CN104975249B - 一种纯钛的表面改性方法 - Google Patents
一种纯钛的表面改性方法 Download PDFInfo
- Publication number
- CN104975249B CN104975249B CN201510329783.2A CN201510329783A CN104975249B CN 104975249 B CN104975249 B CN 104975249B CN 201510329783 A CN201510329783 A CN 201510329783A CN 104975249 B CN104975249 B CN 104975249B
- Authority
- CN
- China
- Prior art keywords
- pure titanium
- rolling
- sample
- corrosion
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010936 titanium Substances 0.000 title claims abstract description 66
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 title claims abstract description 65
- 229910052719 titanium Inorganic materials 0.000 title claims abstract description 65
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000005096 rolling process Methods 0.000 claims abstract description 54
- 238000012545 processing Methods 0.000 claims abstract description 23
- 238000010894 electron beam technology Methods 0.000 claims abstract description 16
- 238000005260 corrosion Methods 0.000 abstract description 43
- 230000007797 corrosion Effects 0.000 abstract description 42
- 238000005516 engineering process Methods 0.000 abstract description 4
- 239000003519 biomedical and dental material Substances 0.000 abstract description 2
- 230000003628 erosive effect Effects 0.000 abstract description 2
- 239000012530 fluid Substances 0.000 abstract description 2
- 238000005555 metalworking Methods 0.000 abstract description 2
- 230000010287 polarization Effects 0.000 description 8
- 239000012981 Hank's balanced salt solution Substances 0.000 description 6
- 210000001367 artery Anatomy 0.000 description 5
- 239000012890 simulated body fluid Substances 0.000 description 5
- 210000003462 vein Anatomy 0.000 description 5
- 238000013213 extrapolation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000004080 punching Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 231100000252 nontoxic Toxicity 0.000 description 2
- 230000003000 nontoxic effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229910052564 epsomite Inorganic materials 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000007847 structural defect Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Materials For Medical Uses (AREA)
- Welding Or Cutting Using Electron Beams (AREA)
- Prostheses (AREA)
Abstract
本发明属于金属工艺学领域,公开了一种纯钛TA2的表面改性方法,步骤包括:(1)将纯钛进行轧制处理2~5次至形变率为70%~85%;(2)用电子束对轧制后的纯钛处理,处理参数为:加速电压25~30KeV,5~10次脉冲。经过上述处理后,纯钛的表面抗腐蚀性能得以提高。本方法的处理工艺简单,能有效提高纯钛的抗腐蚀能力。经过处理的纯钛可适应体液环境,用作安全的生物医用材料。
Description
技术领域
本发明属于金属工艺学领域,尤其是金属耐腐蚀技术领域,具体涉及到一种纯钛TA2的表面改性方法。
背景技术
