CN104949687A - Whole parameter precision evaluation method for long-time navigation system - Google Patents

Whole parameter precision evaluation method for long-time navigation system Download PDF

Info

Publication number
CN104949687A
CN104949687A CN201410125919.3A CN201410125919A CN104949687A CN 104949687 A CN104949687 A CN 104949687A CN 201410125919 A CN201410125919 A CN 201410125919A CN 104949687 A CN104949687 A CN 104949687A
Authority
CN
China
Prior art keywords
msub
mtd
mrow
mfrac
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410125919.3A
Other languages
Chinese (zh)
Inventor
刘冲
徐海刚
李海军
裴玉锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN201410125919.3A priority Critical patent/CN104949687A/en
Publication of CN104949687A publication Critical patent/CN104949687A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

The invention belongs to the field of the inertial technology and in particular relates to a whole parameter precision evaluation method for a long-time navigation system. Original data and satellite information of navigation testing of a partial reference system are utilized, an RTS (radar tracking station) smoothing based off-line processing method is adopted for processing stored inertial navigation data and satellite data to acquire high-precision position, posture and azimuth information of the reference system, and the high-precision position, posture and azimuth information is used as the criterion for whole parameter precision evaluation of the reference system. In the technical scheme, the R-T-S smoothing estimator of k moment is the linear fusion of the forward Kalman filtering estimator of k moment and the smoothing estimator of the k+1 moment, and the smoothing estimator of the k+1 moment effectively utilizes the global data, therefore, the navigation precision by use of Kalman filtering for R-T-S smoothing is higher than that adopting the Kalman filtering singly.

