CN104958889A - Bicycle test vehicle assistant training device - Google Patents

Bicycle test vehicle assistant training device Download PDF

Info

Publication number
CN104958889A
CN104958889A CN201510454411.2A CN201510454411A CN104958889A CN 104958889 A CN104958889 A CN 104958889A CN 201510454411 A CN201510454411 A CN 201510454411A CN 104958889 A CN104958889 A CN 104958889A
Authority
CN
China
Prior art keywords
capacitor cell
strip capacitor
strip
training device
pedal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510454411.2A
Other languages
Chinese (zh)
Inventor
吴月红
陈明珠
王慧娟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Polytechnic University
Original Assignee
Anhui Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Polytechnic University filed Critical Anhui Polytechnic University
Priority to CN201510454411.2A priority Critical patent/CN104958889A/en
Publication of CN104958889A publication Critical patent/CN104958889A/en
Pending legal-status Critical Current

Links

Landscapes

  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The invention relates to a bicycle test vehicle assistant training device. The bicycle test vehicle assistant training device comprises pedal sensors, encoders and a sensor system signal processor. The encoders are installed at the outer ends of pedal shafts. The pedal sensors are arranged on a left pedal and a right pedal of a test vehicle. The pedal sensors comprise X-direction capacitor cell units and Y-direction capacitor cell units, the X-direction capacitor cell units and the Y-direction capacitor cell units comprise capacitor unit modules, each capacitor cell module is of a comb-tooth-shaped structure formed by two or more strip-shaped capacitor cells, and each strip-shaped capacitor cell comprises a drive electrode of an upper polar plate and an induction electrode of a lower polar plate. The bicycle test vehicle assistant training device provides the theoretical basis for searching for sitting posture positioning suitable for body structure characteristics of trainees and acquiring optimal frame structure sizes for tested bicyclists.

