CN104953613A - 智能建筑微电网系统及控制方法 - Google Patents

智能建筑微电网系统及控制方法 Download PDF

Info

Publication number
CN104953613A
CN104953613A CN201510270334.5A CN201510270334A CN104953613A CN 104953613 A CN104953613 A CN 104953613A CN 201510270334 A CN201510270334 A CN 201510270334A CN 104953613 A CN104953613 A CN 104953613A
Authority
CN
China
Prior art keywords
micro
intelligent
grid
intelligent monitor
bus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510270334.5A
Other languages
English (en)
Inventor
朱德志
胡春花
陈戎军
王宏林
欧阳菲菲
徐峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhenjiang College
Original Assignee
Zhenjiang College
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhenjiang College filed Critical Zhenjiang College
Priority to CN201510270334.5A priority Critical patent/CN104953613A/zh
Publication of CN104953613A publication Critical patent/CN104953613A/zh
Pending legal-status Critical Current

Links

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J13/00Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network
    • H02J13/00006Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment
    • H02J13/00007Circuit arrangements for providing remote indication of network conditions, e.g. an instantaneous record of the open or closed condition of each circuitbreaker in the network; Circuit arrangements for providing remote control of switching means in a power distribution network, e.g. switching in and out of current consumers by using a pulse code signal carried by the network characterised by information or instructions transport means between the monitoring, controlling or managing units and monitored, controlled or operated power network element or electrical equipment using the power network as support for the transmission
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/12Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load
    • H02J3/14Circuit arrangements for ac mains or ac distribution networks for adjusting voltage in ac networks by changing a characteristic of the network load by switching loads on to, or off from, network, e.g. progressively balanced loading
    • H02J3/386
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/30Wind power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • Y02B70/3225Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/20Smart grids as enabling technology in buildings sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/14District level solutions, i.e. local energy networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/50Energy storage in industry with an added climate change mitigation effect
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/222Demand response systems, e.g. load shedding, peak shaving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S40/00Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them
    • Y04S40/12Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment
    • Y04S40/121Systems for electrical power generation, transmission, distribution or end-user application management characterised by the use of communication or information technologies, or communication or information technology specific aspects supporting them characterised by data transport means between the monitoring, controlling or managing units and monitored, controlled or operated electrical equipment using the power network as support for the transmission

Abstract

本发明公开了一种智能建筑微电网系统及控制方法,微电网系统包括太阳能发电组件、风力发电机、微型燃气发电机、第一专用逆变器、第二专用逆变器、双向逆变器、蓄电池、主分离器KM1、断路器KM2、智能监控器MC1、智能微网控制器EMC;在外电网正常工作时,使第一专用逆变器、第二专用逆变器工作于并网状态,微电网通过主分离器KM1与主电网连接,智能微网控制器EMC控制负载最大化使用清洁的光伏、风力发电能源;光伏、风力发电不能满足系统用电的不足部分由外部主电网进行供电;光伏、风力发电充裕时的余电输入外部主电网。本发明微电网系统结构简单,不需要进行母线改造,不需要对负荷改线。