Description

Full-parameter precision evaluation method for long-time navigation system
Technical Field
The invention belongs to the technical field of inertia, and particularly relates to a method for evaluating full-parameter precision of a long-time navigation system.
Background
The POS (position Orientation System) system is applied to the field of modern surveying and mapping and can realize high-precision position and attitude measurement. The high-precision post-processing technology is the core technology of the POS system, and mainly adopts an optimal fixed interval smoothing processing method of R-T-S (Rauch-Tung-Streebel). After post-processing, the positioning accuracy of the POS can reach 0.05 m-0.3 m, and the measurement accuracy of the course and the horizontal attitude respectively reach 0.008 degrees (RMS) and 0.005 degrees (RMS).
At the present stage, in order to provide accurate position, speed, attitude and azimuth information for guided missile inertial navigation, the output information of the local reference system needs to meet the precision requirement. In order to assess the precision of each parameter of the local reference system, an additional set of high-precision reference inertial navigation system needs to be prepared.
Therefore, it is necessary to develop a method for evaluating the precision of the full-parameter of the long-time navigation system, in which the stored inertial navigation system information and satellite data are processed to obtain the position, orientation and posture information with high precision as the reference for evaluating the precision.
Disclosure of Invention
The invention aims to solve the technical problem of realizing the purpose of carrying out precision evaluation on the full parameters of a long-time navigation system through the combined processing of an inertial navigation system and a satellite.
In order to realize the purpose, the invention adopts the technical scheme that:
a full-parameter precision evaluation method of a long-time navigation system utilizes original data and satellite information of a local reference system navigation experiment, adopts an off-line processing method based on RTS smoothing, and obtains high-precision position, attitude and azimuth information of a reference system by processing stored inertial navigation data and satellite data, and the high-precision position, attitude and azimuth information is used as a reference for full-parameter precision evaluation of the reference system;
the method specifically comprises the following two steps of obtaining position, speed and attitude data:
(1) carrying out a forward closed loop Kalman filtering process by using inertia/satellite data information;
the forward Kalman filtering algorithm is carried out by adopting a position matching mode of a GPS and an inertial navigation system and adopting a closed loop correction mode;
(1.1) determining an algorithmic model and a state error quantity
The algorithm adopts an 18-order navigation error model, and 18 state error quantities are selected as follows:
<math> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;L</mi> </mtd> <mtd> <mi>&Delta;h</mi> </mtd> <mtd> <mi>&Delta;&lambda;</mi> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein:
Δ L, Δ h, Δ λ: latitude, longitude, altitude error of inertial navigation;
ΔVn、ΔVu、ΔVe: north, sky, and east speed errors of inertial navigation;
Φn、Φu、Φe: inertial navigation north direction, sky direction and east direction misalignment angle errors;
inertial navigation X, Y, Z axis accelerometer zero offset;
xyz: inertial navigation X, Y, Z axis gyro drift;
and the lever arm error between inertial navigation and GPS.
(1.2) determining the equation of state of the System
The system state equation is:
wherein:
<math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>F</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>23</mn> </msub> </mtd> <mtd> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>C</mi> </mrow> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
F 11 = 0 - V n ( R M + h ) 2 0 0 0 0 V e R N + h tan L sec L - V e sec L ( R N + h ) 2 0 ; F 12 = 1 R M + h 0 0 0 1 0 0 0 sec L R N + h ;
<math> <mrow> <msub> <mi>F</mi> <mn>21</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>V</mi> </mrow> <mi>e</mi> </msub> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mn>2</mn> <mi>V</mi> </mrow> <mi>e</mi> </msub> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <msup> <msub> <mi>V</mi> <mi>n</mi> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>u</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>u</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mn>22</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>u</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mn>2</mn> <mi>V</mi> </mrow> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>tan</mi> <mi>L</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
F 23 = 0 - f e f u f e 0 - f n - f u f n 0 ;
<math> <mrow> <msub> <mi>F</mi> <mn>31</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> <msub> <mi>F</mi> <mn>32</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mn>33</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein: vn, Vu and Ve represent the north, the sky and the east speed of the inertial navigation system; l represents latitude, h represents altitude, RMRepresents the radius of the meridian of the earth, RNRepresenting radius of the prime circle, omega, of the earthieWhich represents the rotational angular velocity of the earth,representing the attitude transformation matrix, f, of the inertial navigation system from the carrier coordinate system to the navigation coordinate systemn、fu、feRepresenting north, sky and east representation values of specific force sensed by an accelerometer of the inertial navigation system in a navigation coordinate system;
(1.3) determination of measurement equation
The measurement equation is as follows: z = HX + V
Wherein: and measuring the Z component, namely the difference value between the position information of the inertial navigation system and the GPS position information, and considering the lever arm error between the two: z = [ L-L =GPS-Rn h-hGPS-Ru λ-λGPS-Re]T;hGPS、λGPS、LGPSRespectively representing altitude information, longitude information and latitude information output by a GPS system; rn、Ru、ReRespectively representing a north lever arm error, a sky lever arm error and an east lever arm error between the position information of the inertial navigation system and the GPS position information;
h is a measurement array, <math> <mrow> <mi>H</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>C</mi> </mrow> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
(1.4) determining Kalman Filter equation
And (3) state one-step prediction:wherein:representing the one-step predicted value of the state from the time k-1 to the time k,represents the state estimate at time k-1, phik,k-1Representing a discretized Kalman filtering state transition matrix;
one-step prediction of mean square error matrix:wherein:representing a one-step prediction mean square error matrix from time k-1 to time k,estimated mean square error matrix, Q, representing time k-1kRepresenting a discretized system noise matrix;
a filter gain matrix:wherein:filter gain matrix representing time k, HkSystematic measurement array representing time k, RkRepresenting the discretized measurement noise matrix;
and (3) state estimation:wherein:to representState estimate at time k, ZkRepresenting a system observation measurement matrix;