Description

Cycle test car supplemental training device
Technical field
The invention belongs to athletic training technical field, relate to training cycles project, be specifically related to a kind of cycle test car supplemental training device.
Background technology
In cycling, scrunching is the sole power that people and car advance, good step on juggling with the feet art sportsman can be made to obtain maximum power with minimum energy ezpenditure, and fall behind, the stepping on juggling with the feet art and too can consume athletic physical efficiency of mistake, but can not get corresponding effect.From the geometry of bicycle, when riding, driver and bicycle contacts position only have three places: handlebar, car are sat and pedal.Therefore foot, buttocks and the relative position of arm on bicycle determine the transmission of comfort level and the active force of riding.Such as, the angle between foot pedal and crank axle, can affect trainer's pin and act on normal force on pedal and the tangential force component size along effective force and inefficacious direction, affect virtuous functioning efficiency.Therefore, be necessary to monitor the active force of motion process mesopodium, buttocks and arm, help trainer to adjust riding posture, and train the best to step on juggling with the feet art.
Summary of the invention
In order to overcome the deficiencies in the prior art, the invention provides a kind of cycle test car supplemental training device, by monitoring appearance position, experimenter upper body, change sit angle, the pedal caused by sitting height, car are sat, hand the change of upper kinetic parameter, thus for the sitting posture location that is suitable for trainer's organization of human body characteristic and provide theoretical foundation and effective initial data for surveyed each cyclist obtains body frame structure for automotive size optimum separately.
Technical scheme of the present invention is: a kind of cycle test car supplemental training device, comprise pedal sensor, encoder and sensor system signals processor, encoder is arranged on the outer end of crank shaft, for obtain any time crank and pedal between angle β, solve the effective force along the axial inefficacious and vertical direction of crank, pedal sensor is arranged on the left and right pedal of test carriage, obtain the three-dimensional force acted on pedal, described pedal sensor comprises X-direction capacitor cell group and Y-direction capacitor cell group, described X-direction capacitor cell group and Y-direction capacitor cell group include capacitor cell module, the comb teeth-shaped structure that described capacitor cell module is made up of plural strip capacitor cell, each strip capacitor cell comprises the drive electrode of top crown and the induction electrode of bottom crown, described capacitor cell module comprises by two or more width a 0length b 0strip capacitor cell composition the first strip capacitor cell group and two or more width ka 0length b 0strip capacitor cell composition the second strip capacitor cell group.
Cycle test car supplemental training assembling device also comprises handlebar sensor and vehicle seat sensor, for monitoring the three-dimensional active force on vehicle seat and handlebar, obtains the distribution of weight of upper body and the firmly feature of trunk-hand.The drive electrode of described each strip capacitor cell is identical with induction electrode width, and the length of drive electrode is greater than induction electrode length, and drive electrode length two ends are reserved left poor position δ respectively leftwith right poor position δ right, b 0 drives=b 0 sense+ δ right+ δ left, wherein, b 0 drivesfor the drive electrode length of strip capacitor cell, b 0 sensefor the induction electrode length of strip capacitor cell.Described poor position δ leftright, and wherein d 0for strip capacitor cell dielectric thickness, G is the modulus of rigidity of elastic fluid, τ maxfor maximum stress value.The lead-in wire that described comb teeth-shaped structure comprises more than 20 strip capacitor cells, connects one to one with strip capacitor cell, is provided with electrode spacing a between adjacent two strip capacitor cells δ.Described parallel-plate area S=M (a 0+ 2a δ+ ka 0) b 0/ 2, wherein, M is strip capacitor cell quantity, b 0for the length of strip capacitor cell, a 0the width of strip capacitor cell.The strip capacitor cell lead-in wire of described first strip capacitor cell group and the second strip capacitor cell group is by parallel way or be independently connected to sensor-based system signal processor.The width of described strip capacitor cell wherein, d 0for dielectric thickness, E is the Young's modulus of elastic fluid, and G is the modulus of rigidity of elastic fluid.Described first strip capacitor cell group and be respectively equipped with intermediate translator between the second strip capacitor cell group and sensor-based system signal processor, intermediate translator is for arranging voltage to electric capacity or frequency to the transmission coefficient of electric capacity.
The present invention has following good effect: cycle test car supplemental training device of the present invention, by monitoring appearance position, experimenter upper body, change sit angle, the pedal caused by sitting height, car are sat, hand the change of upper kinetic parameter, find the sitting posture location that is suitable for trainer's organization of human body characteristic and provide theoretical foundation for surveyed each cyclist obtains body frame structure for automotive size optimum separately.
Accompanying drawing explanation
