征包括以下步骤,
第一步,以大线圈(3)的电压相位为测量基准,借助于两相谐波信号在两组正交线圈内所叠加旋转磁场的直线极化特性,分别测出其余两组线圈内施加正弦电压信号所叠加旋转磁场发生直线极化时相对施加大线圈(3)正弦电压信号的相位差;
(1)以大线圈(3)的电压相位为测量基准,小线圈(1)和中间线圈(2)的输入电压相位差θ1和θ2分别为:
式中,R3和L3分别为大亥姆霍兹线圈(3)的电阻和组合电感;R2和L2分别为中间亥姆霍兹线圈(2)的电阻和组合电感;R1和L1分别为小亥姆霍兹线圈(1)的电阻和组合电感;
(2)选取大线圈(3)与小线圈(1)两组正交线圈,采用所研制的数字化控制器分别向该两组正交线圈施加正弦电压信号来叠加定轴(轴线沿Y轴)旋转磁场,则旋转磁场的磁感应强度分量满足如下关系式:
B x = B 0 &CenterDot; sin ( &omega;t + &theta; 1 + &psi; ) B z = B 0 &CenterDot; sin &omega;t - - - ( 25 )
式中,Bz为大线圈(3)产生的磁场,以其电压相位为基准,则相位可视为零,Bx为小线圈(1)产生的磁场,小线圈(1)相对大线圈(3)的电压相位差θ1是固有的物理量,当频率一定时,θ1为未知常量,ψ为小线圈(1)输入电压的可调校准相位,其数值通过控制器数字化调整;
(3)电压相位差θ1的获得借助于两相正交谐波信号在两组正交线圈内叠加的直线极化规律进行测量;
输入电压相位差θ1的测量可借助当ψ+θ1=π时的直线极化特性,即所叠加磁场为直线极化,而直线极化位相左右两边磁场的旋转方向相反;控制系统大线圈(3)的输入电压相位始终为0,通过控制器不断改变小线圈(1)的输入电压的可调校准相位ψ,通过观察磁场旋转方向,直至找到叠加磁场为直线极化时小线圈(1)的可调校准相位,记为ψ0;此时,两组线圈产生的磁感应强度分量的相位必定相差π,即满足等式:
故ψ0的补角就是小线圈(1)的输入电压相位差,即θ1=π-ψ0;同理,可测得θ2
第二步,在使用过程中,消除感抗对电流滞后和空间万向旋转磁场误差的影响的处理方式是:
依据两相正交谐波信号叠加的直线极化特性,在分别测出小线圈(1)、中间线圈(2)发生直线极化时的电压相位差θ1和θ2的基础上,对控制系统中三组方形亥姆霍兹线圈的输入电压相位进行补偿,校正由于三组不同结构线圈的电阻、电感不同所引起的叠加空间万向旋转磁场的方位误差,提高旋转磁场的方位精度,控制系统电压相位数字化补偿后磁场叠加效果分析如下:
以大线圈(3)的电压相位为基准,分别测得小线圈(1)和中间线圈(2)输入电压相位差θ1和θ2后,对控制系统的输入电压相位进行数字化补偿,即三组线圈的输入电压相位由原来的π/2变为π/2;
经过补偿之后,三组线圈产生的磁感应强度分量分别为:
其中,
式中,α、β、γ为旋转磁场的轴线方位角,ω为旋转磁场的角频率,I0为施加电流信号正弦分量的幅值;
K i = 4 &mu; 0 N i ( a i + t i 2 ) 2 &pi; [ ( a i + t i 2 ) 2 + d i 2 ] 2 ( a i + t i 2 ) 2 + d i 2 , i = x , y , z - - - ( 13 )
式中,ai为方形亥姆霍兹线圈内侧边长的一半,ti为方形线圈厚度,di为两线圈中心距的一半,Ii为通入线圈的电流值,Ni为单个亥姆霍兹线圈的匝数,μ0=4π×10-7N/A2代表真空磁导率;
由于即磁感应强度分量为:
2.根据权利要求1所述的一种空间万向旋转磁场方位误差的直线极化相位校正方法,其特征在于,消除感抗对电流滞后和空间万向旋转磁场误差的影响的处理过程中采用中间线圈(2)或者小线圈(1)的电压相位为测量基准,借助于两相正交谐波信号在两组正交线圈内叠加的直线极化特性,分别测出其余两组线圈内正弦信号所叠加磁场发生直线极化时的电压相位差,对控制系统中三组方形亥姆霍兹线圈的输入电压相位进行补偿而实现。
CN201510263117.3A 2015-05-21 2015-05-21 空间万向旋转磁场方位误差的直线极化相位校正方法 Active CN104983386B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510263117.3A CN104983386B (zh) 2015-05-21 2015-05-21 空间万向旋转磁场方位误差的直线极化相位校正方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510263117.3A CN104983386B (zh) 2015-05-21 2015-05-21 空间万向旋转磁场方位误差的直线极化相位校正方法

Publications (2)

Publication Number Publication Date
CN104983386A true CN104983386A (zh) 2015-10-21
CN104983386B CN104983386B (zh) 2017-01-04

Family

ID=54295390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510263117.3A Active CN104983386B (zh) 2015-05-21 2015-05-21 空间万向旋转磁场方位误差的直线极化相位校正方法

Country Status (1)