estimating a mean square error matrix: P k F = ( I - K k F H k ) P k , k - 1 F ( I - K k F H k ) T + K k F R k ( K k F ) T , wherein:estimated mean square error matrix, F, representing time kiRepresenting the corresponding element values of the non-discretized system state transition matrix, I representing the identity matrix of the corresponding dimension, TnRepresenting the navigation period, T, of the inertial navigation systemfRepresents a filtering period;
(2) performing reverse optimal fixed interval smoothing on the basis of the Kalman filtering in the step (1);
setting the whole navigation time zoneIs meta [ 0N]T represents any time in the time interval, t is more than or equal to 0 and less than or equal to N, and the smooth estimation value of the fixed interval is expressed as
(2.1) first, forward Kalman filtering of 0 → N is performed, and the estimated state transition matrix phi of the filtering is storedk,k-1State one-step predictionOne-step prediction mean square error arrayState estimationEstimating mean square error matrix
(2.2) after the filtering is finished, taking the estimation value of the last time N of the forward filtering as the initial value of the starting time of the backward R-T-S smoothing, and making k = N,performing an N → 0R-T-S smoothing process, whereinA smoothed estimate of the time instance N is represented,representing the kalman filter state estimate at time N,representing a smoothed estimated mean square error matrix at N time instants,card for indicating k timeThe mean square error matrix is estimated by the Kalman filtering, and the equation is as follows:
smoothing gain array:wherein,a smoothing gain matrix representing the time k, #k+1,kRepresenting a discretized kalman filter state transition matrix,representing a one-step prediction mean square error matrix from the k moment to the k +1 moment;
smoothed state estimation: X ^ k / N S = X ^ k F + K k / N S ( X ^ k + 1 / N S - X ^ k + 1 , k F ) , wherein:representing the smoothed estimate at the time of the k-th instant,representing the smoothed estimate at time k +1,representing a state one-step predicted value from the k moment to the k +1 moment;
smoothed estimated mean square error matrix: P k / N S = P k F + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , wherein:representing the smoothed estimated mean square error matrix at time k,representing the smoothed estimated mean square error matrix at time k +1,represents a one-step prediction mean square error matrix from time k to time k +1,a smoothing gain array representing time k;
from the formula, the smoothed estimate at time kIs a forward Kalman filter estimatorIs linearly compensated by a correction amount which is a smoothed estimate at the (k + 1) th timeAnd forward one-step prediction estimatorA difference of (d);
from the above analysis process, the R-T-S smoothed estimator at time k is a linear fusion of the forward Kalman filtering estimator at time k and the smoothed estimator at time k +1, the smoothed estimator at time k +1 utilizes global data.
Further, the method for evaluating the full-parameter accuracy of the long-time navigation system as described above, wherein: navigation period T of inertial navigation systemn=0.05s。
Further, the method for evaluating the full-parameter accuracy of the long-time navigation system as described above, wherein: filter period Tf=1s。
As can be known from the analysis process, the R-T-S smoothing estimator at the time k is linear fusion of the forward Kalman filtering estimator at the time k and the smoothing estimator at the time k +1, and the smoothing estimator at the time k +1 effectively utilizes global data, so that the R-T-S smoothing of the Kalman filtering is higher than the navigation precision obtained by purely adopting the Kalman filtering.
The invention has the beneficial effects that: the method comprises the steps of processing stored inertial navigation data and satellite data to obtain high-precision position, posture and azimuth information of a reference system, wherein the high-precision position, posture and azimuth information can be used as a reference for full-parameter precision evaluation of the reference system, the azimuth precision reaches 0.25 ', and the posture precision reaches 0.025'. Experiments prove that the technology can meet the requirement of evaluating the precision of the local reference system and has high practical value.
Drawings
FIG. 1 is a flow chart of an algorithm implementation of the present invention;
FIG. 2 is a post-processing position accuracy plot;
FIG. 3 is a post-processing speed accuracy curve;
FIG. 4 is a post-processing pose accuracy curve;
FIG. 5 is a post-processing course accuracy curve.
Detailed Description
The technical scheme of the invention is explained in detail in the following by combining the drawings and the specific embodiment.
A full-parameter precision evaluation method of a long-time navigation system utilizes original data and satellite information of a local reference system navigation experiment, adopts an off-line processing method based on RTS smoothing, and obtains high-precision position, attitude and azimuth information of a reference system by processing stored inertial navigation data and satellite data, and the high-precision position, attitude and azimuth information is used as a reference for full-parameter precision evaluation of the reference system;
the algorithm implementation flow of the invention is shown in fig. 1, and specifically comprises the following two steps to obtain position, speed and attitude data:
(1) carrying out a forward closed loop Kalman filtering process by using inertia/satellite data information;
the forward Kalman filtering algorithm is carried out by adopting a position matching mode of a GPS and an inertial navigation system and adopting a closed loop correction mode;
(1.1) determining an algorithmic model and a state error quantity
The algorithm adopts an 18-order navigation error model, and 18 state error quantities are selected as follows:
<math> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;L</mi> </mtd> <mtd> <mi>&Delta;h</mi> </mtd> <mtd> <mi>&Delta;&lambda;</mi> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein:
Δ L, Δ h, Δ λ: latitude, longitude, altitude error of inertial navigation;
ΔVn、ΔVu、ΔVe: north, sky, and east speed errors of inertial navigation;
Φn、Φu、Φe: inertial navigation north direction, sky direction and east direction misalignment angle errors;
inertial navigation X, Y, Z axis accelerometer zero offset;
xyz: inertial navigation X, Y, Z axis gyro drift;
and the lever arm error between inertial navigation and GPS.
(1.2) determining the equation of state of the System
The system state equation is:
wherein:
<math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>F</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>23</mn> </msub> </mtd> <mtd> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>C</mi> </mrow> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
F 11 = 0 - V n ( R M + h ) 2 0 0 0 0 V e R N + h tan L sec L - V e sec L ( R N + h ) 2 0 ; F 12 = 1 R M + h 0 0 0 1 0 0 0 sec L R N + h ;
<math> <mrow> <msub> <mi>F</mi> <mn>21</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>V</mi> </mrow> <mi>e</mi> </msub> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mn>2</mn> <mi>V</mi> </mrow> <mi>e</mi> </msub> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <msup> <msub> <mi>V</mi> <mi>n</mi> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>u</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>u</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mn>22</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>u</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mn>2</mn> <mi>V</mi> </mrow> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>tan</mi> <mi>L</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