Fig. 1 is strip capacitor cell and the coordinate system thereof of the specific embodiment of the present invention.
Fig. 2 is the strip capacitor cell schematic diagram of the specific embodiment of the present invention.
Fig. 3 is the strip capacitor cell dextrad skew schematic diagram of the specific embodiment of the present invention.
Fig. 4 is the strip capacitor cell left-hand skew schematic diagram of the specific embodiment of the present invention.
Fig. 5 is the width of the specific embodiment of the present invention is a 0and ka 0electric capacity to stressed deflection graph.
Fig. 6 is the parallel-plate three-dimensional force pressure sensor structure figure of the specific embodiment of the present invention.
Fig. 7 is the signal schematic representation that the cell capacitance of the specific embodiment of the present invention is right.
Fig. 8 is the plane-parallel capacitor cross-section structure of the specific embodiment of the present invention.
Fig. 9 is the foot-operated upper stressing conditions analysis chart of the car of the specific embodiment of the present invention.
Wherein, 1, upper PCB substrate, 2, lower PCB substrate, 3, drive electrode, 4, induction electrode, 5, elastic fluid.
Detailed description of the invention
Contrast accompanying drawing below, by the description to embodiment, the specific embodiment of the present invention is as the effect of the mutual alignment between the shape of involved each component, structure, each several part and annexation, each several part and operation principle, manufacturing process and operation using method etc., be described in further detail, have more complete, accurate and deep understanding to help those skilled in the art to inventive concept of the present invention, technical scheme.
As shown in Figure 9, be the foot-operated upper stressing conditions analysis chart of cycle test car, the left side is crank coordinate system, and the right, for acting on the force analysis on pedal, after pedal three-dimensional force tests out, for terrestrial coordinate system, will act on the normal force (F on pedal pn) and tangential force (F pt) along the Directional Decomposition that crank axle is parallel and vertical with crank axle time, record according to encoder corresponding moment foot pedal and crank axle between angle β, so just can in the hope of the component along crank axle parallel direction, also namely inefficacious, and the component in the direction vertical with crank axle, be also effective force, effective force is exactly functioning efficiency with the ratio of making a concerted effort, functioning efficiency is the evaluation index spoiling juggling with the feet art, and to spoil juggling with the feet art be control posture, load and spoil the embodiment directly perceived pedaling frequency.Therefore, test carriage left and right pedal installs three-dimensional force sensor, monitoring pin acts on tangential force on pedal and normal force, high and spoil and pedal frequency by changing seat angle, seat, act on tangential force on pedal and normal force binding mode can change, in the outer end of crank shaft, encoder is installed, the angle between acquisition any time crank and pedal.
Also loading onto three-dimensional force sensor under a car seat with under handlebar, for monitoring the active force on vehicle seat and handlebar, thus seeking the distribution of weight of upper body and the stability features of trunk-hand when changing the amount of riding.The active force feature at comprehensive three places guarantees that the best rides reasonability and the science of appearance location.Handlebar, vehicle seat, left and right pedal three-dimensional force sensor and the 15 road signals such as left and right pedal encoder and sampling time sequence are nursed one's health in signal conditioner, through ADC conversion laggard enter microprocessor.Microprocessor simultaneously control synchronization luminous point (with realize kinematics, kinetic measurement synchronous), and to be connected with PC by USB interface.Software can realize from functions such as data acquisition, data processing, data storage and data readbacks.
Effective force, inefficacious and can try to achieve according to following formula with joint efforts accordingly: F effective force=-F ptcos β+F pnsin β;
The measuring principle of three-dimensional force sensor of the present invention is below described: if Fig. 4-6 is the electrode plate structure figure of pressure sensor of the present invention, a kind of contact parallel-plate three-dimensional force pressure sensor, described sensor comprises X-direction capacitor cell group and Y-direction capacitor cell group, described X-direction capacitor cell group and Y-direction capacitor cell group include capacitor cell module, described capacitor cell module adopts the comb teeth-shaped structure be made up of plural strip capacitor cell, and each strip capacitor cell comprises the drive electrode of top crown and the induction electrode of bottom crown.Described capacitor cell module comprises by two or more width a 0length b 0first strip capacitor cell group of strip capacitor cell composition and two or more width ka 0length b 0second strip capacitor cell group of strip capacitor cell composition.The drive electrode of described each strip capacitor cell is identical with induction electrode width, and the length of drive electrode is greater than induction electrode length, and drive electrode length two ends are reserved left poor position δ respectively leftwith right poor position δ right, b 0 drives=b 0 sense+ δ right+ δ left, wherein, b 0 drivesfor the drive electrode length of strip capacitor cell, b 0 sensefor the induction