CN104965529A - 大行程复合式超精密位置测控系统及方法 - Google Patents

大行程复合式超精密位置测控系统及方法 Download PDF

Info

Publication number
CN104965529A
CN104965529A CN201510409674.1A CN201510409674A CN104965529A CN 104965529 A CN104965529 A CN 104965529A CN 201510409674 A CN201510409674 A CN 201510409674A CN 104965529 A CN104965529 A CN 104965529A
Authority
CN
China
Prior art keywords
control system
alignment
gate signal
grating
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510409674.1A
Other languages
English (en)
Inventor
张一荻
陈从颜
王延夺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201510409674.1A priority Critical patent/CN104965529A/zh
Publication of CN104965529A publication Critical patent/CN104965529A/zh
Pending legal-status Critical Current

Links

Abstract

本发明公开了一种大行程复合式超精密位置测控系统及方法,其中系统包括对准台、检测识别系统、控制系统以及驱动机构,检测识别系统包括基于计算机视觉的图像检测识别系统和基于光栅的叠栅信号检测识别系统;基于计算机视觉的图像检测识别系统包括CCD、放大镜头以及图像采集卡,基于光栅的叠栅信号检测识别系统包括发光器、检测光栅以及光电传感器;控制系统对图像采集卡采集的图像信息进行处理得到位置偏差,对光电传感器测出的由发光器发出的检测光经光栅后产生的叠栅信号的光强进行处理得到相对位移。本发明将基于图像识别的粗对准和基于光栅的细对准结合到一起,提出一种复合式超精密位置,实现了工作台在大行程范围内的高速、高精度对准。