F 23 = 0 - f e f u f e 0 - f n - f u f n 0 ;
<math> <mrow> <msub> <mi>F</mi> <mn>31</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> <msub> <mi>F</mi> <mn>32</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mn>33</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein: vn, Vu and Ve represent the north, the sky and the east speed of the inertial navigation system; l represents latitude, h represents altitude, RMRepresents the radius of the meridian of the earth, RNRepresenting radius of the prime circle, omega, of the earthieWhich represents the rotational angular velocity of the earth,representing the attitude transformation matrix, f, of the inertial navigation system from the carrier coordinate system to the navigation coordinate systemn、fu、feRepresenting north, sky and east representation values of specific force sensed by an accelerometer of the inertial navigation system in a navigation coordinate system;
(1.3) determination of measurement equation
The measurement equation is as follows: z = HX + V
Wherein: and measuring the Z component, namely the difference value between the position information of the inertial navigation system and the GPS position information, and considering the lever arm error between the two: z = [ L-L =GPS-Rn h-hGPS-Ru λ-λGPS-Re]T;hGPS、λGPS、LGPSRespectively representing altitude information, longitude information and latitude information output by a GPS system; rn、Ru、ReRespectively representing position information and GPS position of inertial navigation systemSetting north lever arm errors, zenith lever arm errors and east lever arm errors among the information;
h is a measurement array, <math> <mrow> <mi>H</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>C</mi> </mrow> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
(1.4) determining Kalman Filter equation
And (3) state one-step prediction:wherein:representing the one-step predicted value of the state from the time k-1 to the time k,represents the state estimate at time k-1, phik,k-1Representing a discretized Kalman filtering state transition matrix;
one-step prediction of mean square error matrix:wherein:representing a one-step prediction mean square error matrix from time k-1 to time k,estimated mean square error matrix, Q, representing time k-1kRepresenting a discretized system noise matrix;
a filter gain matrix:wherein:filter gain matrix representing time k, HkSystematic measurement array representing time k, RkRepresenting the discretized measurement noise matrix;
and (3) state estimation:wherein:state estimation value, Z, at time kkRepresenting a system observation measurement matrix;
estimating a mean square error matrix: P k F = ( I - K k F H k ) P k , k - 1 F ( I - K k F H k ) T + K k F R k ( K k F ) T , wherein:estimated mean square error matrix, F, representing time kiRepresenting the corresponding element values of the non-discretized system state transition matrix, I representing the identity matrix of the corresponding dimension, TnRepresents the navigation cycle of the inertial navigation system (in this embodiment, T)n=0.05s),TfIndicates the filter period (in this particular embodiment, Tf=1s);
(2) Performing reverse optimal fixed interval smoothing on the basis of the Kalman filtering in the step (1);
let the whole navigation time interval be [ 0N ]]T represents any time in the time interval, t is more than or equal to 0 and less than or equal to N, and the smooth estimation value of the fixed interval is expressed as
(2.1) first, forward Kalman filtering of 0 → N is performed, and the estimated state transition matrix phi of the filtering is storedk,k-1State one-step predictionOne-step prediction mean square error arrayState estimationEstimating mean square error matrix
(2.2) after the filtering is finished, taking the estimation value of the last time N of the forward filtering as the initial value of the starting time of the backward R-T-S smoothing, and making k = N,performing an N → 0R-T-S smoothing process, whereinA smoothed estimate of the time instance N is represented,representing the kalman filter state estimate at time N,representing a smoothed estimated mean square error matrix at N time instants,and expressing a Kalman filtering estimation mean square error matrix at the k moment, and the equation is as follows:
smoothing gain array:wherein,a smoothing gain matrix representing the time k, #k+1,kRepresenting a discretized kalman filter state transition matrix,one-step prediction mean square error matrix from k time to k +1 time;
Smoothed state estimation: X ^ k / N S = X ^ k F + K k / N S ( X ^ k + 1 / N S - X ^ k + 1 , k F ) , wherein:representing the smoothed estimate at the time of the k-th instant,representing the smoothed estimate at time k +1,representing a state one-step predicted value from the k moment to the k +1 moment;
smoothed estimated mean square error matrix: P k / N S = P k F + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , wherein:representing the smoothed estimated mean square error matrix at time k,representing the smoothed estimated mean square error matrix at time k +1,represents a one-step prediction mean square error matrix from time k to time k +1,a smoothing gain array representing time k;
from the formula, the smoothed estimate at time kIs a forward Kalman filter estimatorIs linearly compensated by a correction amount which is a smoothed estimate at the (k + 1) th timeAnd forward one-step prediction estimatorA difference of (d);
from the above analysis process, the R-T-S smoothed estimator at time k is a linear fusion of the forward Kalman filtering estimator at time k and the smoothed estimator at time k +1, the smoothed estimator at time k +1 utilizes global data.
As can be known from the analysis process, the R-T-S smoothing estimator at the time k is linear fusion of the forward Kalman filtering estimator at the time k and the smoothing estimator at the time k +1, and the smoothing estimator at the time k +1 effectively utilizes global data, so that the R-T-S smoothing of the Kalman filtering is higher than the navigation precision obtained by purely adopting the Kalman filtering.
And obtaining high-precision position, speed and attitude information through the two steps. To verify the feasibility of this method, the voyage test data was processed.
Estimating a mean square error matrix according to algorithmic principlesThe size of (d) represents the accuracy of the post-processing algorithm. As shown in fig. 2-5.
As can be seen from FIGS. 2 to 5, the horizontal attitude precision obtained by the method is 0.025 ', the heading precision is 0.25', the position precision is 1.3m, and the speed error is 0.006m/s, and the horizontal attitude precision can be used as a reference for judging the precision of the local reference full parameter.
And processing the six pieces of navigation test data to obtain the online precision of each parameter of the local reference system, wherein the navigation attitude precision is shown in table 1.
TABLE 1 statistical accuracy of the tests
The statistical results in the table show that the maximum value of the horizontal attitude error of each test is 0.59 ', the maximum value of the heading error is 2.96', and the index requirements of the horizontal attitude error of 1.5 'and the heading error of 3.67'/cos phi can be met.