金属元素钛在地壳中的分布十分广泛,据推算,其含量大约占地壳质量的4%,在所有元素中排第10位。而钛在金属中地位正越来越重要,从未来工业实际应用价值的角度来看,排在铁和铝之后,被视为未来金属,预计在21世纪会有突飞猛进的发展。上世纪五十年代钛开始应用于国民生产生活中,对于国防和社会经济,钛都是具有战略意义的一种金属。
钛本身具有比强度高、无磁性、超导、储氢、记忆等优异性能,在我国的载人航天工程、国防军事领域、海洋的开发、石油提取冶炼、发电等行业领域广为应用。此外,钛金属具有优良的理化性能,生物相容性好、比重小、无毒。正因为如此,纯钛的人工骨、人工关节、心脏节律器、人工牙根等广泛应用于临床。
从目前钛金属材料的研究及应用开发情况来看,研发无毒、生物相容性好、必要的力学性能的新型生物医用钛金属是未来的趋势,而钛金属在体液环境下的耐蚀性又是至关重要的一个环节。
因此,需要对现有技术加以改进,以提高钛金属在模拟体液中的抗腐蚀能力。
发明内容
本发明旨在提供一种纯钛表面改性的方法,以改进钛金属的抗腐蚀能力。
具体的技术方案为,一种纯钛表面改性方法,步骤包括:
(1)将纯钛进行轧制处理2~5次至形变率为70%~85%;
(2)用电子束对轧制后的纯钛处理,处理参数为:加速电压25~30KeV,5~10次脉冲。
优选的,纯钛为纯钛TA2。
优选的,步骤(1)中,轧制次数为5次,纯钛的形变率为70%。
优选的,步骤(2)中,脉冲参数为加速电压27.3KeV、5次脉冲。
经过上述处理后,纯钛的表面抗腐蚀性能得以提高。这主要是由于轧制的储能作用,且电子束的快冷快热特性使得纯钛表层发生了马氏体转变,且晶粒得到充分细化,同时电子束的表面净化作用也是耐蚀性提高的一个原因。
本发明技术方案提供一种结合方式来改进钛金属的抗腐蚀性能,将轧制与强流脉冲电子束(HCPEB)技术结合起来,先将基体进行轧制处理,基体会发生塑性变形,空位、位错等结构缺陷密度的增加,以及畸变能的升高,为相变与再结晶形核储备能量。然后利用脉冲电子束极快速地加热、冷却的优势对基体进行退火处理,选择脉冲处理次数及加速电压,最终提高基体的抗腐蚀性能。
本方法的处理工艺简单,能有效提高钛的抗腐蚀能力。经过处理的纯钛可适应体液环境,用作安全的生物医用材料。
附图说明
图1为实施例1中纯钛试样在Hanks溶液中稳定1小时后的极化曲线,其中A为未经任何处理的纯钛,B为经过2次轧制的纯钛试样,C为经过2次轧制和加速电压27.3KeV、5次脉冲的纯钛试样,D为经过2次轧制和加速电压27.3KeV、10次脉冲的纯钛试样。
图2为实施例1中纯钛试样在Hanks溶液中稳定1小时后的极化曲线,其中A为未经任何处理的纯钛,B为经过4次轧制的纯钛试样,C为经过4次轧制和加速电压27.3KeV、5次脉冲的纯钛试样,D为经过4次轧制和加速电压27.3KeV、10次脉冲的纯钛试样。
图3为实施例1中纯钛试样在Hanks溶液中稳定1小时后的极化曲线,其中A为未经任何处理的纯钛,B为经过5次轧制的纯钛试样,C为经过5次轧制和加速电压27.3KeV、5次脉冲的纯钛试样,D为经过5次轧制和加速电压27.3KeV、10次脉冲的纯钛试样。
具体实施方式
实施例1
(1)取纯钛TA2作为实验材料,进行2次轧制,其形变率为85%。
轧制处理后,用脉冲电子束处理,参数分别为电压27.3KeV、5次脉冲和27.3KeV、10次脉冲。以未进行任何处理的纯钛和经过轧制而未经过脉冲处理的纯钛材料为对照,进行动电位极化测试。
腐蚀溶液为Hanks人工模拟体液(Hanks溶液)。Hanks溶液的组成为:8.0g NaCl+0.4g KCl+0.14g CaCl2+0.35g NaHCO3+0.1g MgCl2·6H2O+0.06g MgSO4·7H2O+0.6g kH2PO4+0.06g NaH2PO4·2H2O+1g葡萄糖+1L蒸馏水,用HCI和NaOH调节溶液PH值为7.4,溶液自然充满空气,控制温度为37±0.5℃。
试样在Hanks溶液中稳定1h后进行电化学测量,且每次测量均更换新的电解质溶液。
(2)取纯钛TA2作为实验材料,进行4次轧制,其形变率为75%,其余操作同(1)。
(3)取纯钛TA2作为实验材料,进行5次轧制,其形变率为70%,其余操作同(1)。
腐蚀测试数据数据具体如表1和图1~3。图1~3为样品在Hanks人工模拟体液中的极化曲线,利用Tafel外推法对曲线进行分析,最终的腐蚀电位Ecorr和腐蚀电流密度icorr见表1。
表1不同轧制次数+不同电子束脉冲次数下纯Ti样品的腐蚀测试数据
试样 | 腐蚀电位Ecorr(mV) | 腐蚀电流icorr(uA/cm2) | 形变率 |
未处理 | -1221.8 | 1392.3 | 0% |
2次轧制 | -331.9 | 1532.5 | 85% |
2次轧制+5次脉冲 | -271.3 | 368.7 | 85% |
2次轧制+10次脉冲 | -407.8 | 453.5 | 85% |
4次轧制 | -431.5 | 871.4 | 75% |
4次轧制+5次脉冲 | -416.6 | 342.7 | 75% |
4次轧制+10次脉冲 | -436.4 | 432.3 | 75% |
5次轧制 | -495.7 | 678.5 | 70% |
5次轧制+5次脉冲 | -247.8 | 245.3 | 70% |
5次轧制+10次脉冲 | -406.5 | 491.7 | 70% |
图1为轧制2次前后及不同脉冲次数下纯钛在模拟体液中的极化曲线,利用Tafel外推法对曲线进行分析,最终的腐蚀电位Ecorr和腐蚀电流密度icorr见表1。2次轧制处理后样品的腐蚀电位由未处理时的-1221.8mV上升到-331.9mV,继续脉冲电子束处理后腐蚀电位上升至-271.3mV(5次脉冲)、-407.8mV(10次脉冲),但值得注意的是,只是单纯的轧制处理而没有进行电子束脉冲处理的样品,其腐蚀电位升高的同时腐蚀电流密度也极大的增加了,从1392.3μA/cm2上升到1532.5μA/cm2(10次脉冲),说明单纯轧制样品的抗腐蚀性能下降了。相反,经过脉冲处理后,样品的腐蚀电流密度较处理前从1532.5μA/cm2下降到368.7μA/cm2(5次脉冲)、453.5μA/cm2(10次脉冲),说明电子束处理后的样品的抗腐蚀性能提高,其中5次轰击后的样品腐蚀电流密度最低,即2次轧制+5次脉冲处理的样品耐蚀性最好。