electrode length of strip capacitor cell.Described poor position δ leftright, and wherein d 0for dielectric thickness, G is the modulus of rigidity of elastic fluid, τ maxfor maximum stress value.The lead-in wire that described comb teeth-shaped structure comprises more than 20 strip capacitor cells, connects one to one with strip capacitor cell, is provided with electrode spacing a between adjacent two strip capacitor cells δ.Described parallel-plate area S=M (a 0+ 2a δ+ ka 0) b 0/ 2, wherein, M is strip capacitor cell quantity, b 0for the length of strip capacitor cell, a 0the width of strip capacitor cell.The strip capacitor cell lead-in wire of described first strip capacitor cell group and the second strip capacitor cell group is by parallel connection or be independently connected to sensor-based system signal processor.The width of described strip capacitor cell wherein, d 0for dielectric thickness, E is the Young's modulus of elastic fluid, and G is the modulus of rigidity of elastic fluid.Described first strip capacitor cell group and be provided with intermediate translator between the second strip capacitor cell group and sensor-based system signal processor, intermediate translator is for arranging voltage to electric capacity or frequency to the transmission coefficient of electric capacity.
1, the transfer characteristic of strip capacitor cell
(1) pumping signal and coordinate system
Strip capacitor cell is placed in the rectangular coordinate system shown in Fig. 1, pole plate plane length b 0, width a 0, dielectric thickness d 0.Three-dimensional simulation puts on the outer surface of capacitor plate, and the contact active force of generation has Fx, Fy and Fz tri-durection components, and the action direction of Fx and Fy is along X-axis and Y-axis, and the action direction of Fz along OZ axle namely direction, normal direction and tangential stress are a kind of stress tensor, can output capacitance respond between the lead-in wire of electrode; Normal stress σ n=Fn/A, wherein A=a 0b 0for pole plate normal direction stress surface, Fn=Fz is normal component; Both side surface produces paired tangential stress τ x=Fx/A, τ y=Fy/A.
According to the Hooke's law in Elasticity, σ nand τ x, τ yelastomer all will be made to produce corresponding distortion.Wherein,
σ n = E · ϵ n = E · δ n / d 0 = F n A - - - ( 1 )
± τ x = ± γ x · G = ± G · δ x / d 0 = ± F x A - - - ( 2 )
± τ y = ± γ y · G = ± G · δ y / d 0 = ± F y A - - - ( 3 )
In formula, E is the Young's modulus (unit: GN/m of elastic fluid 2), G is the modulus of rigidity (unit: GN/m of elastic fluid 2), δ n is the Normal Displacement (unit: μm) of elastic fluid, and δ x and δ y is the relative dislocation (unit: μm) of the upper and lower two-plate of capacitor, and its sign is pointed to by reference axis and determined.
(2) capacitance equation and input-output characteristic thereof
The initial capacitance of strip capacitor cell is:
C 0 = ϵ 0 . ϵ r · a 0 · b 0 d 0 - - - ( 4 )
In formula, ε 0vacuum medium electric constant is 8.85PF/m, ε r=2.5 is dielectric relative dielectric constant.D 0by σ nexcitation produce relative deformation ε nn/ d 0n/ E, substitutes into (4) and obtains input-output characteristic
C n = ϵ 0 . ϵ r a 0 · b 0 d 0 ( 1 - ϵ n ) = ϵ 0 · ϵ r a 0 · b 0 d 0 ( 1 - F n A E ) - - - ( 5 )
(3) linearity under normal stress effect and sensitivity
A, the normal direction linearity
F in (5) formula nin the denominator, therefore C n=f (F n) relation be nonlinear, because of conversion range in maximum σ nmaxcompared with dielectric resilient constant E, ε na very little amount, i.e. ε in denominator n<<1, (5) are omitted the higher-order shear deformation of more than quadratic power by series expansion, and (5) formula can be reduced to:
C n = C 0 ( 1 + &epsiv; ) = C 0 ( 1 + F n A &CenterDot; E ) - - - ( 6 )
Visible at C nwith F ntransfer characteristic in the maximum relative error of the normal direction linearity close to zero.
B, sensitivity
By the definition of normal direction sensitivity
Can linear sensitivity be obtained by (6) formula,
S n1=C 0/AE=ε 0ε r/d 0E (7)
By (5) formula then
S n 2 = dC n dF n = C 0 &CenterDot; 1 1 - 2 &epsiv; = C 0 &CenterDot; 1 1 - 2 F n A &CenterDot; E - - - ( 8 )
S n2with F nand become, F nlarger, S n2larger, in mild nonlinear in whole transfer characteristic.
(4) tangential stress τ xand τ ycapacitance variations under excitation
Tangential stress τ xand τ ydo not change the physical dimension parameter b of pole plate 0and a 0, to dielectric thickness d 0also do not have an impact.But τ xand τ ychange the space structure of strip capacitor cell, between the upper bottom crown faced by forward, there occurs dislocation skew.Now for OX direction, pole plate is at τ xdislocation skew δ under effect x.
Work as τ in fig. 2 xwhen being zero, a on 0=a 0 timejust right, effective cross-section A between substrate τ=a 0b 0; In figure 3, at τ xunder the effect of dextrad, top crown creates dislocation skew δ to the right relative to bottom crown x, thus make the effective area A between bottom crown when calculating electric capacity τ=(a 0x) b 0; In Fig. 4, work as τ xduring for left-hand, dislocation skew δ xthen left, A τ=(a 0x) b 0, τ xwhen left-hand and dextrad, the reduction of effective area is identical, and consequent electric capacity is:
C &tau; x = &epsiv; 0 . &epsiv; r &CenterDot; ( a 0 - &delta; x ) &CenterDot; b 0 d 0 - - - ( 9 )
According to shearing Hooke's law
τ x=γ x·G=G·δ x/d 0(10)
(10) are substituted into (9) can obtain
C &tau; x = C 0 - &epsiv; 0 &CenterDot; &epsiv; r &CenterDot; &delta; x &CenterDot; b 0 d 0 = C 0 - &epsiv; 0 &CenterDot; &epsiv; r &CenterDot; b 0 &tau; x G = C 0 - &epsiv; 0 &CenterDot; &epsiv; r F x Ga 0 - - - ( 11 )