Claims (3)

1. A full-parameter precision evaluation method of a long-time navigation system is characterized by comprising the following steps: obtaining high-precision position, attitude and azimuth information of a reference system by using original data and satellite information of a local reference system navigation experiment and adopting an off-line processing method based on RTS smoothing through processing stored inertial navigation data and satellite data, wherein the high-precision position, attitude and azimuth information is used as a reference for full-parameter precision evaluation of the reference system;
the method specifically comprises the following two steps of obtaining position, speed and attitude data:
(1) carrying out a forward closed loop Kalman filtering process by using inertia/satellite data information;
the forward Kalman filtering algorithm is carried out by adopting a position matching mode of a GPS and an inertial navigation system and adopting a closed loop correction mode;
(1.1) determining an algorithmic model and a state error quantity
The algorithm adopts an 18-order navigation error model, and 18 state error quantities are selected as follows:
<math> <mrow> <mi>X</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>&Delta;L</mi> </mtd> <mtd> <mi>&Delta;h</mi> </mtd> <mtd> <mi>&Delta;&lambda;</mi> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mi>&Delta;V</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>n</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>u</mi> </msub> </mtd> <mtd> <msub> <mi>&Phi;</mi> <mi>e</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mo>&dtri;</mo> <mi>z</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> <mtd> <msub> <mi>&epsiv;</mi> <mi>z</mi> </msub> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>x</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>y</mi> <mi>b</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>R</mi> <mi>z</mi> <mi>b</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein:
Δ L, Δ h, Δ λ: latitude, longitude, altitude error of inertial navigation;
ΔVn、ΔVu、ΔVe: north, sky, and east speed errors of inertial navigation;
Φn、Φu、Φe: inertial navigation north direction, sky direction and east direction misalignment angle errors;
inertial navigation X, Y, Z axis accelerometer zero offset;
xyz: inertial navigation X, Y, Z axis gyro drift;
and the lever arm error between inertial navigation and GPS.
(1.2) determining the equation of state of the System
The system state equation is:
wherein:
<math> <mrow> <mi>F</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>F</mi> <mn>11</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>12</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>22</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>23</mn> </msub> </mtd> <mtd> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>F</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>F</mi> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>C</mi> </mrow> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mn>33</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
F 11 = 0 - V n ( R M + h ) 2 0 0 0 0 V e R N + h tan L sec L - V e sec L ( R N + h ) 2 0 ; F 12 = 1 R M + h 0 0 0 1 0 0 0 sec L R N + h ;
<math> <mrow> <msub> <mi>F</mi> <mn>21</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>V</mi> </mrow> <mi>e</mi> </msub> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mn>2</mn> <mi>V</mi> </mrow> <mi>e</mi> </msub> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <msup> <msub> <mi>V</mi> <mi>n</mi> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>+</mo> <mfrac> <msup> <msub> <mi>V</mi> <mi>e</mi> </msub> <mn>2</mn> </msup> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>V</mi> <mi>u</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>u</mi> </msub> <mo>-</mo> <msub> <mi>V</mi> <mi>e</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mn>22</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>u</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mrow> <mn>2</mn> <mi>V</mi> </mrow> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mrow> <mn>2</mn> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mfrac> <mrow> <msub> <mi>V</mi> <mi>n</mi> </msub> <mi>tan</mi> <mi>L</mi> <mo>-</mo> <msub> <mi>V</mi> <mi>u</mi> </msub> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
F 23 = 0 - f e f u f e 0 - f n - f u f n 0 ;
<math> <mrow> <msub> <mi>F</mi> <mn>31</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <msup> <mi>sec</mi> <mn>2</mn> </msup> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <msup> <mrow> <mo>(</mo> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> <msub> <mi>F</mi> <mn>32</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <mrow> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> </math>
<math> <mrow> <msub> <mi>F</mi> <mn>33</mn> </msub> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>-</mo> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mfrac> <msub> <mi>V</mi> <mi>n</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>M</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>sin</mi> <mi>L</mi> <mo>+</mo> <mfrac> <mrow> <msub> <mi>V</mi> <mi>e</mi> </msub> <mi>tan</mi> <mi>L</mi> </mrow> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> </mtd> <mtd> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>&omega;</mi> <mi>ie</mi> </msub> <mi>cos</mi> <mi>L</mi> <mo>+</mo> <mfrac> <msub> <mi>V</mi> <mi>e</mi> </msub> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>+</mo> <mi>h</mi> </mrow> </mfrac> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