Description

大行程复合式超精密位置测控系统及方法
技术领域
本发明主要牵涉到计算机视觉中的图像处理技术以及激光叠栅信号中的信号检测技术,因此属于精密测量以及加工技术领域。
背景技术
随着市场经济的飞速发展,人们对产品的期望不仅仅局限在肉眼可观察到的地方,而是更加深入的向微小、精准、极限化发展。超精密位置控制作为主流的代表技术之一,在市场上的需求日益增加,它是一门综合性很强的学科,主要包括自动控制、图像处理、精密测量等。
在这个高集成化、高自动化、大规模化的电子信息时代,厂商们对对准装置的精度要求越来越苛刻,例如,存储空间为1Gbit的动态随机存储器(DRAM)所具备的线宽最小值可以达到0.15,生产工艺要求产品的对准精度需要达到10%的线宽最小值,即15nm左右。国内超精密位置测控技术的发展现状总体还是好的,近些年来已经陆续研发出了精度达到微米级别的工作台,然而存在的问题就是产品的对准行程较小,仍停留在几十至几百微米,行程几十毫米的超精密工作台相对很少,还有就是无法实现大行程下的快速对准,这些问题都制约着精密位置测控行业的发展。
高精密位置控制过程中最突出的矛盾之一就是如何在大行程下实现高精度快速对准。通常情况下对准精度与工作行程呈反比变化,当对准行程越大,系统能达到的对准精度就越低。在利用计算机视觉进行粗对准的过程中,系统可以在整个工作台上移动,行程较大,但带来的不良影响就是无法提高对准的精度;在利用激光叠栅信号进行精对准的过程中,系统可以达到相当高的精度,但仅限于有限的、较小工作行程中。
发明内容
本发明所要解决的技术问题是针对上述现有技术的不足,而提供一种大行程复合式超精密位置检测与控制系统及方法,解决了精密位置控制中固有的对准行程与对准精度之间的矛盾,最终实现大行程下的快速高精度对准。
为解决上述技术问题,本发明采用的技术方案是:
一种大行程复合精密位置测控系统,包括对准台、检测识别系统、控制系统以及驱动机构,所述对准台包括上对准板和下对准板、所述控制系统根据所述检测识别系统得到的检测信息用于控制所述驱动机构实现所述工作台的对准,其特征在于:所述检测识别系统包括基于计算机视觉的图像检测识别系统和基于光栅的叠栅信号检测识别系统;所述基于计算机视觉的图像检测识别系统包括CCD、放大镜头以及图像采集卡,所述基于光栅的叠栅信号检测识别系统包括发光器、检测光栅以及光电传感器;所述控制系统,对所述图像采集卡采集的图像信息进行处理得到上对准板和下对准板之间的位置偏差,对所述光电传感器测出的由所述发光器发出的检测光经所述光栅后产生的叠栅信号的光强进行处理得到上对准板和下对准板之间的相对位移;所述驱动机构包括滚珠丝杆驱动机构和压电陶瓷驱动机构,所述控制系统根据处理得到的所述位置偏差控制所述滚珠丝杠驱动机构调整所述对准台,所述控制系统根据处理得到的所述相对位移控制所述压电陶瓷驱动机构调整所述对准台。
所述基于光栅的叠栅信号检测识别系统包括基于粗光栅的叠栅信号检测识别系统和基于细光栅的叠栅信号检测识别系统。
所述滚珠丝杠驱动机构由步进电机驱动。
所述基于光栅的叠栅信号检测识别系统还包括依次设置在所述光电传感器输出端的前置放大器、滤波器以及A/D转换器。
所述压电陶瓷驱动器包括压电陶瓷以及高压驱动器。
所述控制系统为工业控制计算机。
一种基于大行程复合精密位置测控系统的对准控制方法,其特征在于,包括以下步骤:
利用计算机视觉进行图像识别分析的粗精度位置测控部分:由CCD和放大镜头对对准板的原始位置进行图像收集,控制系统对处理后的图像数据进行识别与分析,得到待测物体相对位置偏差,从而给出脉冲指令,驱动对准台进行对准经纬为微米级的粗精度对准;
利用激光叠栅信号进行光强检测的精密位置测控部分:控制装置分别由两组衍射光栅组成,控制过程中得到一组反相的0次激光叠栅信号,利用光电传感器测出叠栅信号的光强得到的相对位移,由控制系统发出驱动命令,使得工作台移动至误差带中,最终完成精密位置的控制。
所述利用激光叠栅信号进行光强检测的精密位置测控部分包括粗光栅对准步骤和细光栅对准步骤,所述粗光栅对准步骤使工作台进入指定的误差范围之内,此时控制系统根据细光栅结构下得到的叠栅信号值的大小以及方向,给压电陶瓷微位移器发出指令,驱动工作台移动,最终实现对准精度为纳米级超精密对准。
与现有技术相比,本发明所提出的将图像处理粗对准与粗、细光栅检测精对准相结合的三段复合式控制技术,可以在大对准行程范围的基础上有效的提高系统控制的精度,同时又将速度与精度相结合,保证系统对准精度的同时大大提升系统对准的速度。
附图说明
图1为系统整体的结构框图。