图2为轧制4次前后及不同脉冲次数下纯钛在模拟体液中的极化曲线,利用Tafel外推法对曲线进行分析,测得的腐蚀电压Ecorr和腐蚀电流密度icorr见表1,4次轧制处理后样品的腐蚀电位由未处理时的-1221.8mV上升到-431.5mV、继续脉冲电子束处理后腐蚀电位上升至-416.6mV(5次脉冲)、-436.4mV(10次脉冲)。轧制处理后样品的腐蚀电流密度较未处理时的1392.3μA/cm2下降到871.4μA/cm2,并且随着电子束的处理,腐蚀电流密度进一步下降到342.7μA/cm2(5次脉冲),432.3μA/cm2(10次脉冲)。这说明4次轧制处理后样品的耐蚀性较未处理样品有所提高,4次轧制+脉冲电子束处理后样品的腐蚀电位较轧制样品继续升高,腐蚀电流密度较轧制样品继续下降,其中5次轰击后的样品腐蚀电流密度最低,且低于2次轧制+5次脉冲处理的样品,即4次轧制+5次脉冲处理的样品耐蚀性最好。
图3为轧制5次前后及不同脉冲次数下纯钛在模拟体液中的极化曲线,利用Tafel外推法对曲线进行分析,测得的腐蚀电压Ecorr和腐蚀电流密度icorr见表1,5次轧制处理后样品的腐蚀电位从未处理时的-1221.8mV上升到-495.7mV、继续脉冲电子束处理后腐蚀电位上升至-247.8mV(5次脉冲)、-406.5mV(10次脉冲)。轧制处理后样品的腐蚀电流密度较未处理时的1392.3uA/cm2下降到678.5uA/cm2,并且随着电子束的处理,腐蚀电流密度进一步下降到245.3uA/cm2(5次脉冲)和491.7uA/cm2(10次脉冲)。这说明5次轧制处理后样品的耐蚀性较未处理样品有所提高,5次轧制+脉冲电子束处理后样品的腐蚀电位较轧制样品继续升高,腐蚀电流密度较轧制样品继续下降,其中5次轰击后的样品腐蚀电流密度最低,且低于4次轧制+5次脉冲处理的样品,因此5次轧制+5次脉冲处理的样品耐蚀性最好。
结果显示,纯钛表面轧制5次且电子束脉冲处理5次时,其在模拟体液中的耐腐蚀性能最好。
Claims (3)
1.一种纯钛表面改性方法,其特征在于,步骤包括:
(1)将纯钛进行轧制处理2~5次至形变率为70%~85%;
(2)用电子束对轧制后的纯钛处理,处理参数为:加速电压27.3KeV、5次脉冲。
2.权利要求1所述一种纯钛表面改性方法,其特征在于,步骤(1)中将纯钛进行轧制处理至形变率为70%。
3.权利要求1所述一种纯钛表面改性方法,其特征在于,所述的纯钛为纯钛TA2。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510329783.2A CN104975249B (zh) | 2015-06-15 | 2015-06-15 | 一种纯钛的表面改性方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510329783.2A CN104975249B (zh) | 2015-06-15 | 2015-06-15 | 一种纯钛的表面改性方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104975249A CN104975249A (zh) | 2015-10-14 |
CN104975249B true CN104975249B (zh) | 2018-01-30 |
Family
ID=54272207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510329783.2A Expired - Fee Related CN104975249B (zh) | 2015-06-15 | 2015-06-15 | 一种纯钛的表面改性方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104975249B (zh) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0112234D0 (en) * | 2001-05-18 | 2001-07-11 | Welding Inst | Surface modification |
KR101185835B1 (ko) * | 2010-09-03 | 2012-10-02 | 한국수력원자력 주식회사 | 전자빔 조사를 이용한 불소계 고분자의 표면 개질 방법 및 이를 이용한 초소수성 표면의 제조 |
CN102581039A (zh) * | 2011-01-12 | 2012-07-18 | 宝山钢铁股份有限公司 | 纯钛板带的轧制方法 |
JP6091145B2 (ja) * | 2012-10-10 | 2017-03-08 | 日新製鋼株式会社 | 表面改質ステンレス鋼板およびその製造方法 |
CN103143056A (zh) * | 2013-03-02 | 2013-06-12 | 大连理工(营口)新材料工程中心有限公司 | 一种医用植入材料表面改性方法 |
-
2015
- 2015-06-15 CN CN201510329783.2A patent/CN104975249B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN104975249A (zh) | 2015-10-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zheng et al. | Corrosion behaviour of Ti–Nb–Sn shape memory alloys in different simulated body solutions | |
Nakhaie et al. | Pitting corrosion of cold rolled solution treated 17-4 PH stainless steel | |
Gojić et al. | Electrochemical and microstructural study of Cu–Al–Ni shape memory alloy | |