wherein: vn, Vu, Ve represent north, sky and east speeds of the inertial navigation systemDegree; l represents latitude, h represents altitude, RMRepresents the radius of the meridian of the earth, RNRepresenting radius of the prime circle, omega, of the earthieWhich represents the rotational angular velocity of the earth,representing the attitude transformation matrix, f, of the inertial navigation system from the carrier coordinate system to the navigation coordinate systemn、fu、feRepresenting north, sky and east representation values of specific force sensed by an accelerometer of the inertial navigation system in a navigation coordinate system;
(1.3) determination of measurement equation
The measurement equation is as follows: z = HX + V
Wherein: and measuring the Z component, namely the difference value between the position information of the inertial navigation system and the GPS position information, and considering the lever arm error between the two: z = [ L-L =GPS-Rn h-hGPS-Ru λ-λGPS-Re]T;hGPS、λGPS、LGPSRespectively representing altitude information, longitude information and latitude information output by a GPS system; rn、Ru、ReRespectively representing a north lever arm error, a sky lever arm error and an east lever arm error between the position information of the inertial navigation system and the GPS position information;
h is a measurement array, <math> <mrow> <mi>H</mi> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>3</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>3</mn> <mo>&times;</mo> <mn>12</mn> </mrow> </msub> </mtd> <mtd> <msubsup> <mrow> <mo>-</mo> <mi>C</mi> </mrow> <mi>b</mi> <mi>n</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> </math>
(1.4) determining Kalman Filter equation
And (3) state one-step prediction:wherein:representing the one-step predicted value of the state from the time k-1 to the time k,represents the state estimate at time k-1, phik,k-1Representing a discretized Kalman filtering state transition matrix;
one-step prediction of mean square error matrix:wherein:representing a one-step prediction mean square error matrix from time k-1 to time k,estimated mean square error matrix, Q, representing time k-1kRepresenting a discretized system noise matrix;
a filter gain matrix:wherein:filter gain matrix representing time k, HkSystematic measurement array representing time k, RkRepresenting the discretized measurement noise matrix;
and (3) state estimation:wherein:state estimation value, Z, at time kkRepresenting a system observation measurement matrix;
estimating a mean square error matrix: P k F = ( I - K k F H k ) P k , k - 1 F ( I - K k F H k ) T + K k F R k ( K k F ) T , wherein:estimated mean square error matrix, F, representing time kiRepresenting the values of the corresponding elements of the non-discretized system state transition matrix, I representing the unit of the corresponding dimensionBit matrix, TnRepresenting the navigation period, T, of the inertial navigation systemfRepresents a filtering period;
(2) performing reverse optimal fixed interval smoothing on the basis of the Kalman filtering in the step (1);
let the whole navigation time interval be [ 0N ]]T represents any time in the time interval, t is more than or equal to 0 and less than or equal to N, and the smooth estimation value of the fixed interval is expressed as
(2.1) first, forward Kalman filtering of 0 → N is performed, and the estimated state transition matrix phi of the filtering is storedk,k-1State one-step predictionOne-step prediction mean square error arrayState estimationEstimating mean square error matrix
(2.2) after the filtering is finished, taking the estimation value of the last time N of the forward filtering as the initial value of the starting time of the backward R-T-S smoothing, and making k = N,performing an N → 0R-T-S smoothing process, whereinA smoothed estimate of the time instance N is represented,representing the kalman filter state estimate at time N,representing a smoothed estimated mean square error matrix at N time instants,and expressing a Kalman filtering estimation mean square error matrix at the k moment, and the equation is as follows:
smoothing gain array:wherein,a smoothing gain matrix representing the time k, #k+1,kRepresenting a discretized kalman filter state transition matrix,representing a one-step prediction mean square error matrix from the k moment to the k +1 moment;
smoothed state estimation: X ^ k / N S = X ^ k F + K k / N S ( X ^ k + 1 / N S - X ^ k + 1 , k F ) , wherein:representing the smoothed estimate at the time of the k-th instant,representing the smoothed estimate at time k +1,representing a state one-step predicted value from the k moment to the k +1 moment;
smoothed estimated mean square error matrix: P k / N S = P k F + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , wherein:representing the smoothed estimated mean square error matrix at time k,representing the smoothed estimated mean square error matrix at time k +1,represents a one-step prediction mean square error matrix from time k to time k +1,a smoothing gain array representing time k;
from the formula, the smoothed estimate at time kIs a forward Kalman filter estimatorIs linearly compensated by a correction amount which is a smoothed estimate at the (k + 1) th timeAnd forward one-step prediction estimatorA difference of (d);
from the above analysis process, the R-T-S smoothed estimator at time k is a linear fusion of the forward Kalman filtering estimator at time k and the smoothed estimator at time k +1, the smoothed estimator at time k +1 utilizes global data.
2. The full-parameter accuracy assessment method of the long-time navigation system as claimed in claim 1, wherein: navigation period T of inertial navigation systemn=0.05s。
3. The full-parameter accuracy assessment method of the long-time navigation system as claimed in claim 1, wherein: filter period Tf=1s。
CN201410125919.3A 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system Pending CN104949687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410125919.3A CN104949687A (en) 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410125919.3A CN104949687A (en) 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system

