CN104980213B - 一种主光通道功率测试方法和装置 - Google Patents

一种主光通道功率测试方法和装置 Download PDF

Info

Publication number
CN104980213B
CN104980213B CN201510367792.0A CN201510367792A CN104980213B CN 104980213 B CN104980213 B CN 104980213B CN 201510367792 A CN201510367792 A CN 201510367792A CN 104980213 B CN104980213 B CN 104980213B
Authority
CN
China
Prior art keywords
optical signal
spectrum width
centre wavelength
performance number
wdm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510367792.0A
Other languages
English (en)
Other versions
CN104980213A (zh
Inventor
赵鑫
赖俊森
赵文玉
张海懿
汤瑞
汤晓华
吴冰冰
李少晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Academy of Information and Communications Technology CAICT
Original Assignee
China Academy of Telecommunications Research CATR
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Academy of Telecommunications Research CATR filed Critical China Academy of Telecommunications Research CATR
Priority to CN201510367792.0A priority Critical patent/CN104980213B/zh
Publication of CN104980213A publication Critical patent/CN104980213A/zh
Application granted granted Critical
Publication of CN104980213B publication Critical patent/CN104980213B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Optical Communication System (AREA)

Abstract

本发明提供了一种主光通道功率测试方法,该方法包括:对待测的WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长;根据获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽;根据获得的所述WDM光信号中的各光信号的中心波长和确定的有效谱宽,测试该WDM光信号的主光通道功率。基于同样的发明构思,本申请还提出一种主光通道功率测试装置,能够对灵活频谱间隔的多子载波复用超级信道光谱进行主光通道功率测量。