Description

智能建筑微电网系统及控制方法
技术领域
本发明涉及一种微电网系统,尤其涉及一种智能建筑微电网系统及控制方法,属于智能电网技术领域。
背景技术
传统的微电网结构一般为:主网电源由主分离器引入到微电网系统,微电网分为三段母线,分别为敏感负荷、可中断负荷、可调节负荷系统母线。光伏发电系统接入敏感负荷系统母线,普通负荷接入可中断负荷系统母线,蓄电池储能系统和微型燃气轮机发电系统接入可调节负荷系统母线。在主电网电源失电后由光伏发电系统、蓄电池储能系统和微型燃气轮机发电系统来提供微电网系统供电电源,微电网可以根据发电情况调节自身负荷分配,确保重要负荷的安全供电。
现有的微电网结构存在以下问题和缺陷:
1)现有微电网如果运用于既有建筑,则需要对建筑或工厂电气系统进行较大的改造。即需要对建筑或工厂电气系统按微电网系统改造为三段母线,把建筑物或工厂内电气负荷按照负荷重要性进行分类,在分为敏感负荷、可中断负荷、可调节负荷后必须分别接入三段母线。这种结构及接入方法对已投产项目来说存在改造难度大、造价高的问题,在实践中难以推广使用。
2)按照现有微电网结构,光伏发电系统、蓄电池储能系统和微型燃气轮机发电系统分别接入不同的分段母线。系统存在供电调配方面逻辑复杂和系统开关多的问题,容易产生误动作以及开关间动作速度配合不好造成的供电安全问题。
发明内容
本发明的目的在于提供一种智能建筑微电网系统及控制方法,解决传统智能微电网安装于既有建筑的改造工作量大、改造难度高的问题。
本发明的目的通过以下技术方案予以实现:
一种智能建筑微电网系统,包括太阳能发电组件1、风力发电机2、微型燃气发电机3、第一专用逆变器4、第二专用逆变器5、双向逆变器6、蓄电池7、主分离器KM1、断路器KM 2、智能监控器MC1、智能监控器MC2、智能监控器MC3、智能监控器MC4、智能监控器MC5、智能监控器MC6、智能监控器MC7、智能微网控制器EMC;所述主分离器KM1的一端与微电网的AC母线相连,另一端经变压器T、智能监控器MC7后接主电网;所述太阳能发电组件1输出端接第一专用逆变器4的输入端,所述第一专用逆变器4的输出端经智能监控器MC1接AC母线,所述风力发电机2输出端接第二专用逆变器5的输入端,所述第二专用逆变器5的输出端经智能监控器MC2接AC母线,所述微型燃气发电机3经智能监控器MC3接AC母线,所述蓄电池7与DC母线相连,所述断路器KM2的一端与DC母线相连,另一端与双向逆变器6相连,所述双向逆变器6与AC母线相连,重要负荷经智能监控器MC4接AC母线,一般负荷经智能监控器MC5接AC母线,可中断负荷经智能监控器MC6接AC母线,所述智能微网控制器EMC与第一专用逆变器4、第二专用逆变器5、双向逆变器6、主分离器KM1、断路器KM 2、智能监控器MC1、智能监控器MC2、智能监控器MC3、智能监控器MC4、智能监控器MC5、智能监控器MC6、智能监控器MC7连接并进行控制。
一种智能建筑微电网系统的控制方法,在外电网正常工作时,使第一专用逆变器4、第二专用逆变器5工作于并网状态,微电网通过主分离器KM1与主电网连接,智能微网控制器EMC控制负载最大化使用清洁的光伏、风力发电能源;光伏、风力发电不能满足系统用电的不足部分由外部主电网进行供电;光伏、风力发电充裕时的余电输入外部主电网。
本发明的目的还可以通过以下技术措施来进一步实现:
前述智能建筑微电网系统的控制方法,当主电网故障失电后,智能微网控制器EMC控制断开主分离器KM1,与主电网分离解列,启动微型燃气发电机3工作,控制断路器KM 2闭合,将蓄电池7的储能通过双向逆变器6将电能逆变传送AC母线。
前述智能建筑微电网系统的控制方法,智能微网控制器EMC根据发电能力对负荷进行投切,投切原则为:确保重要负荷,保证一般负荷,随时切断可中断负荷。
前述智能建筑微电网系统的控制方法,智能微网控制器EMC在微电网自身发电量有盈余的情况下将智能建筑微电网系统的运行参数发送给供电部门电力调度中心,由供电部门电力调度确定是否外送电能给附近用户。
与现有技术相比,本发明的有益效果是:
1.本发明微电网系统结构简单,无需将建筑或工厂电气系统按微电网系统改造为三段母线,只需在将建筑物或工厂内电气负荷按照负荷重要性进行分类区分设备负荷类型后,在负荷前端加装智能监控器MC即可。不需要进行母线改造,不需要对负荷改线。
2.光伏发电系统、蓄电池储能系统和微型燃气轮机发电系统无需分别接入不同的分段母线,直接接入系统主母线即可,由微电网能源控制核心EMC控制逆变器和智能监控器MC的无缝智能启停,向主母线供电以及调节负荷侧MC负荷状态,使智能微电网的安全性和可靠性达到最佳状态。
附图说明