Publications (1)

Publication Number Publication Date
CN104949687A true CN104949687A (en) 2015-09-30

Family

ID=54164532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410125919.3A Pending CN104949687A (en) 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system

Country Status (1)

Country Link
CN (1) CN104949687A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806338A (en) * 2016-03-17 2016-07-27 孙红星 GNSS/INS integrated positioning and directioning algorithm based on three-way Kalman filtering smoother
CN109974697A (en) * 2019-03-21 2019-07-05 中国船舶重工集团公司第七0七研究所 A kind of high-precision mapping method based on inertia system
CN110021134A (en) * 2019-05-28 2019-07-16 贵州大学 A kind of family's fire protection alarm system and its alarm method
CN110672124A (en) * 2019-09-27 2020-01-10 北京耐威时代科技有限公司 Offline lever arm estimation method
CN111337025A (en) * 2020-04-28 2020-06-26 中国人民解放军国防科技大学 Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine
CN112985455A (en) * 2019-12-16 2021-06-18 武汉四维图新科技有限公司 Precision evaluation method and device of positioning and attitude determination system and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426353A (en) * 2011-08-23 2012-04-25 北京航空航天大学 Method for offline acquisition of airborne InSAR (Interferometric Synthetic Aperture Radar) motion error by utilizing high-precision POS (Position and Orientation System)
CN102621565A (en) * 2012-04-17 2012-08-01 北京航空航天大学 Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN102997915A (en) * 2011-09-15 2013-03-27 北京自动化控制设备研究所 POS post-processing method with combination of closed-loop forward filtering and reverse smoothing
CN103364817A (en) * 2013-07-11 2013-10-23 北京航空航天大学 POS system double-strapdown calculating post-processing method based on R-T-S smoothness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426353A (en) * 2011-08-23 2012-04-25 北京航空航天大学 Method for offline acquisition of airborne InSAR (Interferometric Synthetic Aperture Radar) motion error by utilizing high-precision POS (Position and Orientation System)
CN102997915A (en) * 2011-09-15 2013-03-27 北京自动化控制设备研究所 POS post-processing method with combination of closed-loop forward filtering and reverse smoothing
CN102621565A (en) * 2012-04-17 2012-08-01 北京航空航天大学 Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN103364817A (en) * 2013-07-11 2013-10-23 北京航空航天大学 POS system double-strapdown calculating post-processing method based on R-T-S smoothness