Description

一种主光通道功率测试方法和装置
技术领域
本发明涉及通信技术领域,特别涉及一种主光通道功率测试方法和装置。
背景技术
新型互联网业务的高速发展对光纤承载网络容量带宽的需求日益增长,在以偏振复用、正交相位调制、相干检测和基于电域数字信号处理(DSP)的传输损伤补偿为基本技术特征的100Gbit/s(简称100G)光通信系统成熟并规模商用之后,400Gbit/s(简称400G)为代表的超100G光通信系统也开始进入实验室测试和试商用阶段。
超100G多子载波复用光通信系统以提高频谱效率和传输距离为目标,在物理层引入了高阶调制格式、多子载波复用超级信道、灵活频谱间隔等新技术特征。400G光通信系统中多种速率信号混合传输的典型光谱,如传统50GHz间隔的100G双偏振复用正交相移键控(DP-QPSK)信号,谱宽为150GHz的4x100G DP-QPSK超级信道,以及谱宽为75GHz的2x200G双偏振复用16符号正交幅度调制(DP-16QAM)超级信道。
超100G多子载波复用光通信系统主光通道光谱测试包括针对主光通道发射点和接收点,以及线路中各个光放大器接收点和发射点等位置的波分复用(WDM)信道光谱进行总功率测量,单通道功率测量,以及通道间最大功率差测量。
现有的WDM系统主光通道功率测试,都是基于ITU-T传统的50GHz固定频谱间隔进行主光通道光谱测试,难以适用于灵活频谱间隔的超级信道光信号。
发明内容
有鉴于此,本申请提供一种主光通道功率测试方法和装置,能够对灵活频谱间隔的多子载波复用超级信道光谱进行主光通道功率测量。
为解决上述技术问题,本申请的技术方案是这样实现的:
一种主光通道功率测试方法,应用于多子载波复用光通信系统中,该方法包括:
对待测的WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长;
根据获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽;
根据获得的所述WDM光信号中的各光信号的中心波长和确定的有效谱宽,测试该WDM光信号的主光通道功率。
一种主光通道功率测试装置,应用于多子载波复用光通信系统中,该装置包括:扫描单元、确定单元和测试单元;
所述扫描单元,用于对待测的WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长;
所述确定单元,用于根据所述扫描单元获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽;
所述测试单元,用于根据所述扫描单元获得的所述WDM光信号中的各光信号的中心波长和所述确定单元确定的有效谱宽,测试该WDM光信号的主光通道功率。
由上面的技术方案可知,本申请中通过获得WDM光信号中各光信号的中心波长和有效谱宽,来测试该WDM光信号的主光通道功率。通过该技术方案能够对灵活频谱间隔的多子载波复用超级信道光谱进行主光通道功率测量。
附图说明
图1为本申请实施例中主光通道功率测试流程示意图;
图2为400G多子载波复用超级信道与100G光信号混传光谱图;
图3为对图2的WDM光信号进行扫描获得的各光信号的中心波长的位置示意图;
图4为本实施例中针对各光信号使用预设谱宽划分区域的示意图;
图5为本申请实施例中应用于上述技术的装置的结构示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图并举实施例,对本发明的技术方案进行详细说明。
本申请实施例中提出一种主光通道功率测试方法,应用于多子载波复用光通信系统中,能够对灵活频谱间隔的多子载波复用超级信道光谱进行主光通道功率测量。
本申请实施例中用于进行光通道功率测试的设备称为测试设备,该测试设备可以是高分辨率光谱仪,也可以是具有高分辨率光谱仪功能的设备。
参见图1,图1为本申请实施例中主光通道功率测试流程示意图。具体步骤为:
步骤101,测试设备对待测的WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长。
参见图2,图2为400G多子载波复用超级信道与100G光信号混传光谱图。图2中包括传统50GHz间隔的100G双DP-QPSK信号,谱宽为150GHz的4x100GDP-QPSK超级信道,以及谱宽为75GHz的2x200G DP-16QAM超级信道。