图1是本发明的微电网系统结构图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明。
如图1所示,智能建筑微电网系统包括太阳能发电组件1、风力发电机2、微型燃气发电机3、第一专用逆变器4、第二专用逆变器5、双向逆变器6、蓄电池7、主分离器KM1、断路器KM 2、智能监控器MC1、智能监控器MC2、智能监控器MC3、智能监控器MC4、智能监控器MC5、智能监控器MC6、智能监控器MC7、智能微网控制器EMC;所述主分离器KM1的一端与微电网的AC母线相连,另一端经变压器T、智能监控器MC7后接主电网;所述太阳能发电组件1输出端接第一专用逆变器4的输入端,所述第一专用逆变器4的输出端经智能监控器MC1接AC母线,所述风力发电机2输出端接第二专用逆变器5的输入端,所述第二专用逆变器5的输出端经智能监控器MC2接AC母线,所述微型燃气发电机3经智能监控器MC3接AC母线,所述蓄电池7与DC母线相连,所述断路器KM2的一端与DC母线相连,另一端与双向逆变器6相连,所述双向逆变器6与AC母线相连,重要负荷经智能监控器MC4接AC母线,一般负荷经智能监控器MC5接AC母线,可中断负荷经智能监控器MC6接AC母线,所述智能微网控制器EMC与第一专用逆变器4、第二专用逆变器5、双向逆变器6、主分离器KM1、断路器KM 2、智能监控器MC1、智能监控器MC2、智能监控器MC3、智能监控器MC4、智能监控器MC5、智能监控器MC6、智能监控器MC7连接并进行控制。
系统通过EMC不断监视各类负荷的运行状态和光伏发电等发电单元的发电状态及外网供电状态及其各自的运行参数。EMC实时监控电网健康状态,提前判断和发现主电网存在的问题,预前对主电网和建筑智能微电网并联和分离进行操作,确保建筑智能微电网的不断电运行。
在外电网正常工作时微电网使智能微网专用逆变器工作于并网状态,智能微电网通过智能微电网主分离器KM1与主电网连接,EMC(微电网能源控制核心)把光伏发电系统并入智能微电网,负载最大化使用清洁的光伏发电资源。光伏发电不能满足系统用电的不足部分由外部主电网进行供电。分布式发电充裕的时候的余电可以输入外电网。智能建筑微电网和主电网并网运行,实现功率的双向流通,实现智能电网的自发自用、余电上网功能。
当主电网故障或其他原因失电后,智能微电网通过智能微电网主分离器与主电网自动分离解列,系统自动把智能微网专用逆变器转换为离网运行模式,同时启动微型燃气发电机以及把微电网储能电池的电能通过双向逆变器逆变传送到智能建筑微电网的AC母线系统。并同时不断通过MC(智能监控器)对用电负荷监视和控制,根据自身的发电能力对负荷进行投切,投切原则为:确保重要负荷,保证一般负荷,随时切断可中断负荷。同时根据分布式发电的情况和储能情况对负荷进行严格管理,使智能微电网的发电和用电平衡,最终达到确保微电网系统的稳定可靠运行以及最大化利用光伏发电等清洁发电资源的目的。
微电网在自身发电量有盈余的情况下可通过智能监控中心把智能建筑微电网系统的运行参数发送给供电部门电力调度中心,由供电部门电力调度确定是否外送电能给附近用户。
下面以一个可以安装100KW的光伏太阳能电站的屋顶面积1000平方米的办公楼为例进行投入和收益分析如下:
1.传统微电网系统改造投入:如果采用传统微电网系统就要对办公楼配电系统进行大量改造,要对供配电系统和负荷接线都进行调整,把原有母线系统改为三段,按20万元1段母线改造费用和10万元一种负荷改造费用估算,单纯改造费用大约90万元。
2.本发明的新型智能微电网系统改造投入:供配电系统无需任何改造,只需要加入1个EMC(微电网能源控制核心)和多个MC(智能监控器)即可,1个EMC费用约5000元,1个MC约2000元,总费用约1.7万元。
3.系统收益:
1)如果采用传统微电网系统的100KW太阳能分布发电系统,光伏投资90万元,改造费用90万元,总成本约180万元。100KW太阳能分布发电系统年发电量约11万度电,如果按照0.8元/度的价格计算电价,则年收益8.8万元,系统运行期间没有成本支出,系统静态计算约20年收回成本。
2)如果采用本发明的智能微电网系统改造费用1.7万元,光伏投资90万元。100KW太阳能分布发电系统年发电量约11万度电,如果按照0.8元/度的价格计算电价,则年收益8.8万元,系统运行期间没有成本支出,系统静态计算约10.4年收回成本。光伏系统寿命约25年以上,经济效益明显。
由于新系统比传统系统提前10年收回成本,按100KW光伏电站年减少燃烧煤炭:42.9吨;年减少CO2排放约112.35吨计算节能减排效果明显。
除上述实施例外,本发明还可以有其他实施方式,凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围内。