(11) formula is the input-output characteristics under shearing stress, C τwith τ xlinear.
And its sensitivity
S &tau; x = dC &tau; x dF x = &epsiv; 0 &CenterDot; &epsiv; r Ga 0 - - - ( 12 )
The similar analysis in formula (9)-(12) is suitable for and τ equally ywith C τ ycharacteristic and technical indicator, the only long limit b of strip capacitor cell in formula 0oX direction of principal axis should be arranged at, and its minor face a 0then in OY direction.
2, contact parallel plate capacitor design
(1) planar design of parallel plate capacitor
The original index normal direction Max.contact stress σ of setting nmaxfor 200Kpa, if the stressed A of normal direction is square 10 × 10mm 2, then maximum normal force F zmaxfor σ nmaxa=20N.Tangential Max.contact stress τ maxfor 70Kp, the distribution of force face of tangential stress is 10 × 10mm 2, then maximum tangential force component F xmax=F ymaxmaxa=7N.
Strip capacitor cell constructive variations shown in Fig. 3 and Fig. 4, only illustrates that electric capacity exports and tangential stress ± τ xthe relation of input, capacitance increase is all negative, and therefore this initial capacitance structure is not suitable for as right ± τ xobtain the response increasing and decreasing electric capacity.The present invention adjusts the initial configuration of bottom crown on strip capacitor cell for this reason, and width is a 0and ka 0strip capacitor cell form a pair capacitor cell to (C lwith C r), specifically as shown in Figure 5.
In Fig. 5, capacitor cell C land C relectrode size b 0, d 0all identical, width one is a 0, one is ka 0, wherein k is constant, is preferably greater than the integer of 1.Work as τ xwhen=0, C l=C 0, C r=kC 0, on this basis as at F xδ is produced under excitation xmistake skew, offset effect as shown in figure 3 or 4 will be formed.
C L = &epsiv; 0 &CenterDot; &epsiv; r &CenterDot; b 0 &CenterDot; ( a 0 - &delta; x ) d 0 = C 0 - &epsiv; 0 &CenterDot; &epsiv; r &CenterDot; b 0 &tau; x G = C 0 - &epsiv; 0 &CenterDot; &epsiv; r F x Ga 0 - - - ( 13 )
C R = &epsiv; 0 &CenterDot; &epsiv; r &CenterDot; b 0 &CenterDot; ( Ka 0 - &delta; x ) d 0 = kC 0 - &epsiv; 0 &CenterDot; &epsiv; r &CenterDot; b 0 &tau; x G = kC 0 - &epsiv; 0 &CenterDot; &epsiv; r F x Ga 0 - - - ( 14 )
C land C rcapacitor cell is at same τ xδ will be produced xwith Δ C τresponse.
Thus, formula (11) can be revised as
C &tau; x = C &tau; 0 - &epsiv; 0 &CenterDot; &epsiv; r Ga 0 F x
In formula, for initial capacitance when shearing stress is zero, above formula is shearing stress input-output characteristic, C τ xwith F xlinear relationship, and its sensitivity
Electrode plane see Fig. 6 is arranged, at a 10 × 10mm 2substrate center do cross separate, form four quadrants, upper right first quartile I, upper left second quadrant II, lower-left third quadrant III, bottom right fourth quadrant IV, wherein I, III quadrant is to τ xmake the capacitor cell combination of response, and II, IV quadrant is to τ ymake the capacitor cell combination of response.Object-line is 10 × 10mm 2pcb board four edge lines, hachure part represents the outer mode cross section of wax-loss casting process.Using the position of induction electrode in lower floor's PCB substrate as reference, then the layout of drive electrode in the PCB substrate of upper strata should with PCB substrate edge line for benchmark.In figure, four dashed rectangle are the benchmark of induction electrode on bottom crown, put they and geometry datum line differential apart from being δ 0(0.1mm).
Capacitor cell module adopts comb structure, and capacitor cell module adopts the comb teeth-shaped structure be made up of plural strip capacitor cell, and each strip capacitor cell comprises the drive electrode of top crown and the induction electrode of bottom crown.By formula (12) a 0less, the sensitivity of tangential stress response is larger, therefore single capacitor cell is strip.If every root strip capacitor cell is wide is a 0, the groove width between two strip electric capacity is a δ, then the pitch of every root strip capacitor cell is ka 0+ a 0+ 2a δ.In order to make full use of the plane space of square substrate, M (ka 0+ a 0+ 2a δ) b 0/ 2 ≈ 1 square substrate surface areas, M is strip electric capacity quantity, then have M (ka 0+ a 0+ 2a δ)=20mm, in formula, groove width a δunsuitable excessive, otherwise be unfavorable for using the effective plane space on substrate, also unsuitable too small, the constraint of wax-loss casting process is subject to.For making normal direction sensitivity S nwith tangential sensitivity S τequal, by formula (7) and (12), make a 0g=d 0e, works as d 0when=0.1mm, k=1.5, thus M can be obtained.
In order to realize τ xand τ ybetween tangential response mutually do not have an impact, the drive electrode length two ends reserved difference position δ of strip capacitor cell 0, therefore b 0 drives=b 0 end+ 2 δ 0, wherein at b 0 drivestwo ends length reserved difference potential theory should ensure its calculated value is 10 - 5 &times; 70 &times; 10 3 2.4 &times; 10 6 = 2.9 &times; 10 - 8 m = 10 - 2 u m < < 1 u m , Therefore should b be ensured in technique 0 drives-b 0 end>=0.01mm.
In order to realize τ xand τ ydo not produce any impact to the response of normal direction electric capacity, width is a 0and ka 0strip capacitor cell form a pair capacitor cell to (C lwith C r) carry out publicity reckoning elimination impact each other.Ensure τ xproduce τ at I, III quadrant capacitor cell xelectric capacity response, then produce τ at II, IV quadrant capacitor cell yelectric capacity response, to ensure that capacitor cell in four quadrants is at τ xand τ ytwo groups of differential capacitors pair can be produced under tangential excitation.Like this when computing method exports response to electric capacity, ensure τ xand τ yany impact is not produced on the response of normal direction electric capacity.C in figure 6 τ xI=C rand C τ xIII=C lfor conversion τ xdifferential capacitor pair, and C τ xII=C land C τ xIV=C rbe then conversion τ ydifferential capacitor pair.