图2为图像粗对准原理图。
图3(a)和(b)分别为计算机视觉检测中的十字线和网孔检测结果图。
图4中(a)为本发明中运用到的反相差动双光栅示意图,(b)为差动叠栅信号的实验曲线图。
图5是粗、细光栅相结合的对准示意图。
图6为在大行程复合对准控制下系统最终的实验结果,其中(a)为在粗光栅进行精对准环境下实现的对准结果,(b)为在细光栅进行超精密对准环境下实现的对准结果。
具体实施方式
对准台整体结构框图如下图1所示,主要由以下几个部分构成:计算机视觉检测部分、激光检测部分、传感器、步进电机驱动机构、压电陶瓷驱动机构、工业控制计算机等,他们共同运作形成了大行程复合式高精度位置测控系统。
利用计算机视觉进行位置控制属于粗精度位置控制阶段,CCD和放大镜头可沿着屏板进行水平、垂直以及旋转运动,这三种运动方式分别表示了空间中三个方向上的运动。其中旋转运动利用了脉冲细分式步进电机进行驱动控制,利用涡轮传动装置将经过细分后的电机转动角度转换成该对准机构的转动角度;而其中的直线运动同样采用了脉冲细分式高精度的步进电机进行驱动控制,另外在精密丝杠机构的作用下将细分后电机产生的细微角度转换为与之对应的位移大小。在此过程中,旋转角以及直线其位移分辨率分别可以达到1.8和0.3。
利用激光叠栅信号进行位置控制属于精密和超精密位置控制阶段,它是依附在第一阶段的粗对准基础之上,由于粗对准机构具有较大的对准行程,因此微位移驱动器可以在较大的对准行程上进一步实现高精度的对准,很好地弥补了因对准行程过大而造成的对准误差,大幅度地提高了系统工作的位移分辨率。在超精密位置控制中采取的驱动机构为压电陶瓷,与其他驱动机构相比,压电陶瓷微位移驱动器具有分辨率极高、无空回粘滑现象、尺寸小、响应速度快等优点,非常适宜作为超精密控制之中的驱动机构。压电工作台主要是由叠堆的压电陶瓷和柔性铰链构成,与粗动台一样可以实现三方向的自由位移运动,此时微动台可移动范围是25,直线和角位移分辨率分别是2。
在本发明中,实现超精密位置控制需要经过三个环节,它们分别是:基于机器视觉的粗精密位置控制、基于粗光栅的精密位置控制以及基于细光栅的超精密位置控制,每一个环节具体步骤如下:
(1)粗精密位置控制:利用计算机视觉进行图像识别检测的粗精密位置控制方法,由CCD和放大镜头对对准板的原始位置进行图像收集,计算机对处理后的图像数据进行识别与分析,得到待测物体相对位置偏差,从而给出脉冲指令,驱动工作台进行粗精度对准。此时工作台对准精度可达±500μm,对应的工作行程可达60mm。
为了更好地提高待测物体的分辨率,为精对准作铺垫,图像处理过程中实施选取了Canny算子进行边缘检测,对CCD摄取到的初始图像进行预处理,其中高斯方差为1,卷积核为5。提取出图像的边缘信息之后利用异或法对其分别进行十字线检测和网孔检测,检测出的结果如图3(a)和(b)所示。
(2)精密位置控制:在图像粗对准结束后,系统进入粗光栅的移动范围,设置粗光栅的光栅常数为1000,经衍射后的激光光强变化与两光栅间的相对位置关系存在着周期性的变化,尤其是当光强变化靠近对准点周边时,变化曲线几近于线性变化,根据这样的规律,就可以通过确定激光光强来映射出相应的位置信息,当计算机接收到位置偏差之后,快速地对驱动机构发出控制脉冲,使得驱动机构运动以消除误差,最终实现精密位置控制。
在精密位置控制过程中,本发明采用的两组光栅的相对位置非严格对准,而是相距,如图4(a)所示。之所以设置成两组相位完全相反的光栅,是因为系统的控制信号取两组信号的差值,变成了原始信号的一倍,大大地提高了叠栅信号的灵敏度,图4(b)中是精对准环节中系统的控制信号,也就是差动叠栅信号,当时,差动信号为0,将此时的交点设为需要检测的对准点,当两组光栅之间的相对位移发生改变时,也随之呈周期性改变。控制过程中,保持两光栅中的一片不动,根据计算机分析得到的差动叠栅信号大小以及极性对相应的驱动机构发出控制指令,由另外一个光栅进行移动调整,使之能够被控制在对准点附近内。此环节工作台的对准行程可达1000,对准精度可达,实验曲线见图6(a)。
(3)超精密位置控制:在上一步粗光栅位置控制的基础之上,利用细光栅进行下一步的超精密位置控制,此时设置光栅常数为25,整个系统以工业控制计算机为核心对工作台进行实时闭环控制,计算机再根据叠栅信号的大小以及方向确定指令,驱动对准台移动,以消除误差,三个环节后工作台可达到的对准精度为±10。实验曲线结果如图6(b)所示。
经过大行程复合式超精密位置检测与控制后,本发明能够使得工作台在较大行程内实现高速超精密位置控制。