Claims (5)

1.一种智能建筑微电网系统,其特征在于,包括太阳能发电组件(1)、风力发电机(2)、微型燃气发电机(3)、第一专用逆变器(4)、第二专用逆变器(5)、双向逆变器(6)、蓄电池(7)、主分离器KM1、断路器KM2、智能监控器MC1、智能监控器MC2、智能监控器MC3、智能监控器MC4、智能监控器MC5、智能监控器MC6、智能监控器MC7、智能微网控制器EMC;所述主分离器KM1的一端与微电网的AC母线相连,另一端经变压器T、智能监控器MC7后接主电网;所述太阳能发电组件(1)输出端接第一专用逆变器(4)的输入端,所述第一专用逆变器(4)的输出端经智能监控器MC1接AC母线,所述风力发电机(2)输出端接第二专用逆变器(5)的输入端,所述第二专用逆变器(5)的输出端经智能监控器MC2接AC母线,所述微型燃气发电机(3)经智能监控器MC3接AC母线,所述蓄电池(7)与DC母线相连,所述断路器KM2的一端与DC母线相连,另一端与双向逆变器(6)相连,所述双向逆变器(6)与AC母线相连,重要负荷经智能监控器MC4接AC母线,一般负荷经智能监控器MC5接AC母线,可中断负荷经智能监控器MC6接AC母线,所述智能微网控制器EMC与第一专用逆变器(4)、第二专用逆变器(5)、双向逆变器(6)、主分离器KM1、断路器KM2、智能监控器MC1、智能监控器MC2、智能监控器MC3、智能监控器MC4、智能监控器MC5、智能监控器MC6、智能监控器MC7连接并进行控制。
2.一种如权利要求1所述智能建筑微电网系统的控制方法,其特征在于,在外电网正常工作时,使第一专用逆变器(4)、第二专用逆变器(5)工作于并网状态,微电网通过主分离器KM1与主电网连接,智能微网控制器EMC控制负载最大化使用清洁的光伏、风力发电能源;光伏、风力发电不能满足系统用电的不足部分由外部主电网进行供电;光伏、风力发电充裕时的余电输入外部主电网。
3.如权利要求2所述智能建筑微电网系统的控制方法,其特征在于,当主电网故障失电后,智能微网控制器EMC控制断开主分离器KM1,与主电网分离解列,启动微型燃气发电机(3)工作,控制断路器KM2闭合,将蓄电池(7)的储能通过双向逆变器(6)将电能逆变传送AC母线。
4.如权利要求3所述智能建筑微电网系统的控制方法,其特征在于,智能微网控制器EMC根据发电能力对负荷进行投切,投切原则为:确保重要负荷,保证一般负荷,随时切断可中断负荷。
5.如权利要求2所述智能建筑微电网系统的控制方法,其特征在于,智能微网控制器EMC在微电网自身发电量有盈余的情况下将智能建筑微电网系统的运行参数发送给供电部门电力调度中心,由供电部门电力调度确定是否外送电能给附近用户。
CN201510270334.5A 2015-07-28 2015-07-28 智能建筑微电网系统及控制方法 Pending CN104953613A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510270334.5A CN104953613A (zh) 2015-07-28 2015-07-28 智能建筑微电网系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510270334.5A CN104953613A (zh) 2015-07-28 2015-07-28 智能建筑微电网系统及控制方法

Publications (1)

Publication Number Publication Date
CN104953613A true CN104953613A (zh) 2015-09-30