(2) calculating of normal stress and tangential force
If width is a in Fig. 6 0strip capacitor cell be subject to tangential force τ x, produce a tangential displacement d xafter output capacitance value be C 1, width is ka 0strip capacitor cell be subject to tangential force τ x, produce a tangential displacement d xafter output capacitance value be C 2, then have:
C 1 = &epsiv; ( a 0 - d x ) b 0 d n = &epsiv;a 0 b 0 d n - &epsiv;b 0 d x d n - - - ( 15 )
C 2 = &epsiv; ( ka 0 - d x ) b 0 d n = &epsiv;ka 0 b 0 d n - &epsiv;b 0 d x d n - - - ( 16 )
Obtained by (15)-(16):
C 1 - C 2 = &epsiv;a 0 b 0 d n - &epsiv;ka 0 b 0 d n Calculate:
d n = &epsiv;a 0 b 0 ( 1 - k ) C 1 - C 2 - - - ( 17 )
Obtained by (15) * k-(16):
kC 1 - C 2 = &epsiv;d x b 0 d n - &epsiv;kd x b 0 d n = &epsiv;d x b 0 ( 1 - k ) d n , (17) are substituted into above formula, can obtain:
d x = a 0 ( kC 1 - C 2 ) C 1 - C 2 - - - ( 18 )
According to d n = d 0 - &Delta; d = d 0 ( 1 - F n E &CenterDot; S 0 )
Known: F n = ( d n - d 0 ) E &CenterDot; S 0 d 0
By d x d 0 = &gamma; = &tau; G = F &tau; G &CenterDot; S 0 , So F &tau; x = GS 0 d x d 0 .
In above formula, no matter be normal direction excitation F nor tangentially encourage F yall not to O τhave an impact.Namely automatically σ is eliminated nand τ yto τ xthe coupling of total output or interference comprise at signal because every in the computing of subtracting each other, equivalent and the capacitance variations with symbol are eliminated all automatically.And F yand F xto σ ninterference by upper electrode at b 0direction increases geometrical length 2 δ 0eliminate.In like manner F can be obtained τ y.
(4) main material selection and characterisitic parameter thereof
The section of structure of comb teeth-shaped plane-parallel capacitor is similar to the sandwich structure shown in Fig. 8.In Fig. 8,1 is upper PCB substrate, and 2 is lower PCB substrate, and 3 is drive electrode, and 4 is induction electrode, and 5 is elastic fluid.Pole plate is apart from d 0=0.1mm, upper and lower base plate inner space, except copper foil electrode, is PDMS (dimethyl silicone polymer) the superlastic dielectric with lost wax process filling.Its machinery and physical characteristic parameter are Young's modulus E=6.2MPa, and its shear modulus is G=4.1MPa, relative permittivity ε during dielectric polorization γ=2.5.Because E and G of medium is much smaller than the elastic modulus E of copper copper=103GPa.Therefore the distortion of capacitor internal medium under stress state is much larger than the distortion of pole plate.
(5) contact conductor design
Be that drive electrode or induction electrode all need to have lead-out wire, consider that each drive electrode is all ground connection in signal level, therefore four groups of drive electrodes only need share same lead-out wire.The induction electrode of four the first strip capacitor cell groups and the second strip capacitor cell group then needs with respective independently lead-out wire, and draw from the side of planar package so whole capacitance component has at least 5 pins, four induction electrodes refer to that X-direction width is a 0induction electrode and width be ka 0induction electrode, and Y-direction width is a 0induction electrode and width be ka 0induction electrode so that whole assembly top and bottom outer surface can contact with measuring object easily.The present invention, under the support of new material and new technology, completes the design of a kind of novel three-dimensional power sensitization capacitance combination, at 10 × 10mm 2stress surface on, be no matter normal direction or tangential, all can transmit stress more uniformly to medium.In literary composition, four cell capacitance are two to combination distribution.In the contact of non-coplanar force and sensor surface, external force only has 1, and electric capacity response but has 4, and whole battery lead plate, all to asking Fn to contribute, simultaneously by two pairs of capacitor combinations composition systems, can obtain F again xand F yinformation, thus complete description three-dimensional force.
By changing seat angle, seat is high, directly can measure man-vehicle system contact position (pedal, handlebar and vehicle seat) stressed, encoder on crank shaft can be followed the tracks of the angle between crank with pedal and measure synchronous with three-dimensional force, so just acts on effective force on pedal by calculating to try to achieve.By Microprocessor S3C44B0X synchronous light-emitting point, what realize that kinetic measurement and kinematics test is synchronous, the kinematics and dynamics parameter of its test gained is together incorporated to bicycle and steps in juggling with the feet art diagnostic feedback systems soft ware, thus realizes data sampling and processing, storage and playback integration.
Above by reference to the accompanying drawings to invention has been exemplary description; obvious specific implementation of the present invention is not subject to the restrictions described above; as long as have employed the improvement of the various unsubstantialities that method of the present invention is conceived and technical scheme is carried out; or design of the present invention and technical scheme directly applied to other occasion, all within protection scope of the present invention without to improve.