参见图3,图3为对图2的WDM光信号进行扫描获得的各光信号的中心波长的位置示意图。图3中使用C_001到C_008对应的竖线指示各光信号的中心波长在光谱图中的位置。
步骤102,该测试设备根据获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽。
本步骤中测试设备根据所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽,具体包括:
针对每个光信号获得其有效谱宽的方法类似,以针对一个光信号获得有效谱宽为例:
针对所述WDM光信号中任一光信号,以该光信号的中心波长在扫描所述WDM光信号获得的光谱中的位置为起点,分别向两侧以预设谱宽为长度依次进行功率积分并分别获得功率值;
向比该光信号的中心波长的值大的中心波长方向进行功率积分时,当第i+1次获得的功率值与第i次获得的功率值的差值,大于第i次获得的功率值与第i-1次获得的功率值的差值,且第i+1次获得的功率值与第i+2次获得的功率值的差值的绝对值小于预设阈值时,确定i+1倍的预设谱宽为大于该光信号的中心波长的值的中心波长方向侧的有效谱宽;
向比该光信号的中心波长的值小的中心波长方向进行功率积分时,当第j+1次获得的功率值与第j次获得的功率值的差值,大于第j次获得的功率值与第j-1次获得的功率值的差值,且第j+1次获得的功率值与第j+2次获得的功率值的差值的绝对值小于预设阈值时,确定j+1倍的预设谱宽为小于该光信号的中心波长的值的中心波长方向侧的有效谱宽;其中,i,j为大于0的整数;
所述WDM光信号中该光信号占有的有效谱宽为i+1倍的预设谱宽与j+1倍的预设谱宽的和。
当i小于j时,该光信号占有的有效谱宽为2i+2倍的预设谱宽的和;
当j小于i时,该光信号占有的有效谱宽为2j+2倍的预设谱宽的和。
其中,预设谱宽、预设谱宽可以根据实际应用配置,如预设谱宽可以配置为6.25GHz(0.05nm)等;预设阈值可以配置3dB。
参见图4,图4为本实施例中针对各光信号使用预设谱宽划分区域的示意图。
图4为针对图3中从左到右的前四个光信号的波形示意图。以图4中的中心波长2(图3中的第2个光信号对应的波长),向大于中心波长2的值的中心波长方向,即右侧,依次进行功率积分,则有P1大于P2,P2大于P3,且P3-P2大于P2-P1,当P4和P3的差值小于预设阈值时,则确定3倍的预设带宽为中心波长右侧对应的有效谱宽。
针对中心波长向左侧进行功率积分,通过与上述类似的过程获得中心波长左侧对应的有效谱宽。
当出现左右两侧积分功率比较得到的转折点不一致时,即获得两侧的有效谱宽不一致时,以有效谱宽较小的一侧为准,即取有效谱宽较小的有效谱宽的2倍,作为该光信号的有效谱宽。
因此,在向两侧积分时,一侧功率积分到N次还不能满足上述条件(第i+1次获得的功率值与第i次获得的功率值的差值,大于第i次获得的功率值与第i-1次获得的功率值的差值,且第i+1次获得的功率值与第i+2次获得的功率值的差值的绝对值小于预设阈值),而另外一侧在功率积分到M侧时满足上述条件时,且N大于M时,确定2M倍预设谱宽为该光信号的有效谱宽,不满足上述条件的一侧不再继续进行功率积分。
步骤103,该测试设备根据获得的所述WDM光信号中的各光信号的中心波长和确定的有效谱宽,测试该WDM光信号的主光通道功率。
本步骤具体实现方式如下:
该测试设备根据确定的所述WDM光信号中的各光信号的中心波长和有效谱宽,按照各光信号的中心波长在光谱图中的位置,生成测试该WDM光信号的测试模板,根据该测试模板测试该WDM光信号的主光通道功率。
以图3为例,从左到右,第一个光信号的中心波长为1529.15nm,有效谱宽为50GHz;第二个光信号的中心波长为1529.55nm,有效谱宽为50GHz;第三个光信号的中心波长为1529.90nm,有效谱宽为37.5Hz,第四个光信号的中心波长为1530.20,有效谱宽为37.5Hz;第五个光信号的中心波长为1530.50nm,有效谱宽为37.5Hz等。