Family

ID=54168070

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510270334.5A Pending CN104953613A (zh) 2015-07-28 2015-07-28 智能建筑微电网系统及控制方法

Country Status (1)

Country Link
CN (1) CN104953613A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262136A (zh) * 2015-11-19 2016-01-20 中国科学院广州能源研究所 微电网的调度控制方法
CN105977985A (zh) * 2016-06-29 2016-09-28 上海交通大学 一种微电网潮流控制器
CN108539734A (zh) * 2018-04-11 2018-09-14 上海德衡数据科技有限公司 一种分布式智能楼宇集成储能系统
CN109672218A (zh) * 2018-12-25 2019-04-23 新疆金风科技股份有限公司 风电机组的功率控制方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102244498A (zh) * 2011-03-11 2011-11-16 西门子公司 一种电网中的发电单元驱动器、发电单元以及能量输出设备
KR20120093671A (ko) * 2011-02-15 2012-08-23 ㈜코리아에너텍 태양광 및 풍력 하이브리드 발전을 이용한 계통 연계 시스템 및 이를 이용한 태양광 및 풍력 하이브리드 계통 연계 발전 장치
CN204651940U (zh) * 2015-05-25 2015-09-16 镇江市高等专科学校 智能建筑微电网系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120093671A (ko) * 2011-02-15 2012-08-23 ㈜코리아에너텍 태양광 및 풍력 하이브리드 발전을 이용한 계통 연계 시스템 및 이를 이용한 태양광 및 풍력 하이브리드 계통 연계 발전 장치
CN102244498A (zh) * 2011-03-11 2011-11-16 西门子公司 一种电网中的发电单元驱动器、发电单元以及能量输出设备
CN204651940U (zh) * 2015-05-25 2015-09-16 镇江市高等专科学校 智能建筑微电网系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105262136A (zh) * 2015-11-19 2016-01-20 中国科学院广州能源研究所 微电网的调度控制方法
CN105977985A (zh) * 2016-06-29 2016-09-28 上海交通大学 一种微电网潮流控制器
CN108539734A (zh) * 2018-04-11 2018-09-14 上海德衡数据科技有限公司 一种分布式智能楼宇集成储能系统
CN109672218A (zh) * 2018-12-25 2019-04-23 新疆金风科技股份有限公司 风电机组的功率控制方法和装置

Similar Documents

Publication Publication Date Title
CN102931653B (zh) 一种风光直流微电网的综合协调控制方法
CN104052159B (zh) 一种用于风光储微网系统的能量管理控制器
CN104022527B (zh) 直流微网系统
CN104281977A (zh) 一种混合型微电网应用平台及其控制方法
CN105024397A (zh) 海上风电经vsc-mtdc输电并网系统的动态模拟系统
CN103997046A (zh) 箱式储能变电站储能单元投切控制方法
CN202772654U (zh) 一种光伏发电与市政电网无逆流互补应用的控制器
CN103972976A (zh) 电能供应系统
CN104953613A (zh) 智能建筑微电网系统及控制方法
CN203278255U (zh) 一种储能系统的削峰填谷补偿装置及储能系统
CN103580052B (zh) 一种用于主动配电网的复合储能电站及其配电方法
CN105958535B (zh) 分布式电源集群控制系统及其控制方法
CN101330211A (zh) 一种综合利用可再生能源发电与用电的微电网系统
CN204374950U (zh) 一种储能单元pcs控制板的混合仿真测试接口
CN203826977U (zh) 一种电力电子变压器
CN203674797U (zh) 站用电微网主接线系统
CN203312828U (zh) 一种微网协调控制系统
CN204651940U (zh) 智能建筑微电网系统
CN204557276U (zh) 最大功率追踪的光伏系统
CN203722249U (zh) 一种分布式光伏并网发电系统
CN205139998U (zh) 基于峰谷电价的区域电网经济调度系统
CN204334379U (zh) 具有滞回特性的V/f-倒下垂微电网逆变器电源
CN104134162A (zh) 一种集成分布式电源的营配调全电网建模方法
CN204497753U (zh) 一种综合能源的发电系统
CN208955660U (zh) 变电站光伏交直流系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150930