Claims (9)

1. a cycle test car supplemental training device, it is characterized in that, comprise pedal sensor, encoder and sensor system signals processor, encoder is arranged on the outer end of crank shaft, for obtain any time crank and pedal between angle β, solve the effective force along the axial inefficacious and vertical direction of crank, pedal sensor is arranged on the left and right pedal of test carriage, obtain the three-dimensional force acted on pedal, described pedal sensor comprises X-direction capacitor cell group and Y-direction capacitor cell group, described X-direction capacitor cell group and Y-direction capacitor cell group include capacitor cell module, the comb teeth-shaped structure that described capacitor cell module is made up of plural strip capacitor cell, each strip capacitor cell comprises the drive electrode of top crown and the induction electrode of bottom crown, described capacitor cell module comprises by two or more width a 0length b 0strip capacitor cell composition the first strip capacitor cell group and two or more width ka 0length b 0strip capacitor cell composition the second strip capacitor cell group.
2. cycle test car supplemental training device according to claim 1, it is characterized in that, described device also comprises handlebar sensor and vehicle seat sensor, for monitoring the three-dimensional active force on vehicle seat and handlebar, obtains the distribution of weight of upper body and the firmly feature of trunk-hand.
3. cycle test car supplemental training device according to claim 1, it is characterized in that, the drive electrode of described each strip capacitor cell is identical with induction electrode width, and the length of drive electrode is greater than induction electrode length, and drive electrode length two ends are reserved left poor position δ respectively leftwith right poor position δ right, b 0 drives=b 0 sense+ δ right+ δ left, wherein, b 0 drivesfor the drive electrode length of strip capacitor cell, b 0 sensefor the induction electrode length of strip capacitor cell.
4. cycle test car supplemental training device according to claim 3, is characterized in that, described poor position δ leftright, and wherein d 0for strip capacitor cell dielectric thickness, G is the modulus of rigidity of elastic fluid, τ maxfor maximum stress value.
5. cycle test car supplemental training device according to claim 1, it is characterized in that, the lead-in wire that described comb teeth-shaped structure comprises more than 20 strip capacitor cells, connects one to one with strip capacitor cell, is provided with electrode spacing a between adjacent two strip capacitor cells δ.
6. cycle test car supplemental training device according to claim 5, is characterized in that, described parallel-plate area S=M (a 0+ 2a δ+ ka 0) b 0/ 2, wherein, M is strip capacitor cell quantity, b 0for the length of strip capacitor cell, a 0the width of strip capacitor cell.
7. cycle test car supplemental training device according to claim 2, it is characterized in that, the strip capacitor cell lead-in wire of described first strip capacitor cell group and the second strip capacitor cell group is by parallel way or be independently connected to sensor-based system signal processor.
8. cycle test car supplemental training device according to claim 2, is characterized in that, the width of described strip capacitor cell wherein, d 0for dielectric thickness, E is the Young's modulus of elastic fluid, and G is the modulus of rigidity of elastic fluid.
9. cycle test car supplemental training device according to claim 2, it is characterized in that, described first strip capacitor cell group and be respectively equipped with intermediate translator between the second strip capacitor cell group and sensor-based system signal processor, intermediate translator is for arranging voltage to electric capacity or frequency to the transmission coefficient of electric capacity.
CN201510454411.2A 2015-07-28 2015-07-28 Bicycle test vehicle assistant training device Pending CN104958889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510454411.2A CN104958889A (en) 2015-07-28 2015-07-28 Bicycle test vehicle assistant training device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510454411.2A CN104958889A (en) 2015-07-28 2015-07-28 Bicycle test vehicle assistant training device