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李睿佳等: "卫星/惯性组合导航事后高精度融合算法研究", 《系统仿真学报》 *
石波等: "应用EKF平滑算法提高GPS/INS定位定姿精度", 《测绘科学技术学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806338A (en) * 2016-03-17 2016-07-27 孙红星 GNSS/INS integrated positioning and directioning algorithm based on three-way Kalman filtering smoother
CN109974697A (en) * 2019-03-21 2019-07-05 中国船舶重工集团公司第七0七研究所 A kind of high-precision mapping method based on inertia system
CN109974697B (en) * 2019-03-21 2022-07-26 中国船舶重工集团公司第七0七研究所 High-precision mapping method based on inertial system
CN110021134A (en) * 2019-05-28 2019-07-16 贵州大学 A kind of family's fire protection alarm system and its alarm method
CN110672124A (en) * 2019-09-27 2020-01-10 北京耐威时代科技有限公司 Offline lever arm estimation method
CN112985455A (en) * 2019-12-16 2021-06-18 武汉四维图新科技有限公司 Precision evaluation method and device of positioning and attitude determination system and storage medium
CN112985455B (en) * 2019-12-16 2022-04-26 武汉四维图新科技有限公司 Precision evaluation method and device of positioning and attitude determination system and storage medium
CN111337025A (en) * 2020-04-28 2020-06-26 中国人民解放军国防科技大学 Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine

Similar Documents

Publication Publication Date Title
CN103917850B (en) A kind of motion alignment methods of inertial navigation system
CN106405670B (en) A kind of gravity anomaly data processing method suitable for strapdown marine gravitometer
CN104949687A (en) Whole parameter precision evaluation method for long-time navigation system
CN103235328B (en) GNSS (global navigation satellite system) and MEMS (micro-electromechanical systems) integrated navigation method
CN105371844B (en) A kind of inertial navigation system initial method based on inertia/astronomical mutual assistance
CN100516775C (en) Method for determining initial status of strapdown inertial navigation system
CN103344259B (en) A kind of INS/GPS integrated navigation system feedback correction method estimated based on lever arm
CN104181572B (en) Missile-borne inertia/ satellite tight combination navigation method
CN103630137B (en) A kind of for the attitude of navigational system and the bearing calibration of course angle
CN101949703B (en) Strapdown inertial/satellite combined navigation filtering method
CN103941273B (en) Adaptive filtering method of onboard inertia/satellite integrated navigation system and filter
CN105091907B (en) DVL orientation alignment error method of estimation in SINS/DVL combinations
CN109507706B (en) GPS signal loss prediction positioning method
CN103792561B (en) A kind of tight integration reduced-dimensions filtering method based on GNSS passage difference
JP6060642B2 (en) Self-position estimation device
CN103364817B (en) POS system double-strapdown calculating post-processing method based on R-T-S smoothness
CN106767752A (en) A kind of Combinated navigation method based on polarization information
CN103900565A (en) Method for obtaining inertial navigation system attitude based on DGPS (differential global positioning system)
CN101900573B (en) Method for realizing landtype inertial navigation system movement aiming
Xue et al. In-motion alignment algorithm for vehicle carried SINS based on odometer aiding
CN105700000A (en) Real-time dynamic precise positioning method of BeiDou navigation receiver
CN104075713A (en) Inertance/astronomy combined navigation method
CN103454665A (en) Method for measuring double-difference GPS/SINS integrated navigation attitude
CN103453903A (en) Pipeline flaw detection system navigation and location method based on IMU (Inertial Measurement Unit)
CN104236586A (en) Moving base transfer alignment method based on measurement of misalignment angle

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150930