因此,各光信号的测试模板由该光信号的中心波长和有效谱宽组成;针对第一个光信号的测试模板对应的参数为(1529.15nm,50GHz),第二个光信号的测试模板对应的参数为(1529.55nm,50GHz),第三个光信号的测试模板对应的参数为(1529.90nm,37.5GHz),第四个光信号的测试模板对应的参数为(1530.20nm,37.5GHz),第五个光信号的测试模板对应的参数为(1530.50nm,37.5GHz),第六个光信号的测试模板对应的参数为(1530.80nm,37.5GHz),第七个光信号的测试模板对应的参数为(1531.10nm,37.5GHz),第八个光信号的测试模板对应的参数为(1531.40nm,37.5GHz)。按照这八个光信号在光谱图中的位置,依次生成测试各光信号的测试模板;使用WDM光信号中的各光信号的测试模板组成测试该WDM光信号的测试模板。
本申请实施例中获得测试WDM光信号的测试模板后,可以在不同位置使用该测试模板测试该WDM光信号的主光通道功率。
主光通道测试模板的子载波通道间隔可以设置为任意宽度,满足灵活频谱WDM光信号混传的测试要求。此外,主光通道模板也可以按照包含多个子载波的整个超级信道的中心波长和信道间隔进行设置,此时测量的是整个超级信道的光谱参数。
通过单子载波中心波长和有效谱宽测量以及模板编辑,能够适用于灵活频谱间隔的多子载波复用超级信道光谱测量。完成光谱编辑之后可以在主光通道的多个位置进行光谱测试,具有通用性,提高了测试效率和准确性。
基于同样的发明构思,本申请还提出一种主光通道功率测试装置,应用于多子载波复用光通信系统中。参见图5,图5为本申请实施例中应用于上述技术的装置的结构示意图。该装置包括:扫描单元501、确定单元502和测试单元503;
扫描单元501,用于对待测的WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长;
确定单元502,用于根据扫描单元501获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽;
测试单元503,用于根据扫描单元501获得的所述WDM光信号中的各光信号的中心波长和确定单元502确定的有效谱宽,测试该WDM光信号的主光通道功率。
较佳地,
测试单元503,具体用于根据扫描单元501获得的所述WDM光信号中的各光信号的中心波长和确定单元502确定的有效谱宽,按照各光信号的中心波长在光谱图中的位置,生成测试该WDM光信号的测试模板,根据该测试模板测试该WDM光信号的主光通道功率。
较佳地,
确定单元502,具体用于针对所述WDM光信号中任一光信号,以该光信号的中心波长在扫描所述WDM光信号获得的光谱中的位置为起点,分别向两侧以预设谱宽为长度依次进行功率积分并分别获得功率值;向比该光信号的中心波长的值大的中心波长方向进行功率积分时,当第i+1次获得的功率值与第i次获得的功率值的差值,大于第i次获得的功率值与第i-1次获得的功率值的差值,且第i+1次获得的功率值与第i+2次获得的功率值的差值的绝对值小于预设阈值时,确定i+1倍的预设谱宽为大于该光信号的中心波长的值的中心波长方向侧的有效谱宽;向比该光信号的中心波长的值小的中心波长方向进行功率积分时,当第j+1次获得的功率值与第j次获得的功率值的差值,大于第j次获得的功率值与第j-1次获得的功率值的差值,且第j+1次获得的功率值与第j+2次获得的功率值的差值的绝对值小于预设阈值时,确定j+1倍的预设谱宽为小于该光信号的中心波长的值的中心波长方向侧的有效谱宽;其中,i,j为大于0的整数;所述WDM光信号中该光信号占有的有效谱宽为i+1倍的预设谱宽与j+1倍的预设谱宽的和。
较佳地,
确定单元502,进一步用于当i小于j时,确定该光信号占有的有效谱宽为2i+2倍的预设谱宽的和;当j小于i时,确定该光信号占有的有效谱宽为2j+2倍的预设谱宽的和。
上述实施例的单元可以集成于一体,也可以分离部署;可以合并为一个单元,也可以进一步拆分成多个子单元。
综上所述,本申请通过获得WDM光信号中各光信号的中心波长和有效谱宽,来测试该WDM光信号的主光通道功率。通过该技术方案能够对灵活频谱间隔的多子载波复用超级信道光谱进行主光通道功率测量;并且该测试方案具有通用性,提高了测试效率和准确性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (6)