Publications (1)

Publication Number Publication Date
CN104958889A true CN104958889A (en) 2015-10-07

Family

ID=54213082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510454411.2A Pending CN104958889A (en) 2015-07-28 2015-07-28 Bicycle test vehicle assistant training device

Country Status (1)

Country Link
CN (1) CN104958889A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188048A (en) * 2007-11-16 2008-05-28 浙江师范大学 Wireless bicycle pedal force detector
CN101244753A (en) * 2008-03-17 2008-08-20 哈尔滨工业大学 Motion training pedal cycle with multi-motion and feedback mode
US20100283757A1 (en) * 2009-05-08 2010-11-11 Sintek Photronic Corporation Capacitive touch panel structure with high optical uniformity
US20130210583A1 (en) * 2010-10-29 2013-08-15 Pioneer Corporation Pedaling-goal setting apparatus, pedaling-goal setting method, pedaling-goal setting program, and recording medium having pedaling-goal setting program stored thereon
CN103365518A (en) * 2013-06-25 2013-10-23 京东方科技集团股份有限公司 Capacitive touch screen and manufacturing method
CN204233725U (en) * 2014-12-03 2015-04-01 河北省体育科学研究所 A kind of cycling real-time telemetry device
CN204972967U (en) * 2015-07-28 2016-01-20 安徽工程大学 Trainer is assisted to bicycle test carriage

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101188048A (en) * 2007-11-16 2008-05-28 浙江师范大学 Wireless bicycle pedal force detector
CN101244753A (en) * 2008-03-17 2008-08-20 哈尔滨工业大学 Motion training pedal cycle with multi-motion and feedback mode
US20100283757A1 (en) * 2009-05-08 2010-11-11 Sintek Photronic Corporation Capacitive touch panel structure with high optical uniformity
US20130210583A1 (en) * 2010-10-29 2013-08-15 Pioneer Corporation Pedaling-goal setting apparatus, pedaling-goal setting method, pedaling-goal setting program, and recording medium having pedaling-goal setting program stored thereon
CN103365518A (en) * 2013-06-25 2013-10-23 京东方科技集团股份有限公司 Capacitive touch screen and manufacturing method
CN204233725U (en) * 2014-12-03 2015-04-01 河北省体育科学研究所 A kind of cycling real-time telemetry device
CN204972967U (en) * 2015-07-28 2016-01-20 安徽工程大学 Trainer is assisted to bicycle test carriage

Similar Documents

Publication Publication Date Title
CN204815611U (en) Bicycle is ridden to move and is assisted trainer
CN204758191U (en) Three -dimensional power pressure sensor of contact parallel -plate
CN204972974U (en) Sportsman process gesture detection device that hurdles
CN105054952A (en) Device for measuring acting force on boxing target
CN104997569B (en) Comprehensive tooth measuring instrument based on detachable tooth socket
CN104951144A (en) Shock absorption-based three-dimensional multi-point touch screen and control method thereof
CN204972967U (en) Trainer is assisted to bicycle test carriage
CN105012039A (en) Comprehensive tooth measuring instrument
CN204798051U (en) Tooth general measuring instrument based on can dismantle facing
CN104978095A (en) Three-dimensional multiple-point type touch screen and control method thereof
CN104978073A (en) Induction type touch screen and control method thereof
CN104990663A (en) Contact type parallel plate differential three-dimensional force pressure sensor
CN104971482A (en) Sprint auxiliary training apparatus
CN104958889A (en) Bicycle test vehicle assistant training device
CN105046084A (en) Tooth comprehensive measurement instrument capable of realizing data fusion
CN104984531A (en) Bicycle riding training aiding device
CN204815616U (en) Act on force measuring device in dash between sole and race starter
CN204798786U (en) Trainer is assisted in boxing based on pressure analysis
CN204831004U (en) Motion of firearms back -lash receives force measuring device
CN204855332U (en) System is assessd to skin care products quality based on test of skin friction properties
CN205145547U (en) Trainer is assisted in boxing
CN104964778A (en) Contact-type parallel plate three-dimensional force pressure sensor
CN104997524A (en) Bicycle cycling parameter acquisition device
CN204814260U (en) Tooth general measuring instrument
CN204815604U (en) Trainer is assisted in dash

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20151007

RJ01 Rejection of invention patent application after publication