Claims (8)

1.一种大行程复合精密位置测控系统,包括对准台、检测识别系统、控制系统以及驱动机构,所述对准台包括上对准板和下对准板、所述控制系统根据所述检测识别系统得到的检测信息用于控制所述驱动机构实现所述工作台的对准,其特征在于:所述检测识别系统包括基于计算机视觉的图像检测识别系统和基于光栅的叠栅信号检测识别系统;所述基于计算机视觉的图像检测识别系统包括CCD、放大镜头以及图像采集卡,所述基于光栅的叠栅信号检测识别系统包括发光器、检测光栅以及光电传感器;所述控制系统,对所述图像采集卡采集的图像信息进行处理得到上对准板和下对准板之间的位置偏差,对所述光电传感器测出的由所述发光器发出的检测光经所述光栅后产生的叠栅信号的光强进行处理得到上对准板和下对准板之间的相对位移;所述驱动机构包括滚珠丝杆驱动机构和压电陶瓷驱动机构,所述控制系统根据处理得到的所述位置偏差控制所述滚珠丝杠驱动机构调整所述对准台,所述控制系统根据处理得到的所述相对位移控制所述压电陶瓷驱动机构调整所述对准台。
2.根据权利要求1所述的大行程复合精密位置测控系统,其特征在于:所述基于光栅的叠栅信号检测识别系统包括基于粗光栅的叠栅信号检测识别系统和基于细光栅的叠栅信号检测识别系统。
3.根据权利要求1所述的大行程复合精密位置测控系统,其特征在于:所述滚珠丝杠驱动机构由步进电机驱动。
4.根据权利要求1所述的大行程复合精密位置测控系统,其特征在于:所述基于光栅的叠栅信号检测识别系统还包括依次设置在所述光电传感器输出端的前置放大器、滤波器以及A/D转换器。
5.根据权利要求1所述的大行程复合精密位置测控系统,其特征在于:所述压电陶瓷驱动器包括压电陶瓷以及高压驱动器。
6.根据权利要求1所述的大行程复合精密位置测控系统,其特征在于:所述控制系统为工业控制计算机。
7.一种基于权利要求1所述的大行程复合精密位置测控系统的对准控制方法,其特征在于,包括以下步骤:
利用计算机视觉进行图像识别分析的粗精密位置测控部分:由CCD和放大镜头对对准板的原始位置进行图像收集,控制系统对处理后的图像数据进行识别与分析,得到待测物体相对位置偏差,从而给出脉冲指令,驱动对准台进行对准精度为微米级的粗精度对准;
利用激光叠栅信号进行光强检测的精密位置测控部分:控制装置分别由两组衍射光栅组成,控制过程中得到一组反相的0次激光叠栅信号,利用光电传感器测出叠栅信号的光强得到的相对位移,由控制系统发出驱动命令,使得工作台移动至误差带中,最终完成精密位置的控制。
8.根据权利要求7所述的对准控制方法,其特征在于,所述利用激光叠栅信号进行光强检测的精密位置测控部分包括粗光栅对准步骤和细光栅对准步骤,所述粗光栅对准步骤使工作台进入指定的误差范围之内,此时控制系统根据细光栅结构下得到的叠栅信号值的大小以及方向,给压电陶瓷微位移器发出指令,驱动工作台移动,最终实现对准精度为纳米级超精密对准。
CN201510409674.1A 2015-07-13 2015-07-13 大行程复合式超精密位置测控系统及方法 Pending CN104965529A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510409674.1A CN104965529A (zh) 2015-07-13 2015-07-13 大行程复合式超精密位置测控系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510409674.1A CN104965529A (zh) 2015-07-13 2015-07-13 大行程复合式超精密位置测控系统及方法

Publications (1)

Publication Number Publication Date
CN104965529A true CN104965529A (zh) 2015-10-07

Family

ID=54219568

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510409674.1A Pending CN104965529A (zh) 2015-07-13 2015-07-13 大行程复合式超精密位置测控系统及方法

Country Status (1)