1.一种主光通道功率测试方法,应用于多子载波复用光通信系统中,其特征在于,该方法包括:
对待测的光波分复用WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长;
根据获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽;
根据获得的所述WDM光信号中的各光信号的中心波长和确定的有效谱宽,测试该WDM光信号的主光通道功率;
其中,所述根据获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽,包括:
针对所述WDM光信号中任一光信号,以该光信号的中心波长在扫描所述WDM光信号获得的光谱中的位置为起点,分别向两侧以预设谱宽为长度依次进行功率积分并分别获得功率值;
向比该光信号的中心波长的值大的中心波长方向进行功率积分时,当第i+1次获得的功率值与第i次获得的功率值的差值,大于第i次获得的功率值与第i-1次获得的功率值的差值,且第i+1次获得的功率值与第i+2次获得的功率值的差值的绝对值小于预设阈值时,确定i+1倍的预设谱宽为大于该光信号的中心波长的值的中心波长方向侧的有效谱宽;
向比该光信号的中心波长的值小的中心波长方向进行功率积分时,当第j+1次获得的功率值与第j次获得的功率值的差值,大于第j次获得的功率值与第j-1次获得的功率值的差值,且第j+1次获得的功率值与第j+2次获得的功率值的差值的绝对值小于预设阈值时,确定j+1倍的预设谱宽为小于该光信号的中心波长的值的中心波长方向侧的有效谱宽;其中,i,j为大于0的整数;
所述WDM光信号中该光信号占有的有效谱宽为i+1倍的预设谱宽与j+1倍的预设谱宽的和。
2.根据权利要求1所述的方法,其特征在于,所述根据获得的所述WDM光信号中的各光信号的中心波长和确定的有效谱宽,测试该WDM光信号的主光通道功率,包括:
根据获得的所述WDM光信号中的各光信号的中心波长和确定的有效谱宽,按照各光信号的中心波长在光谱图中的位置,生成测试该WDM光信号的测试模板,根据该测试模板测试该WDM光信号的主光通道功率。
3.根据权利要求1所述的方法,其特征在于,
当i小于j时,该光信号占有的有效谱宽为2i+2倍的预设谱宽的和;
当j小于i时,该光信号占有的有效谱宽为2j+2倍的预设谱宽的和。
4.一种主光通道功率测试装置,应用于多子载波复用光通信系统中,其特征在于,该装置包括:扫描单元、确定单元和测试单元;
所述扫描单元,用于对待测的光波分复用WDM光信号进行扫描,获得所述WDM光信号中各光信号的中心波长;
所述确定单元,用于根据所述扫描单元获得的所述WDM光信号中各光信号的中心波长,确定各光信号占有的有效谱宽;
所述测试单元,用于根据所述扫描单元获得的所述WDM光信号中的各光信号的中心波长和所述确定单元确定的有效谱宽,测试该WDM光信号的主光通道功率;
其中,所述确定单元,具体用于针对所述WDM光信号中任一光信号,以该光信号的中心波长在扫描所述WDM光信号获得的光谱中的位置为起点,分别向两侧以预设谱宽为长度依次进行功率积分并分别获得功率值;向比该光信号的中心波长的值大的中心波长方向进行功率积分时,当第i+1次获得的功率值与第i次获得的功率值的差值,大于第i次获得的功率值与第i-1次获得的功率值的差值,且第i+1次获得的功率值与第i+2次获得的功率值的差值的绝对值小于预设阈值时,确定i+1倍的预设谱宽为大于该光信号的中心波长的值的中心波长方向侧的有效谱宽;向比该光信号的中心波长的值小的中心波长方向进行功率积分时,当第j+1次获得的功率值与第j次获得的功率值的差值,大于第j次获得的功率值与第j-1次获得的功率值的差值,且第j+1次获得的功率值与第j+2次获得的功率值的差值的绝对值小于预设阈值时,确定j+1倍的预设谱宽为小于该光信号的中心波长的值的中心波长方向侧的有效谱宽;其中,i,j为大于0的整数;所述WDM光信号中该光信号占有的有效谱宽为i+1倍的预设谱宽与j+1倍的预设谱宽的和。
5.根据权利要求4所述的装置,其特征在于,
所述测试单元,具体用于根据所述扫描单元获得的所述WDM光信号中的各光信号的中心波长和所述确定单元确定的有效谱宽,按照各光信号的中心波长在光谱图中的位置,生成测试该WDM光信号的测试模板,根据该测试模板测试该WDM光信号的主光通道功率。
6.根据权利要求4所述的装置,其特征在于,
所述确定单元,进一步用于当i小于j时,确定该光信号占有的有效谱宽为2i+2倍的预设谱宽的和;当j小于i时,确定该光信号占有的有效谱宽为2j+2倍的预设谱宽的和。
CN201510367792.0A 2015-06-29 2015-06-29 一种主光通道功率测试方法和装置 Active CN104980213B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510367792.0A CN104980213B (zh) 2015-06-29 2015-06-29 一种主光通道功率测试方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510367792.0A CN104980213B (zh) 2015-06-29 2015-06-29 一种主光通道功率测试方法和装置

Publications (2)

Publication Number Publication Date
CN104980213A CN104980213A (zh) 2015-10-14
CN104980213B true CN104980213B (zh) 2017-08-25

Family

ID=54276358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510367792.0A Active CN104980213B (zh) 2015-06-29 2015-06-29 一种主光通道功率测试方法和装置

Country Status (1)

Country Link
CN (1) CN104980213B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107852237B (zh) * 2016-02-18 2019-11-15 华为技术有限公司 一种波长控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119174A (zh) * 2006-07-31 2008-02-06 中兴通讯股份有限公司 波分复用系统光信噪比的测试方法
CN101345582A (zh) * 2008-08-26 2009-01-14 中兴通讯股份有限公司 一种密集波分复用系统的光信号监测方法及监测装置
CN104243019A (zh) * 2014-09-25 2014-12-24 工业和信息化部电信传输研究所 一种光信噪比测试方法和装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9031404B2 (en) * 2008-08-21 2015-05-12 Nistica, Inc. Optical channel monitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101119174A (zh) * 2006-07-31 2008-02-06 中兴通讯股份有限公司 波分复用系统光信噪比的测试方法
CN101345582A (zh) * 2008-08-26 2009-01-14 中兴通讯股份有限公司 一种密集波分复用系统的光信号监测方法及监测装置
CN104243019A (zh) * 2014-09-25 2014-12-24 工业和信息化部电信传输研究所 一种光信噪比测试方法和装置

Also Published As

Publication number Publication date
CN104980213A (zh) 2015-10-14

Similar Documents

Publication Publication Date Title
CN110463091A (zh) 基于多频段导频子载波的光学性能监测方法及系统
CN104348544B (zh) 测量光传输信道质量参数的方法及装置
EP2380290B1 (en) Multi-wavelength coherent receiver with a shared optical hybrid and a multi-wavelength local oscillator
EP2608436B1 (en) Method and device for receiving multi-carrier optical signals
JP6296609B2 (ja) 一括取得型光検出装置及び光検出方法
CN103401832B (zh) 传输包含数据的光信号的方法、设备和系统
CN105071894B (zh) 一种基于相位追踪的非正交偏振复用相位调制信号传输方法
CN108390718B (zh) 光纤通信系统中光信噪比的测量装置及方法
TWI384775B (zh) 用於正交分頻多重存取系統的訊號品質估計
CN108933626B (zh) 一种信号处理方法和装置
CN104980213B (zh) 一种主光通道功率测试方法和装置
CN103701523B (zh) 一种测量光通信介质的参数的方法、装置及系统
US8934780B2 (en) Direct detection of optical orthogonal frequency division multiplexing (OFDM) signals
CN111510241B (zh) 基于频域微扰光标签dwdm光信道识别监控方法及系统
CN108540219A (zh) 一种基于移频调制的相干光接收机参数测量方法、装置
CN112636866A (zh) 一种波长标签生成方法和装置、以及检测方法和装置
CN101238667B (zh) 光标识解调方法和系统
CN113452438B (zh) 一种用于波分复用系统的光信噪比的监测方法及装置
CN102546517A (zh) 一种实现波长标签技术中的信息解调的方法及装置
CN113162695B (zh) 一种光层oam信息的传送方法和传送系统
WO2017130941A1 (ja) 光信号処理装置および光信号処理方法
CN113206703A (zh) 一种波分复用的色度色散和偏振模色散监测方法及装置
CN106067859B (zh) 基于低带宽器件的大容量通信系统及方法
Hong et al. Modulation format identification and transmission quality monitoring for link establishment in optical network using machine learning techniques
Yu et al. Optical performance monitoring in fiber transmission systems based on electrical sampling technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211224

Address after: 100191 No. 40, Haidian District, Beijing, Xueyuan Road

Patentee after: CHINA ACADEMY OF INFORMATION AND COMMUNICATIONS

Address before: 100191 No. 52 Huayuan North Road, Haidian District, Beijing

Patentee before: CHINA ACADEME OF TELECOMMUNICATION RESEARCH OF MIIT

TR01 Transfer of patent right