Moravej et al. | Effect of electrodeposition current density on the microstructure and the degradation of electroformed iron for degradable stents | |
Bai et al. | Corrosion behavior of biomedical Ti–24Nb–4Zr–8Sn alloy in different simulated body solutions | |
CN105518174B (zh) | 搪瓷用冷轧钢板和搪瓷制品 | |
Sherif | Corrosion behavior of duplex stainless steel alloy cathodically modified with minor ruthenium additions in concentrated sulfuric acid solutions | |
JP2015520797A (ja) | 犠牲カソード防食を提供するコーティングを備えた鋼板、こうした鋼板を用いる部品の製造方法、および得られた部品 | |
Ueki et al. | Microstructure and mechanical properties of heat-treated Co-20Cr-15W-10Ni alloy for biomedical application | |
Stoychev | Corrosion protective ability of electrodeposited ceria layers | |
Talha et al. | Long term and electrochemical corrosion investigation of cold worked AISI 316L and 316LVM stainless steels in simulated body fluid | |
Maleki-Ghaleh et al. | Effect of equal channel angular pressing process on the corrosion behavior of type 316L stainless steel in Ringer's solution | |
Rylska et al. | Chemical passivation as a method of improving the electrochemical corrosion resistance of Co-Cr-based dental alloy | |
CN104975249B (zh) | 一种纯钛的表面改性方法 | |
Lu et al. | Crack appearance of a laser shock-treated single crystal nickel-base superalloy after isothermal fatigue failure | |
Kim et al. | Electrochemical corrosion behavior of a non-vascular, bi-stent combination, surgical esophageal nitinol stent in phosphate-buffered saline solution | |
Talha et al. | In-vitro long term and electrochemical corrosion resistance of cold deformed nitrogen containing austenitic stainless steels in simulated body fluid | |
Gupta et al. | Corrosion study on laser shock peened 316L stainless steel in simulated body fluid and chloride medium | |
Pang et al. | Improvement in corrosion resistance of biocompatible Ti1. 5Al0. 3ZrNb refractory high entropy alloy in simulated body fluid by nanosecond laser shock processing | |
Trépanier et al. | Corrosion resistance of oxidized Nitinol | |
Ilieva et al. | Effect of severe plastic deformation by ECAP on corrosion behaviour of aluminium alloy AA 7075 | |
Kiel et al. | Electrochemical properties of Ti-6Al-4V ELI alloy after anodization | |
Kupková et al. | Corrosion behaviour of powder metallurgy biomaterials from phosphated carbonyl-iron powders | |
Smialowski et al. | Effect of potential and stress on time to failure of austenitic stainless steels in magnesium chloride solutions | |
JP2005510628A (ja) | 加工熱処理された、特に鉛蓄電池中の集電体およびコネクタ用の、鉛および鉛合金 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20180130 |
|
CF01 | Termination of patent right due to non-payment of annual fee |