Country Link
CN (1) CN104965529A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261071A (zh) * 2019-07-08 2019-09-20 北京工业大学 激光参数监测与矫正系统和方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387021A (zh) * 2002-06-21 2002-12-25 华中科技大学 一种二维位移工作台
WO2005119370A2 (en) * 2004-05-28 2005-12-15 Azores Corporation High speed lithography machine and method
CN102136300A (zh) * 2011-02-10 2011-07-27 南京师范大学 三段组合式超精密定位台及其定位方法
CN102394206A (zh) * 2011-10-10 2012-03-28 南京师范大学 荫罩母板精密自动对准系统及其方法
JP2013210218A (ja) * 2012-03-30 2013-10-10 Ministry Of National Defense Chung Shan Inst Of Science & Technology レーザ光斑絶対位置付け駆動装置と駆動システム及びその方法
CN203964896U (zh) * 2014-07-25 2014-11-26 芜湖天金机械有限公司 等速万向节传动轴圆周间隙检测装置
CN104181939A (zh) * 2014-08-14 2014-12-03 上海交通大学 基于虚拟光栅尺的主动型超精密位移定位检测方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1387021A (zh) * 2002-06-21 2002-12-25 华中科技大学 一种二维位移工作台
WO2005119370A2 (en) * 2004-05-28 2005-12-15 Azores Corporation High speed lithography machine and method
CN102136300A (zh) * 2011-02-10 2011-07-27 南京师范大学 三段组合式超精密定位台及其定位方法
CN102394206A (zh) * 2011-10-10 2012-03-28 南京师范大学 荫罩母板精密自动对准系统及其方法
JP2013210218A (ja) * 2012-03-30 2013-10-10 Ministry Of National Defense Chung Shan Inst Of Science & Technology レーザ光斑絶対位置付け駆動装置と駆動システム及びその方法
CN203964896U (zh) * 2014-07-25 2014-11-26 芜湖天金机械有限公司 等速万向节传动轴圆周间隙检测装置
CN104181939A (zh) * 2014-08-14 2014-12-03 上海交通大学 基于虚拟光栅尺的主动型超精密位移定位检测方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110261071A (zh) * 2019-07-08 2019-09-20 北京工业大学 激光参数监测与矫正系统和方法

Similar Documents

Publication Publication Date Title
US9945698B2 (en) Macro-micro composite grating ruler measuring system and measuring method using same comprising a macro-scale reading module, a micro-scale reading module and a measuring reference line
CN100587392C (zh) 基于光幕式激光器的高精度位姿检测方法与装置
CN102073324B (zh) 一种基于线性偏振光的偏振实时跟踪方法
CN105345595B (zh) 一种微径铣刀高精度对刀装置及对刀方法
CN101458072A (zh) 一种基于多传感器的三维轮廓测量装置及其测量方法
CN102136300A (zh) 三段组合式超精密定位台及其定位方法
CN104551865A (zh) 影像量测系统及方法
CN104181685A (zh) 基于显微镜的数字切片自动聚焦装置及其方法
CN206193235U (zh) 一种电力巡检机器人用二维激光雷达标定装置
CN103162623A (zh) 一种双摄像机垂直安装的立体测量系统及标定方法
CN103528953A (zh) 一种岩心图像采集系统的镜头对焦方法
CN102419157B (zh) 微小深度尺寸自动图像测量系统
CN202304767U (zh) 一种基于多传感器的三维轮廓测量装置
CN104048602A (zh) 一种完整成像视觉测量装置
CN207833315U (zh) 一种视觉伺服的平面三自由度宏微复合定位系统
CN205192445U (zh) 一种光学三维成像装置
CN104133346A (zh) 一种适用于投影光刻机的实时检焦调焦方法
CN104965529A (zh) 大行程复合式超精密位置测控系统及方法
CN102095375B (zh) 以三基色对比度为特征测量沿光轴方向的位移的方法
CN206803947U (zh) 高精度激光位移测量仪
CN100483071C (zh) 基于垂直位移扫描的非接触式表面形貌测量方法及测量仪
CN205027306U (zh) 自动影像测量系统
CN104165595B (zh) 条纹相移与条纹细分联合控制的超精密位移定位检测方法
CN102609004B (zh) 电学参数调节装置以及调节方法
CN103557790B (zh) 光栅影像复合自动测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20151007