Country Link
CN (1) CN104983386B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388326A (zh) * 2015-10-29 2016-03-09 嘉兴学院 旋转角加速度传感器的标定方法
CN106549508A (zh) * 2016-11-11 2017-03-29 大连理工大学 一种空间线极化万向交变磁场的定向无线能量传输方法
CN106772134A (zh) * 2017-03-01 2017-05-31 中国科学院武汉物理与数学研究所 一种自动磁场补偿的装置与方法
CN107835556A (zh) * 2017-11-30 2018-03-23 合肥中科离子医学技术装备有限公司 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法
CN109730625A (zh) * 2019-03-08 2019-05-10 大连理工大学 一种空间万向旋转磁场的三维空间电压矢量控制方法
CN109890312A (zh) * 2016-10-28 2019-06-14 柯惠有限合伙公司 用于基于标测图来识别电磁传感器的位置和/或取向的系统和方法
CN112294240A (zh) * 2019-07-25 2021-02-02 北京微纳灵动科技有限公司 胶囊机器人的磁控方法
US11759264B2 (en) 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
张永顺; 孙颖; 杜春雨; 王娜; 迟明路: "胶囊机器人弯曲环境通过性与磁矢量控制", 《机械工程学报》 *
张永顺; 王娜; 杜春雨; 孙颖; 王殿龙: "胶囊机器人弯曲环境内万向旋转磁矢量控制原理", 《中国科学:技术科学》 *
张永顺; 王楠; 马壮: "肠道胶囊机器人的转向随动力学模型", 《机械工程学报 》 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105388326B (zh) * 2015-10-29 2019-03-05 嘉兴学院 旋转角加速度传感器标定方法
CN105388326A (zh) * 2015-10-29 2016-03-09 嘉兴学院 旋转角加速度传感器的标定方法
CN109890312B (zh) * 2016-10-28 2022-04-01 柯惠有限合伙公司 用于基于标测图来识别电磁传感器的位置和/或取向的系统和方法
CN109890312A (zh) * 2016-10-28 2019-06-14 柯惠有限合伙公司 用于基于标测图来识别电磁传感器的位置和/或取向的系统和方法
US11759264B2 (en) 2016-10-28 2023-09-19 Covidien Lp System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map
CN106549508A (zh) * 2016-11-11 2017-03-29 大连理工大学 一种空间线极化万向交变磁场的定向无线能量传输方法
CN106549508B (zh) * 2016-11-11 2019-01-01 大连理工大学 一种空间线极化万向交变磁场的定向无线能量传输方法
CN106772134A (zh) * 2017-03-01 2017-05-31 中国科学院武汉物理与数学研究所 一种自动磁场补偿的装置与方法
CN106772134B (zh) * 2017-03-01 2019-05-21 中国科学院武汉物理与数学研究所 一种自动磁场补偿的装置与方法
CN107835556A (zh) * 2017-11-30 2018-03-23 合肥中科离子医学技术装备有限公司 一种回旋加速器中利用一次谐波调节粒子轨道对中的方法
CN109730625A (zh) * 2019-03-08 2019-05-10 大连理工大学 一种空间万向旋转磁场的三维空间电压矢量控制方法
CN109730625B (zh) * 2019-03-08 2021-08-10 大连理工大学 一种空间万向旋转磁场的三维空间电压矢量控制方法
CN112294240A (zh) * 2019-07-25 2021-02-02 北京微纳灵动科技有限公司 胶囊机器人的磁控方法

Also Published As

Publication number Publication date
CN104983386B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
CN104983386A (zh) 空间万向旋转磁场方位误差的直线极化相位校正方法
US20210153770A1 (en) Catheter navigation using impedance and magnetic field measurements
CN102579048B (zh) 空间万向叠加旋转磁场旋转轴线方位与旋向的控制方法
Huang et al. Dynamic 3D ultrasound and MR image registration of the beating heart
CN101826780A (zh) 驱动磁体的方法以及驱动胶囊内窥镜的方法和系统
US20130231557A1 (en) Intracardiac echocardiography image reconstruction in combination with position tracking system
US8849373B2 (en) Method and apparatus for real-time 3D target position estimation by combining single x-ray imaging and external respiratory signals
CN104776865A (zh) 基于最大磁感应强度矢量旋转角快速测定的电磁跟踪系统及方法
CN104334077B (zh) 沿着能量递送设备轴的磁共振成像
CN114072049A (zh) 用于体内进行定位的系统及方法
CN106549508B (zh) 一种空间线极化万向交变磁场的定向无线能量传输方法
CN108042094A (zh) 无线胶囊内窥镜5自由度的定位系统及其定位方法
Payne et al. A breast-specific MR guided focused ultrasound platform and treatment protocol: first-in-human technical evaluation
Liu et al. Three-dimensional localization of a robotic capsule endoscope using magnetoquasistatic field
Attivissimo et al. Analysis of position estimation techniques in a surgical EM Tracking System
CN108872909A (zh) 磁共振系统的梯度线圈位置校准方法和装置
Zhuang et al. Omnidirectional wireless power transfer system using modified saddle-shaped coil pair for implantable capsule robots
Zhang et al. Design, analysis and experiments of a spatial universal rotating magnetic field system for capsule robot
Hu et al. A new 6D magnetic localization technique for wireless capsule endoscope based on a rectangle magnet
CN107595287A (zh) 一种将鲤鱼磁共振扫描坐标转换为脑立体定位坐标的方法
Yang et al. Multimode control of a parallel-mobile-coil system for adaptable large-workspace microrobotic actuation
CN103948389A (zh) 磁共振断层成像方式获得人体组织电性能参数分布的方法
CN109730625B (zh) 一种空间万向旋转磁场的三维空间电压矢量控制方法
Tan et al. Feasibility of prosthetic posture sensing via injectable electronic modules
US11766190B2 (en) Location and orientation estimation of devices incorporating permanent magnets

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant