CN104949687A - Whole parameter precision evaluation method for long-time navigation system - Google Patents

Whole parameter precision evaluation method for long-time navigation system Download PDF

Info

Publication number
CN104949687A
CN104949687A CN201410125919.3A CN201410125919A CN104949687A CN 104949687 A CN104949687 A CN 104949687A CN 201410125919 A CN201410125919 A CN 201410125919A CN 104949687 A CN104949687 A CN 104949687A
Authority
CN
China
Prior art keywords
time
matrix
smoothing
omega
inertial navigation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410125919.3A
Other languages
Chinese (zh)
Inventor
刘冲
徐海刚
李海军
裴玉锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Automation Control Equipment Institute BACEI
Original Assignee
Beijing Automation Control Equipment Institute BACEI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Automation Control Equipment Institute BACEI filed Critical Beijing Automation Control Equipment Institute BACEI
Priority to CN201410125919.3A priority Critical patent/CN104949687A/en
Publication of CN104949687A publication Critical patent/CN104949687A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明属于惯性技术领域,具体涉及一种长时间导航系统全参数精度评估方法,利用局部基准系统航行实验的原始数据及卫星信息,采用基于RTS平滑的离线处理方法,通过对存储的惯导数据及卫星数据的处理,得到基准系统高精度的位置、姿态及方位信息,作为基准系统的全参数精度评估的基准。在本发明技术方案中,k时刻的R-T-S平滑估计量是k时刻的正向Kalman滤波估计量和k+1时刻的平滑估计量的线性融合,而k+1时刻的平滑估计量有效利用了全局数据,所以对Kalman滤波进行R-T-S平滑比单纯采用Kalman滤波获得的导航精度高。

The invention belongs to the field of inertial technology, and specifically relates to a method for evaluating the accuracy of all parameters of a long-time navigation system, which utilizes the original data and satellite information of the navigation experiment of the local reference system, adopts an off-line processing method based on RTS smoothing, and passes the stored inertial navigation data And satellite data processing, to obtain the high-precision position, attitude and orientation information of the reference system, which is used as the benchmark for the evaluation of the accuracy of all parameters of the reference system. In the technical solution of the present invention, the RTS smoothing estimator at time k is a linear fusion of the forward Kalman filter estimator at k time and the smoothing estimator at k+1 time, and the smoothing estimator at k+1 time effectively utilizes the global Therefore, the RTS smoothing of the Kalman filter is higher than the navigation accuracy obtained by simply using the Kalman filter.

Description

一种长时间导航系统全参数精度评估方法A method for evaluating the accuracy of all parameters of a long-duration navigation system

技术领域technical field

本发明属于惯性技术领域,具体涉及一种长时间导航系统全参数精度评估方法。The invention belongs to the technical field of inertia, and in particular relates to a method for evaluating the accuracy of all parameters of a long-time navigation system.

背景技术Background technique

POS(Position Orientation System)系统应用于现代测绘领域,能够实现高精度的位置、姿态测量。高精度后处理技术是POS系统的核心技术,主要是采用R-T-S(Rauch-Tung-Striebel)最优固定区间平滑处理方法。经过后处理,POS的定位精度可达0.05m~0.3m,航向和水平姿态测量精度分别达到了0.008°(RMS)和0.005°(RMS)。POS (Position Orientation System) system is applied in the field of modern surveying and mapping, which can realize high-precision position and attitude measurement. High-precision post-processing technology is the core technology of the POS system, mainly using the R-T-S (Rauch-Tung-Striebel) optimal fixed interval smoothing method. After post-processing, the positioning accuracy of POS can reach 0.05m ~ 0.3m, and the heading and horizontal attitude measurement accuracy can reach 0.008° (RMS) and 0.005° (RMS) respectively.

现阶段,局部基准系统为了提供给导弹惯导准确的位置、速度、姿态和方位信息,本身系统的输出信息需要达到精度要求。为了考核局部基准系统的各参数精度需要额外准备一套高精度的基准惯导系统。At this stage, in order to provide accurate position, velocity, attitude and orientation information to the missile inertial navigation system, the output information of the local reference system needs to meet the accuracy requirements. In order to assess the accuracy of each parameter of the local reference system, it is necessary to prepare an additional set of high-precision reference inertial navigation system.

因此,亟需研制一种长时间导航系统全参数精度评估方法,利用存储的惯导系统信息及卫星数据,通过处理得到高精度的位置、方位及姿态信息,作为精度评估的基准。Therefore, it is urgent to develop a long-term navigation system full-parameter accuracy assessment method, using stored inertial navigation system information and satellite data, through processing to obtain high-precision position, orientation and attitude information, as a benchmark for accuracy assessment.

发明内容Contents of the invention

本发明要解决的技术问题是经过惯导系统与卫星的组合处理,实现对长时间导航系统的全参数进行精度评估的目的。The technical problem to be solved by the present invention is to realize the purpose of evaluating the accuracy of all parameters of the long-time navigation system through the combined processing of the inertial navigation system and the satellite.

为了实现这一目的,本发明采取的技术方案是:In order to realize this object, the technical scheme that the present invention takes is:

一种长时间导航系统全参数精度评估方法,利用局部基准系统航行实验的原始数据及卫星信息,采用基于RTS平滑的离线处理方法,通过对存储的惯导数据及卫星数据的处理,得到基准系统高精度的位置、姿态及方位信息,作为基准系统的全参数精度评估的基准;A method for assessing the accuracy of all parameters of a long-term navigation system, using the original data and satellite information of local reference system navigation experiments, using an off-line processing method based on RTS smoothing, and obtaining the reference system by processing the stored inertial navigation data and satellite data High-precision position, attitude and orientation information, as the benchmark for the full parameter accuracy evaluation of the reference system;

具体包括以下两个步骤以获取位置、速度及航姿数据:It specifically includes the following two steps to obtain position, speed and attitude data:

(1)利用惯性/卫星数据信息进行前向的闭环卡尔曼滤波过程;(1) utilize inertial/satellite data information to carry out forward closed-loop Kalman filtering process;

前向卡尔曼滤波算法采取GPS与惯性导航系统位置匹配模式,采用闭环校正方式进行;The forward Kalman filter algorithm adopts the position matching mode of GPS and inertial navigation system, and adopts the closed-loop correction method;

(1.1)确定算法模型和状态误差量(1.1) Determine the algorithm model and state error amount

算法采用18阶导航误差模型,选取18个状态误差量为:The algorithm uses an 18-order navigation error model, and selects 18 state error quantities as:

Xx == ΔLΔL ΔhΔh ΔλΔλ ΔVΔV nno ΔVΔV uu ΔVΔV ee ΦΦ nno ΦΦ uu ΦΦ ee ▿▿ xx ▿▿ ythe y ▿▿ zz ϵϵ xx ϵϵ ythe y ϵϵ zz RR xx bb RR ythe y bb RR zz bb

其中:in:

ΔL、Δh、Δλ:惯导的纬度、经度、高度误差;ΔL, Δh, Δλ: latitude, longitude, height error of inertial navigation;

ΔVn、ΔVu、ΔVe:惯导北向、天向、东向速度误差;ΔV n , ΔV u , ΔV e : Inertial navigation north, sky, east speed error;

Φn、Φu、Φe:惯导北向、天向、东向失准角误差;Φ n , Φ u , Φ e : Inertial navigation north, sky, east misalignment angle error;

惯导X、Y、Z轴加速度计零偏; Inertial navigation X, Y, Z axis accelerometer zero bias;

εx、εy、εz:惯导X、Y、Z轴陀螺漂移;ε x , ε y , ε z : inertial navigation X, Y, Z axis gyro drift;

惯导与GPS间杆臂误差。 Lever arm error between inertial navigation and GPS.

(1.2)确定系统状态方程(1.2) Determine the system state equation

系统状态方程为: The state equation of the system is:

其中:in:

Ff == Ff 1111 Ff 1212 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 Ff 21twenty one Ff 22twenty two Ff 23twenty three CC bb nno 00 33 ×× 33 00 33 ×× 33 Ff 3131 Ff 3232 Ff 3333 00 33 ×× 33 -- CC bb nno 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 3333 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33

Ff 1111 == 00 -- VV nno (( RR Mm ++ hh )) 22 00 00 00 00 VV ee RR NN ++ hh tanthe tan LL secsec LL -- VV ee secsec LL (( RR NN ++ hh )) 22 00 ;; Ff 1212 == 11 RR Mm ++ hh 00 00 00 11 00 00 00 secsec LL RR NN ++ hh ;;

Ff 21twenty one == -- (( 22 VV ee ωω ieie coscos LL ++ VV ee 22 secsec 22 LL RR NN ++ hh )) VV nno VV uu (( RR Mm ++ hh )) 22 ++ VV ee 22 tanthe tan LL (( RR NN ++ hh )) 22 00 -- 22 VV ee ωω ieie sinsin LL -- (( VV nno 22 (( RR Mm ++ hh )) 22 ++ VV ee 22 (( RR NN ++ hh )) 22 )) 00 22 ωω ieie (( VV uu sinsin LL ++ VV nno coscos LL )) ++ VV ee VV nno secsec 22 LL RR NN ++ hh VV ee VV uu -- VV ee VV nno tanthe tan LL (( RR NN ++ hh )) 22 00 ;;

Ff 22twenty two == -- VV uu RR Mm ++ hh -- VV nno RR Mm ++ hh -- 22 (( ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh )) 22 VV nno RR Mm ++ hh 00 22 (( ωω ieie coscos LL ++ VV ee RR NN ++ hh )) 22 ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh -- (( 22 ωω ieie coscos LL ++ VV ee RR NN ++ hh )) VV nno tanthe tan LL -- VV uu RR NN ++ hh ;;

Ff 23twenty three == 00 -- ff ee ff uu ff ee 00 -- ff nno -- ff uu ff nno 00 ;;

Ff 3131 == -- ωω ieie sinsin LL -- VV ee (( RR NN ++ hh )) 22 00 ωω ieie coscos LL ++ VV ee secsec 22 LL RR NN ++ hh -- VV ee tanthe tan LL (( RR NN ++ hh )) 22 00 00 VV nno (( RR Mm ++ hh )) 22 00 ;; Ff 3232 == 00 00 11 RR NN ++ hh 00 00 tanthe tan LL RR NN ++ hh -- 11 RR Mm ++ hh 00 00 ;;

Ff 3333 == 00 -- VV nno RR Mm ++ hh -- (( ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh )) VV nno RR Mm ++ hh 00 ωω ieie coscos LL ++ VV ee RR NN ++ hh ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh -- (( ωω ieie coscos LL ++ VV ee RR NN ++ hh )) 00

其中:Vn、Vu、Ve表示惯导系统的北向、天向和东向速度;L表示纬度,h表示高度,RM表示地球的子午圈半径,RN表示地球的卯酉圈半径,ωie表示地球的自转角速度,表示惯导系统从载体坐标系到导航坐标系的姿态转换矩阵,fn、fu、fe表示惯导系统加速度计敏感到的比力在导航坐标系内的北向、天向和东向表示值;Among them: Vn, Vu, Ve represent the northward, celestial and eastward speeds of the inertial navigation system; L represents the latitude, h represents the height, R M represents the earth’s meridian circle radius, R N represents the earth’s maoyou circle radius, ω ie is the angular velocity of the earth's rotation, Represents the attitude transformation matrix of the inertial navigation system from the carrier coordinate system to the navigation coordinate system, f n , fu , f e represent the north, sky and east directions of the specific force sensitive to the accelerometer of the inertial navigation system in the navigation coordinate system value;

(1.3)确定量测方程(1.3) Determine the measurement equation

量测方程为:Z=HX+VThe measurement equation is: Z=HX+V

其中:Z为量测量,即惯导系统的位置信息与GPS位置信息的差值,并考虑两者间杆臂误差:Z=[L-LGPS-Rn h-hGPS-Ru λ-λGPS-Re]T;hGPS、λGPS、LGPS分别表示GPS系统输出的高度信息、经度信息和纬度信息;Rn、Ru、Re分别表示惯导系统的位置信息与GPS位置信息之间的北向杆臂误差、天向杆臂误差和东向杆臂误差;Among them: Z is the quantity measurement, that is, the difference between the position information of the inertial navigation system and the GPS position information, and the error of the lever arm between the two is considered: Z=[LL GPS -R n hh GPS -R u λ-λ GPS -R e ] T ; h GPS , λ GPS , L GPS represent the height information, longitude information and latitude information output by the GPS system respectively; R n , R u , Re represent the distance between the position information of the inertial navigation system and the GPS position information North-direction lever-arm error, sky-direction lever-arm error and east-direction lever-arm error;

H为量测阵, H = I 3 × 3 0 3 × 12 - C b n H is the measurement array, h = I 3 × 3 0 3 × 12 - C b no

(1.4)确定卡尔曼滤波方程(1.4) Determine the Kalman filter equation

状态一步预测:其中:表示由k-1时刻到k时刻的状态一步预测值,表示k-1时刻的状态估计值,Φk,k-1表示离散化的卡尔曼滤波状态转移矩阵;State one-step prediction: in: Indicates the one-step predicted value of the state from k-1 time to k time, Indicates the estimated value of the state at time k-1, Φ k,k-1 represents the discretized Kalman filter state transition matrix;

一步预测均方误差阵:其中:表示由k-1时刻到k时刻的一步预测均方误差阵,表示k-1时刻的估计均方误差阵,Qk表示离散化后的系统噪声矩阵;One-step forecast mean square error matrix: in: Represents the one-step forecast mean square error matrix from time k-1 to time k, Represents the estimated mean square error matrix at time k-1, and Q k represents the discretized system noise matrix;

滤波增益矩阵:其中:表示k时刻的滤波增益阵,Hk表示k时刻的系统量测阵,Rk表示离散化后的量测噪声矩阵;Filter gain matrix: in: Represents the filter gain matrix at time k, H k represents the system measurement matrix at time k, and R k represents the discretized measurement noise matrix;

状态估计:其中:表示k时刻的状态估计值,Zk表示系统观测量矩阵;State estimation: in: Indicates the estimated value of the state at time k, and Z k indicates the system observation matrix;

估计均方误差阵: P k F = ( I - K k F H k ) P k , k - 1 F ( I - K k F H k ) T + K k F R k ( K k F ) T , 其中:表示k时刻的估计均方误差阵,Fi表示未离散化的系统状态转移矩阵对应元素值,I表示对应维数的单位矩阵,Tn表示惯导系统导航周期,Tf表示滤波周期;Estimate the mean squared error matrix: P k f = ( I - K k f h k ) P k , k - 1 f ( I - K k f h k ) T + K k f R k ( K k f ) T , in: Represents the estimated mean square error matrix at time k, F i represents the corresponding element value of the undiscretized system state transition matrix, I represents the identity matrix of the corresponding dimension, T n represents the navigation cycle of the inertial navigation system, and T f represents the filter cycle;

(2)在步骤(1)卡尔曼滤波的基础上,进行反向最优固定区间平滑;(2) On the basis of step (1) Kalman filter, perform reverse optimal fixed interval smoothing;

设整个导航时间区间为[0 N],t表示此时间间隔中的任一时刻,0≤t≤N,固定区间平滑估值表示为 Assuming that the entire navigation time interval is [0 N], t represents any moment in this time interval, 0≤t≤N, and the fixed interval smoothing estimation is expressed as

(2.1)首先进行0→N的正向Kalman滤波,同时存储滤波估计出的状态转移矩阵Φk,k-1、状态一步预测一步预测均方误差阵状态估计估计均方误差阵 (2.1) First, carry out 0→N forward Kalman filtering, and store the state transition matrix Φ k,k-1 estimated by filtering at the same time, and the state one-step prediction One-step prediction mean square error matrix state estimation Estimated mean square error matrix

(2.2)滤波结束后,将正向滤波最后时刻N的估计值作为反向R-T-S平滑起始时刻的初始值,令k=N,进行N→0的R-T-S平滑过程,其中表示N时刻的平滑估计值,表示N时刻的卡尔曼滤波状态估计值,表示N时刻的平滑估计均方误差阵,表示k时刻的卡尔曼滤波估计均方误差阵,方程如下:(2.2) After the filtering is finished, the estimated value of the last time N of the forward filtering is used as the initial value of the starting time of reverse RTS smoothing, let k=N, Carry out N→0 RTS smoothing process, where Indicates the smoothed estimated value at time N, Indicates the estimated value of the Kalman filter state at time N, Represents the smooth estimated mean square error matrix at time N, Represents the Kalman filter estimated mean square error matrix at time k, the equation is as follows:

平滑增益阵:其中,表示k时刻的平滑增益阵,Φk+1,k表示离散化的卡尔曼滤波状态转移矩阵,表示由k时刻到k+1时刻的一步预测均方误差阵;Smooth gain matrix: in, Represents the smooth gain matrix at time k, Φ k+1,k represents the discretized Kalman filter state transition matrix, Indicates the one-step prediction mean square error matrix from time k to time k+1;

平滑的状态估计: X ^ k / N S = X ^ k F + K k / N S ( X ^ k + 1 / N S - X ^ k + 1 , k F ) , 其中:表示第k时刻的平滑估计量,表示第k+1时刻的平滑估计量,表示由k时刻到k+1时刻的状态一步预测值;Smooth state estimation: x ^ k / N S = x ^ k f + K k / N S ( x ^ k + 1 / N S - x ^ k + 1 , k f ) , in: Indicates the smoothing estimator at the kth time, Indicates the smoothing estimator at the k+1th moment, Indicates the one-step predicted value of the state from time k to time k+1;

平滑的估计均方误差阵: P k / N S = P k F + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , 其中:表示k时刻的平滑估计均方误差阵,表示k+1时刻的平滑估计均方误差阵,表示由k时刻到k+1时刻的一步预测均方误差阵,表示k时刻的平滑增益阵;Smoothed estimated mean squared error matrix: P k / N S = P k f + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , in: Represents the smooth estimated mean square error matrix at time k, Represents the smooth estimated mean square error matrix at time k+1, Indicates the one-step prediction mean square error matrix from time k to time k+1, Indicates the smooth gain matrix at time k;

从公式可见,第k时刻的平滑估计量是在正向Kalman滤波估计量的基础上线性补偿了一个修正量得到的,该修正量是第k+1时刻的平滑估计量与正向一步预测估计量的差值;It can be seen from the formula that the smoothing estimator at the kth moment is the estimator in the forward Kalman filter It is obtained by linearly compensating a correction amount on the basis of , which is the smoothing estimator at the k+1th moment and the forward one-step forecast estimator the difference;

由上面的分析过程得到,k时刻的R-T-S平滑估计量是k时刻的正向Kalman滤波估计量和k+1时刻的平滑估计量的线性融合,k+1时刻的平滑估计量利用了全局数据。From the above analysis process, the R-T-S smoothing estimator at time k is a linear fusion of the forward Kalman filter estimator at time k and the smoothing estimator at time k+1, and the smoothing estimator at time k+1 utilizes global data.

进一步的,如上所述的一种长时间导航系统全参数精度评估方法,其中:惯导系统导航周期Tn=0.05s。Further, a method for evaluating the accuracy of all parameters of a long-term navigation system as described above, wherein: the navigation period of the inertial navigation system T n =0.05s.

进一步的,如上所述的一种长时间导航系统全参数精度评估方法,其中:滤波周期Tf=1s。Further, a method for evaluating the accuracy of all parameters of a long-duration navigation system as described above, wherein: the filtering period T f =1s.

由上面的分析过程可知,k时刻的R-T-S平滑估计量是k时刻的正向Kalman滤波估计量和k+1时刻的平滑估计量的线性融合,而k+1时刻的平滑估计量有效利用了全局数据,所以对Kalman滤波进行R-T-S平滑比单纯采用Kalman滤波获得的导航精度高。From the above analysis process, it can be seen that the R-T-S smoothing estimator at time k is a linear fusion of the forward Kalman filter estimator at time k and the smoothing estimator at time k+1, and the smoothing estimator at time k+1 effectively utilizes the global Therefore, the R-T-S smoothing of the Kalman filter is higher than the navigation accuracy obtained by simply using the Kalman filter.

本发明的有益效果在于:提出了一种长时间导航系统的全参数评估方法,通过对存储的惯导数据及卫星数据的处理,得到基准系统高精度的位置、姿态及方位信息,可作为基准系统的全参数精度评估的基准,其中方位精度达到0.25′,姿态精度达到0.025′。经试验验证发现,此技术能够满足局部基准系统精度评价需求,具有很高的实用价值。The beneficial effect of the present invention is that: a full-parameter evaluation method of a long-time navigation system is proposed, by processing the stored inertial navigation data and satellite data, the high-precision position, attitude and orientation information of the reference system can be obtained, which can be used as a reference The benchmark of the system's full parameter accuracy evaluation, where the azimuth accuracy reaches 0.25' and the attitude accuracy reaches 0.025'. It is verified by experiments that this technology can meet the accuracy evaluation requirements of the local reference system and has high practical value.

附图说明Description of drawings

图1是本发明算法实现流程图;Fig. 1 is the flow chart of algorithm realization of the present invention;

图2是后处理位置精度曲线;Figure 2 is the post-processing position accuracy curve;

图3是后处理速度精度曲线;Figure 3 is the post-processing speed accuracy curve;

图4是后处理姿态精度曲线;Figure 4 is the post-processing attitude accuracy curve;

图5是后处理航向精度曲线。Figure 5 is the post-processing heading accuracy curve.

具体实施方式Detailed ways

下面结合附图和具体实施例对本发明技术方案进行详细说明。The technical solution of the present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.

一种长时间导航系统全参数精度评估方法,利用局部基准系统航行实验的原始数据及卫星信息,采用基于RTS平滑的离线处理方法,通过对存储的惯导数据及卫星数据的处理,得到基准系统高精度的位置、姿态及方位信息,作为基准系统的全参数精度评估的基准;A method for assessing the accuracy of all parameters of a long-term navigation system, using the original data and satellite information of local reference system navigation experiments, using an off-line processing method based on RTS smoothing, and obtaining the reference system by processing the stored inertial navigation data and satellite data High-precision position, attitude and orientation information, as the benchmark for the full parameter accuracy evaluation of the reference system;

本发明算法实现流程如图1所示,具体包括以下两个步骤以获取位置、速度及航姿数据:The algorithm implementation process of the present invention is shown in Figure 1, specifically includes the following two steps to obtain position, speed and attitude data:

(1)利用惯性/卫星数据信息进行前向的闭环卡尔曼滤波过程;(1) utilize inertial/satellite data information to carry out forward closed-loop Kalman filtering process;

前向卡尔曼滤波算法采取GPS与惯性导航系统位置匹配模式,采用闭环校正方式进行;The forward Kalman filter algorithm adopts the position matching mode of GPS and inertial navigation system, and adopts the closed-loop correction method;

(1.1)确定算法模型和状态误差量(1.1) Determine the algorithm model and state error amount

算法采用18阶导航误差模型,选取18个状态误差量为:The algorithm uses an 18-order navigation error model, and selects 18 state error quantities as:

Xx == ΔLΔ L ΔhΔh ΔλΔλ ΔVΔV nno ΔVΔV uu ΔVΔV ee ΦΦ nno ΦΦ uu ΦΦ ee ▿▿ xx ▿▿ ythe y ▿▿ zz ϵϵ xx ϵϵ ythe y ϵϵ zz RR xx bb RR ythe y bb RR zz bb

其中:in:

ΔL、Δh、Δλ:惯导的纬度、经度、高度误差;ΔL, Δh, Δλ: latitude, longitude, height error of inertial navigation;

ΔVn、ΔVu、ΔVe:惯导北向、天向、东向速度误差;ΔV n , ΔV u , ΔV e : Inertial navigation north, sky, east speed error;

Φn、Φu、Φe:惯导北向、天向、东向失准角误差;Φ n , Φ u , Φ e : Inertial navigation north, sky, east misalignment angle error;

惯导X、Y、Z轴加速度计零偏; Inertial navigation X, Y, Z axis accelerometer zero bias;

εx、εy、εz:惯导X、Y、Z轴陀螺漂移;ε x , ε y , ε z : inertial navigation X, Y, Z axis gyro drift;

惯导与GPS间杆臂误差。 Lever arm error between inertial navigation and GPS.

(1.2)确定系统状态方程(1.2) Determine the system state equation

系统状态方程为: The state equation of the system is:

其中:in:

Ff == Ff 1111 Ff 1212 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 Ff 21twenty one Ff 22twenty two Ff 23twenty three CC bb nno 00 33 ×× 33 00 33 ×× 33 Ff 3131 Ff 3232 Ff 3333 00 33 ×× 33 -- CC bb nno 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 3333 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33

Ff 1111 == 00 -- VV nno (( RR Mm ++ hh )) 22 00 00 00 00 VV ee RR NN ++ hh tanthe tan LL secsec LL -- VV ee secsec LL (( RR NN ++ hh )) 22 00 ;; Ff 1212 == 11 RR Mm ++ hh 00 00 00 11 00 00 00 secsec LL RR NN ++ hh ;;

Ff 21twenty one == -- (( 22 VV ee ωω ieie coscos LL ++ VV ee 22 secsec 22 LL RR NN ++ hh )) VV nno VV uu (( RR Mm ++ hh )) 22 ++ VV ee 22 tanthe tan LL (( RR NN ++ hh )) 22 00 -- 22 VV ee ωω ieie sinsin LL -- (( VV nno 22 (( RR Mm ++ hh )) 22 ++ VV ee 22 (( RR NN ++ hh )) 22 )) 00 22 ωω ieie (( VV uu sinsin LL ++ VV nno coscos LL )) ++ VV ee VV nno secsec 22 LL RR NN ++ hh VV ee VV uu -- VV ee VV nno tanthe tan LL (( RR NN ++ hh )) 22 00 ;;

Ff 22twenty two == -- VV uu RR Mm ++ hh -- VV nno RR Mm ++ hh -- 22 (( ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh )) 22 VV nno RR Mm ++ hh 00 22 (( ωω ieie coscos LL ++ VV ee RR NN ++ hh )) 22 ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh -- (( 22 ωω ieie coscos LL ++ VV ee RR NN ++ hh )) VV nno tanthe tan LL -- VV uu RR NN ++ hh ;;

Ff 23twenty three == 00 -- ff ee ff uu ff ee 00 -- ff nno -- ff uu ff nno 00 ;;

Ff 3131 == -- ωω ieie sinsin LL -- VV ee (( RR NN ++ hh )) 22 00 ωω ieie coscos LL ++ VV ee secsec 22 LL RR NN ++ hh -- VV ee tanthe tan LL (( RR NN ++ hh )) 22 00 00 VV nno (( RR Mm ++ hh )) 22 00 ;; Ff 3232 == 00 00 11 RR NN ++ hh 00 00 tanthe tan LL RR NN ++ hh -- 11 RR Mm ++ hh 00 00 ;;

Ff 3333 == 00 -- VV nno RR Mm ++ hh -- (( ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh )) VV nno RR Mm ++ hh 00 ωω ieie coscos LL ++ VV ee RR NN ++ hh ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh -- (( ωω ieie coscos LL ++ VV ee RR NN ++ hh )) 00

其中:Vn、Vu、Ve表示惯导系统的北向、天向和东向速度;L表示纬度,h表示高度,RM表示地球的子午圈半径,RN表示地球的卯酉圈半径,ωie表示地球的自转角速度,表示惯导系统从载体坐标系到导航坐标系的姿态转换矩阵,fn、fu、fe表示惯导系统加速度计敏感到的比力在导航坐标系内的北向、天向和东向表示值;Among them: Vn, Vu, Ve represent the northward, celestial and eastward speeds of the inertial navigation system; L represents the latitude, h represents the height, R M represents the earth’s meridian circle radius, R N represents the earth’s maoyou circle radius, ω ie is the angular velocity of the earth's rotation, Represents the attitude transformation matrix of the inertial navigation system from the carrier coordinate system to the navigation coordinate system, f n , fu , f e represent the north, sky and east directions of the specific force sensitive to the accelerometer of the inertial navigation system in the navigation coordinate system value;

(1.3)确定量测方程(1.3) Determine the measurement equation

量测方程为:Z=HX+VThe measurement equation is: Z=HX+V

其中:Z为量测量,即惯导系统的位置信息与GPS位置信息的差值,并考虑两者间杆臂误差:Z=[L-LGPS-Rn h-hGPS-Ru λ-λGPS-Re]T;hGPS、λGPS、LGPS分别表示GPS系统输出的高度信息、经度信息和纬度信息;Rn、Ru、Re分别表示惯导系统的位置信息与GPS位置信息之间的北向杆臂误差、天向杆臂误差和东向杆臂误差;Among them: Z is the quantity measurement, that is, the difference between the position information of the inertial navigation system and the GPS position information, and the error of the lever arm between the two is considered: Z=[LL GPS -R n hh GPS -R u λ-λ GPS -R e ] T ; h GPS , λ GPS , L GPS represent the height information, longitude information and latitude information output by the GPS system respectively; R n , R u , Re represent the distance between the position information of the inertial navigation system and the GPS position information North-direction lever-arm error, sky-direction lever-arm error and east-direction lever-arm error;

H为量测阵, H = I 3 × 3 0 3 × 12 - C b n H is the measurement array, h = I 3 × 3 0 3 × 12 - C b no

(1.4)确定卡尔曼滤波方程(1.4) Determine the Kalman filter equation

状态一步预测:其中:表示由k-1时刻到k时刻的状态一步预测值,表示k-1时刻的状态估计值,Φk,k-1表示离散化的卡尔曼滤波状态转移矩阵;State one-step prediction: in: Indicates the one-step predicted value of the state from k-1 time to k time, Indicates the estimated value of the state at time k-1, Φ k,k-1 represents the discretized Kalman filter state transition matrix;

一步预测均方误差阵:其中:表示由k-1时刻到k时刻的一步预测均方误差阵,表示k-1时刻的估计均方误差阵,Qk表示离散化后的系统噪声矩阵;One-step forecast mean square error matrix: in: Represents the one-step forecast mean square error matrix from time k-1 to time k, Represents the estimated mean square error matrix at time k-1, and Q k represents the discretized system noise matrix;

滤波增益矩阵:其中:表示k时刻的滤波增益阵,Hk表示k时刻的系统量测阵,Rk表示离散化后的量测噪声矩阵;Filter gain matrix: in: Represents the filter gain matrix at time k, H k represents the system measurement matrix at time k, and R k represents the discretized measurement noise matrix;

状态估计:其中:表示k时刻的状态估计值,Zk表示系统观测量矩阵;State estimation: in: Indicates the estimated value of the state at time k, and Z k indicates the system observation matrix;

估计均方误差阵: P k F = ( I - K k F H k ) P k , k - 1 F ( I - K k F H k ) T + K k F R k ( K k F ) T , 其中:表示k时刻的估计均方误差阵,Fi表示未离散化的系统状态转移矩阵对应元素值,I表示对应维数的单位矩阵,Tn表示惯导系统导航周期(在本具体实施例中,Tn=0.05s),Tf表示滤波周期(在本具体实施例中,Tf=1s);Estimate the mean squared error matrix: P k f = ( I - K k f h k ) P k , k - 1 f ( I - K k f h k ) T + K k f R k ( K k f ) T , in: Represents the estimated mean square error matrix at time k, F i represents the corresponding element value of the non-discretized system state transition matrix, I represents the identity matrix of the corresponding dimension, T n represents the navigation cycle of the inertial navigation system (in this specific embodiment, T n =0.05s), T f represents the filter period (in this specific embodiment, T f =1s);

(2)在步骤(1)卡尔曼滤波的基础上,进行反向最优固定区间平滑;(2) On the basis of step (1) Kalman filter, perform reverse optimal fixed interval smoothing;

设整个导航时间区间为[0 N],t表示此时间间隔中的任一时刻,0≤t≤N,固定区间平滑估值表示为 Assuming that the entire navigation time interval is [0 N], t represents any moment in this time interval, 0≤t≤N, and the fixed interval smoothing estimation is expressed as

(2.1)首先进行0→N的正向Kalman滤波,同时存储滤波估计出的状态转移矩阵Φk,k-1、状态一步预测一步预测均方误差阵状态估计估计均方误差阵 (2.1) First, carry out 0→N forward Kalman filtering, and store the state transition matrix Φ k,k-1 estimated by filtering at the same time, and the state one-step prediction One-step prediction mean square error matrix state estimation Estimated mean square error matrix

(2.2)滤波结束后,将正向滤波最后时刻N的估计值作为反向R-T-S平滑起始时刻的初始值,令k=N,进行N→0的R-T-S平滑过程,其中表示N时刻的平滑估计值,表示N时刻的卡尔曼滤波状态估计值,表示N时刻的平滑估计均方误差阵,表示k时刻的卡尔曼滤波估计均方误差阵,方程如下:(2.2) After the filtering is finished, the estimated value of the last time N of the forward filtering is used as the initial value of the starting time of reverse RTS smoothing, let k=N, Carry out N→0 RTS smoothing process, where Indicates the smoothed estimated value at time N, Indicates the estimated value of the Kalman filter state at time N, Represents the smooth estimated mean square error matrix at time N, Represents the Kalman filter estimated mean square error matrix at time k, the equation is as follows:

平滑增益阵:其中,表示k时刻的平滑增益阵,Φk+1,k表示离散化的卡尔曼滤波状态转移矩阵,表示由k时刻到k+1时刻的一步预测均方误差阵;Smooth gain matrix: in, Represents the smooth gain matrix at time k, Φ k+1,k represents the discretized Kalman filter state transition matrix, Indicates the one-step prediction mean square error matrix from time k to time k+1;

平滑的状态估计: X ^ k / N S = X ^ k F + K k / N S ( X ^ k + 1 / N S - X ^ k + 1 , k F ) , 其中:表示第k时刻的平滑估计量,表示第k+1时刻的平滑估计量,表示由k时刻到k+1时刻的状态一步预测值;Smooth state estimation: x ^ k / N S = x ^ k f + K k / N S ( x ^ k + 1 / N S - x ^ k + 1 , k f ) , in: Indicates the smoothing estimator at the kth time, Indicates the smoothing estimator at the k+1th moment, Indicates the one-step predicted value of the state from time k to time k+1;

平滑的估计均方误差阵: P k / N S = P k F + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , 其中:表示k时刻的平滑估计均方误差阵,表示k+1时刻的平滑估计均方误差阵,表示由k时刻到k+1时刻的一步预测均方误差阵,表示k时刻的平滑增益阵;Smoothed estimated mean squared error matrix: P k / N S = P k f + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , in: Represents the smooth estimated mean square error matrix at time k, Represents the smooth estimated mean square error matrix at time k+1, Indicates the one-step prediction mean square error matrix from time k to time k+1, Indicates the smooth gain matrix at time k;

从公式可见,第k时刻的平滑估计量是在正向Kalman滤波估计量的基础上线性补偿了一个修正量得到的,该修正量是第k+1时刻的平滑估计量与正向一步预测估计量的差值;It can be seen from the formula that the smoothing estimator at the kth moment is the estimator in the forward Kalman filter It is obtained by linearly compensating a correction amount on the basis of , which is the smoothing estimator at the k+1th moment and the forward one-step forecast estimator the difference;

由上面的分析过程得到,k时刻的R-T-S平滑估计量是k时刻的正向Kalman滤波估计量和k+1时刻的平滑估计量的线性融合,k+1时刻的平滑估计量利用了全局数据。From the above analysis process, the R-T-S smoothing estimator at time k is a linear fusion of the forward Kalman filter estimator at time k and the smoothing estimator at time k+1, and the smoothing estimator at time k+1 utilizes global data.

由上面的分析过程可知,k时刻的R-T-S平滑估计量是k时刻的正向Kalman滤波估计量和k+1时刻的平滑估计量的线性融合,而k+1时刻的平滑估计量有效利用了全局数据,所以对Kalman滤波进行R-T-S平滑比单纯采用Kalman滤波获得的导航精度高。From the above analysis process, it can be seen that the R-T-S smoothing estimator at time k is a linear fusion of the forward Kalman filter estimator at time k and the smoothing estimator at time k+1, and the smoothing estimator at time k+1 effectively utilizes the global Therefore, the R-T-S smoothing of the Kalman filter is higher than the navigation accuracy obtained by simply using the Kalman filter.

经过上面两步得到的高精度的位置、速度及航姿信息。为了验证此方法的可行性,对航行试验数据进行处理。The high-precision position, speed and attitude information obtained through the above two steps. In order to verify the feasibility of this method, the sailing test data are processed.

根据算法原理,估计均方误差阵的大小代表了后处理算法的精度。如图2~5所示。According to the principle of the algorithm, the estimated mean square error matrix The size of represents the accuracy of the post-processing algorithm. As shown in Figure 2-5.

由图2~5可以看出,该方法得到的水平姿态精度为0.025′,航向精度为0.25′,位置精度为1.3m,速度误差为0.006m/s,可以作为评判局部基准全参数精度的基准。It can be seen from Figures 2 to 5 that the horizontal attitude accuracy obtained by this method is 0.025′, the heading accuracy is 0.25′, the position accuracy is 1.3m, and the velocity error is 0.006m/s, which can be used as a benchmark for judging the accuracy of all parameters of the local benchmark .

对六条航行试验数据进行处理,得到局部基准系统各参数在线精度,其中航姿精度如表1所示。The six navigation test data are processed to obtain the online accuracy of each parameter of the local reference system, and the attitude accuracy is shown in Table 1.

表1各条次试验统计精度Table 1 Statistical accuracy of each test

由表中统计结果可知,各条次试验水平姿态误差的最大值为0.59′,航向误差最大值为2.96′,能够满足水平姿态误差1.5′,航向误差3.67′/cosφ的指标要求。It can be seen from the statistical results in the table that the maximum value of the horizontal attitude error of each test is 0.59′, and the maximum value of the heading error is 2.96′, which can meet the index requirements of the horizontal attitude error of 1.5′ and the heading error of 3.67′/cosφ.

Claims (3)

1.一种长时间导航系统全参数精度评估方法,其特征在于:利用局部基准系统航行实验的原始数据及卫星信息,采用基于RTS平滑的离线处理方法,通过对存储的惯导数据及卫星数据的处理,得到基准系统高精度的位置、姿态及方位信息,作为基准系统的全参数精度评估的基准;1. A method for assessing the accuracy of all parameters of a long-time navigation system, characterized in that: utilize the original data and satellite information of the navigation experiment of the local reference system, adopt an off-line processing method based on RTS smoothing, and pass through the stored inertial navigation data and satellite data The high-precision position, attitude and orientation information of the reference system can be obtained through processing, which can be used as the reference for the evaluation of the accuracy of all parameters of the reference system; 具体包括以下两个步骤以获取位置、速度及航姿数据:It specifically includes the following two steps to obtain position, speed and attitude data: (1)利用惯性/卫星数据信息进行前向的闭环卡尔曼滤波过程;(1) utilize inertial/satellite data information to carry out forward closed-loop Kalman filtering process; 前向卡尔曼滤波算法采取GPS与惯性导航系统位置匹配模式,采用闭环校正方式进行;The forward Kalman filter algorithm adopts the position matching mode of GPS and inertial navigation system, and adopts the closed-loop correction method; (1.1)确定算法模型和状态误差量(1.1) Determine the algorithm model and state error amount 算法采用18阶导航误差模型,选取18个状态误差量为:The algorithm uses an 18-order navigation error model, and selects 18 state error quantities as: Xx == ΔLΔL ΔhΔh ΔλΔλ ΔVΔV nno ΔVΔV uu ΔVΔV ee ΦΦ nno ΦΦ uu ΦΦ ee ▿▿ xx ▿▿ ythe y ▿▿ zz ϵϵ xx ϵϵ ythe y ϵϵ zz RR xx bb RR ythe y bb RR zz bb 其中:in: ΔL、Δh、Δλ:惯导的纬度、经度、高度误差;ΔL, Δh, Δλ: latitude, longitude, height error of inertial navigation; ΔVn、ΔVu、ΔVe:惯导北向、天向、东向速度误差;ΔV n , ΔV u , ΔV e : Inertial navigation north, sky, east speed error; Φn、Φu、Φe:惯导北向、天向、东向失准角误差;Φ n , Φ u , Φ e : Inertial navigation north, sky, east misalignment angle error; 惯导X、Y、Z轴加速度计零偏; Inertial navigation X, Y, Z axis accelerometer zero bias; εx、εy、εz:惯导X、Y、Z轴陀螺漂移;ε x , ε y , ε z : inertial navigation X, Y, Z axis gyro drift; 惯导与GPS间杆臂误差。 Lever arm error between inertial navigation and GPS. (1.2)确定系统状态方程(1.2) Determine the system state equation 系统状态方程为: The state equation of the system is: 其中:in: Ff == Ff 1111 Ff 1212 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 Ff 21twenty one Ff 22twenty two Ff 23twenty three CC bb nno 00 33 ×× 33 00 33 ×× 33 Ff 3131 Ff 3232 Ff 3333 00 33 ×× 33 -- CC bb nno 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 3333 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 00 33 ×× 33 Ff 1111 == 00 -- VV nno (( RR Mm ++ hh )) 22 00 00 00 00 VV ee RR NN ++ hh tanthe tan LL secsec LL -- VV ee secsec LL (( RR NN ++ hh )) 22 00 ;; Ff 1212 == 11 RR Mm ++ hh 00 00 00 11 00 00 00 secsec LL RR NN ++ hh ;; Ff 21twenty one == -- (( 22 VV ee ωω ieie coscos LL ++ VV ee 22 secsec 22 LL RR NN ++ hh )) VV nno VV uu (( RR Mm ++ hh )) 22 ++ VV ee 22 tanthe tan LL (( RR NN ++ hh )) 22 00 -- 22 VV ee ωω ieie sinsin LL -- (( VV nno 22 (( RR Mm ++ hh )) 22 ++ VV ee 22 (( RR NN ++ hh )) 22 )) 00 22 ωω ieie (( VV uu sinsin LL ++ VV nno coscos LL )) ++ VV ee VV nno secsec 22 LL RR NN ++ hh VV ee VV uu -- VV ee VV nno tanthe tan LL (( RR NN ++ hh )) 22 00 ;; Ff 22twenty two == -- VV uu RR Mm ++ hh -- VV nno RR Mm ++ hh -- 22 (( ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh )) 22 VV nno RR Mm ++ hh 00 22 (( ωω ieie coscos LL ++ VV ee RR NN ++ hh )) 22 ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh -- (( 22 ωω ieie coscos LL ++ VV ee RR NN ++ hh )) VV nno tanthe tan LL -- VV uu RR NN ++ hh ;; Ff 23twenty three == 00 -- ff ee ff uu ff ee 00 -- ff nno -- ff uu ff nno 00 ;; Ff 3131 == -- ωω ieie sinsin LL -- VV ee (( RR NN ++ hh )) 22 00 ωω ieie coscos LL ++ VV ee secsec 22 LL RR NN ++ hh -- VV ee tanthe tan LL (( RR NN ++ hh )) 22 00 00 VV nno (( RR Mm ++ hh )) 22 00 ;; Ff 3232 == 00 00 11 RR NN ++ hh 00 00 tanthe tan LL RR NN ++ hh -- 11 RR Mm ++ hh 00 00 ;; Ff 3333 == 00 -- VV nno RR Mm ++ hh -- (( ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh )) VV nno RR Mm ++ hh 00 ωω ieie coscos LL ++ VV ee RR NN ++ hh ωω ieie sinsin LL ++ VV ee tanthe tan LL RR NN ++ hh -- (( ωω ieie coscos LL ++ VV ee RR NN ++ hh )) 00 其中:Vn、Vu、Ve表示惯导系统的北向、天向和东向速度;L表示纬度,h表示高度,RM表示地球的子午圈半径,RN表示地球的卯酉圈半径,ωie表示地球的自转角速度,表示惯导系统从载体坐标系到导航坐标系的姿态转换矩阵,fn、fu、fe表示惯导系统加速度计敏感到的比力在导航坐标系内的北向、天向和东向表示值;Among them: Vn, Vu, Ve represent the northward, celestial and eastward speeds of the inertial navigation system; L represents the latitude, h represents the height, R M represents the earth’s meridian circle radius, R N represents the earth’s maoyou circle radius, ω ie is the angular velocity of the earth's rotation, Represents the attitude transformation matrix of the inertial navigation system from the carrier coordinate system to the navigation coordinate system, f n , fu , f e represent the north, sky and east directions of the specific force sensitive to the accelerometer of the inertial navigation system in the navigation coordinate system value; (1.3)确定量测方程(1.3) Determine the measurement equation 量测方程为:Z=HX+VThe measurement equation is: Z=HX+V 其中:Z为量测量,即惯导系统的位置信息与GPS位置信息的差值,并考虑两者间杆臂误差:Z=[L-LGPS-Rn h-hGPS-Ru λ-λGPS-Re]T;hGPS、λGPS、LGPS分别表示GPS系统输出的高度信息、经度信息和纬度信息;Rn、Ru、Re分别表示惯导系统的位置信息与GPS位置信息之间的北向杆臂误差、天向杆臂误差和东向杆臂误差;Among them: Z is the quantity measurement, that is, the difference between the position information of the inertial navigation system and the GPS position information, and the error of the lever arm between the two is considered: Z=[LL GPS -R n hh GPS -R u λ-λ GPS -R e ] T ; h GPS , λ GPS , L GPS represent the height information, longitude information and latitude information output by the GPS system respectively; R n , R u , Re represent the distance between the position information of the inertial navigation system and the GPS position information North-direction lever-arm error, sky-direction lever-arm error and east-direction lever-arm error; H为量测阵, H = I 3 × 3 0 3 × 12 - C b n H is the measurement array, h = I 3 × 3 0 3 × 12 - C b no (1.4)确定卡尔曼滤波方程(1.4) Determine the Kalman filter equation 状态一步预测:其中:表示由k-1时刻到k时刻的状态一步预测值,表示k-1时刻的状态估计值,Φk,k-1表示离散化的卡尔曼滤波状态转移矩阵;State one-step prediction: in: Indicates the one-step predicted value of the state from k-1 time to k time, Indicates the estimated value of the state at time k-1, Φ k,k-1 represents the discretized Kalman filter state transition matrix; 一步预测均方误差阵:其中:表示由k-1时刻到k时刻的一步预测均方误差阵,表示k-1时刻的估计均方误差阵,Qk表示离散化后的系统噪声矩阵;One-step forecast mean square error matrix: in: Represents the one-step forecast mean square error matrix from time k-1 to time k, Represents the estimated mean square error matrix at time k-1, and Q k represents the discretized system noise matrix; 滤波增益矩阵:其中:表示k时刻的滤波增益阵,Hk表示k时刻的系统量测阵,Rk表示离散化后的量测噪声矩阵;Filter gain matrix: in: Represents the filter gain matrix at time k, H k represents the system measurement matrix at time k, and R k represents the discretized measurement noise matrix; 状态估计:其中:表示k时刻的状态估计值,Zk表示系统观测量矩阵;State estimation: in: Indicates the estimated value of the state at time k, and Z k indicates the system observation matrix; 估计均方误差阵: P k F = ( I - K k F H k ) P k , k - 1 F ( I - K k F H k ) T + K k F R k ( K k F ) T , 其中:表示k时刻的估计均方误差阵,Fi表示未离散化的系统状态转移矩阵对应元素值,I表示对应维数的单位矩阵,Tn表示惯导系统导航周期,Tf表示滤波周期;Estimate the mean squared error matrix: P k f = ( I - K k f h k ) P k , k - 1 f ( I - K k f h k ) T + K k f R k ( K k f ) T , in: Represents the estimated mean square error matrix at time k, F i represents the corresponding element value of the undiscretized system state transition matrix, I represents the identity matrix of the corresponding dimension, T n represents the navigation cycle of the inertial navigation system, and T f represents the filter cycle; (2)在步骤(1)卡尔曼滤波的基础上,进行反向最优固定区间平滑;(2) On the basis of step (1) Kalman filter, perform reverse optimal fixed interval smoothing; 设整个导航时间区间为[0 N],t表示此时间间隔中的任一时刻,0≤t≤N,固定区间平滑估值表示为 Assuming that the entire navigation time interval is [0 N], t represents any moment in this time interval, 0≤t≤N, and the fixed interval smoothing estimation is expressed as (2.1)首先进行0→N的正向Kalman滤波,同时存储滤波估计出的状态转移矩阵Φk,k-1、状态一步预测一步预测均方误差阵状态估计估计均方误差阵 (2.1) First, carry out 0→N forward Kalman filtering, and store the state transition matrix Φ k,k-1 estimated by filtering at the same time, and the state one-step prediction One-step prediction mean square error matrix state estimation Estimated mean square error matrix (2.2)滤波结束后,将正向滤波最后时刻N的估计值作为反向R-T-S平滑起始时刻的初始值,令k=N,进行N→0的R-T-S平滑过程,其中表示N时刻的平滑估计值,表示N时刻的卡尔曼滤波状态估计值,表示N时刻的平滑估计均方误差阵,表示k时刻的卡尔曼滤波估计均方误差阵,方程如下:(2.2) After the filtering is finished, the estimated value of the last time N of the forward filtering is used as the initial value of the starting time of reverse RTS smoothing, let k=N, Carry out N→0 RTS smoothing process, where Indicates the smoothed estimated value at time N, Indicates the estimated value of the Kalman filter state at time N, Represents the smooth estimated mean square error matrix at time N, Represents the Kalman filter estimated mean square error matrix at time k, the equation is as follows: 平滑增益阵:其中,表示k时刻的平滑增益阵,Φk+1,k表示离散化的卡尔曼滤波状态转移矩阵,表示由k时刻到k+1时刻的一步预测均方误差阵;Smooth gain matrix: in, Represents the smooth gain matrix at time k, Φ k+1,k represents the discretized Kalman filter state transition matrix, Indicates the one-step prediction mean square error matrix from time k to time k+1; 平滑的状态估计: X ^ k / N S = X ^ k F + K k / N S ( X ^ k + 1 / N S - X ^ k + 1 , k F ) , 其中:表示第k时刻的平滑估计量,表示第k+1时刻的平滑估计量,表示由k时刻到k+1时刻的状态一步预测值;Smooth state estimation: x ^ k / N S = x ^ k f + K k / N S ( x ^ k + 1 / N S - x ^ k + 1 , k f ) , in: Indicates the smoothing estimator at the kth time, Indicates the smoothing estimator at the k+1th moment, Indicates the one-step predicted value of the state from time k to time k+1; 平滑的估计均方误差阵: P k / N S = P k F + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , 其中:表示k时刻的平滑估计均方误差阵,表示k+1时刻的平滑估计均方误差阵,表示由k时刻到k+1时刻的一步预测均方误差阵,表示k时刻的平滑增益阵;Smoothed estimated mean squared error matrix: P k / N S = P k f + K k / N S ( P k + 1 / N S - P k + 1 , k S ) ( K k / N S ) T , in: Represents the smooth estimated mean square error matrix at time k, Represents the smooth estimated mean square error matrix at time k+1, Indicates the one-step prediction mean square error matrix from time k to time k+1, Indicates the smooth gain matrix at time k; 从公式可见,第k时刻的平滑估计量是在正向Kalman滤波估计量的基础上线性补偿了一个修正量得到的,该修正量是第k+1时刻的平滑估计量与正向一步预测估计量的差值;It can be seen from the formula that the smoothing estimator at the kth moment is the estimator in the forward Kalman filter It is obtained by linearly compensating a correction amount on the basis of , which is the smoothing estimator at the k+1th moment and the forward one-step forecast estimator the difference; 由上面的分析过程得到,k时刻的R-T-S平滑估计量是k时刻的正向Kalman滤波估计量和k+1时刻的平滑估计量的线性融合,k+1时刻的平滑估计量利用了全局数据。From the above analysis process, the R-T-S smoothing estimator at time k is a linear fusion of the forward Kalman filter estimator at time k and the smoothing estimator at time k+1, and the smoothing estimator at time k+1 utilizes global data. 2.如权利要求1所述的一种长时间导航系统全参数精度评估方法,其特征在于:惯导系统导航周期Tn=0.05s。2. A method for evaluating the accuracy of all parameters of a long-time navigation system as claimed in claim 1, wherein the navigation period of the inertial navigation system is T n =0.05s. 3.如权利要求1所述的一种长时间导航系统全参数精度评估方法,其特征在于:滤波周期Tf=1s。3. A method for evaluating the accuracy of all parameters of a long-duration navigation system as claimed in claim 1, characterized in that: the filtering period T f =1s.
CN201410125919.3A 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system Pending CN104949687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410125919.3A CN104949687A (en) 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410125919.3A CN104949687A (en) 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system

Publications (1)

Publication Number Publication Date
CN104949687A true CN104949687A (en) 2015-09-30

Family

ID=54164532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410125919.3A Pending CN104949687A (en) 2014-03-31 2014-03-31 Whole parameter precision evaluation method for long-time navigation system

Country Status (1)

Country Link
CN (1) CN104949687A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806338A (en) * 2016-03-17 2016-07-27 孙红星 GNSS/INS integrated positioning and directioning algorithm based on three-way Kalman filtering smoother
CN109974697A (en) * 2019-03-21 2019-07-05 中国船舶重工集团公司第七0七研究所 A kind of high-precision mapping method based on inertia system
CN110021134A (en) * 2019-05-28 2019-07-16 贵州大学 A kind of family's fire protection alarm system and its alarm method
CN110672124A (en) * 2019-09-27 2020-01-10 北京耐威时代科技有限公司 Offline lever arm estimation method
CN111337025A (en) * 2020-04-28 2020-06-26 中国人民解放军国防科技大学 Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine
CN112985455A (en) * 2019-12-16 2021-06-18 武汉四维图新科技有限公司 Precision evaluation method and device of positioning and attitude determination system and storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426353A (en) * 2011-08-23 2012-04-25 北京航空航天大学 A method of off-line acquisition of airborne InSAR motion error using high-precision POS
CN102621565A (en) * 2012-04-17 2012-08-01 北京航空航天大学 Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN102997915A (en) * 2011-09-15 2013-03-27 北京自动化控制设备研究所 POS post-processing method with combination of closed-loop forward filtering and reverse smoothing
CN103364817A (en) * 2013-07-11 2013-10-23 北京航空航天大学 POS system double-strapdown calculating post-processing method based on R-T-S smoothness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102426353A (en) * 2011-08-23 2012-04-25 北京航空航天大学 A method of off-line acquisition of airborne InSAR motion error using high-precision POS
CN102997915A (en) * 2011-09-15 2013-03-27 北京自动化控制设备研究所 POS post-processing method with combination of closed-loop forward filtering and reverse smoothing
CN102621565A (en) * 2012-04-17 2012-08-01 北京航空航天大学 Transfer aligning method of airborne distributed POS (Position and Orientation System)
CN103364817A (en) * 2013-07-11 2013-10-23 北京航空航天大学 POS system double-strapdown calculating post-processing method based on R-T-S smoothness

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李睿佳等: "卫星/惯性组合导航事后高精度融合算法研究", 《系统仿真学报》 *
石波等: "应用EKF平滑算法提高GPS/INS定位定姿精度", 《测绘科学技术学报》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105806338A (en) * 2016-03-17 2016-07-27 孙红星 GNSS/INS integrated positioning and directioning algorithm based on three-way Kalman filtering smoother
CN109974697A (en) * 2019-03-21 2019-07-05 中国船舶重工集团公司第七0七研究所 A kind of high-precision mapping method based on inertia system
CN109974697B (en) * 2019-03-21 2022-07-26 中国船舶重工集团公司第七0七研究所 High-precision mapping method based on inertial system
CN110021134A (en) * 2019-05-28 2019-07-16 贵州大学 A kind of family's fire protection alarm system and its alarm method
CN110672124A (en) * 2019-09-27 2020-01-10 北京耐威时代科技有限公司 Offline lever arm estimation method
CN112985455A (en) * 2019-12-16 2021-06-18 武汉四维图新科技有限公司 Precision evaluation method and device of positioning and attitude determination system and storage medium
CN112985455B (en) * 2019-12-16 2022-04-26 武汉四维图新科技有限公司 Precision evaluation method and device of positioning and attitude determination system and storage medium
CN111337025A (en) * 2020-04-28 2020-06-26 中国人民解放军国防科技大学 Positioning and orientating instrument hole positioning method suitable for long-distance horizontal core drilling machine

Similar Documents

Publication Publication Date Title
CN101949703B (en) Strapdown inertial/satellite combined navigation filtering method
CN100487378C (en) Data blending method of navigation system combined by SINS/GPS micromagnetic compass
CN105091907B (en) DVL orientation alignment error method of estimation in SINS/DVL combinations
CN103941273B (en) Adaptive filtering method of onboard inertia/satellite integrated navigation system and filter
CN102706366B (en) SINS (strapdown inertial navigation system) initial alignment method based on earth rotation angular rate constraint
CN103344259B (en) A kind of INS/GPS integrated navigation system feedback correction method estimated based on lever arm
CN101893445B (en) Fast Initial Alignment Method for Low Precision Strapdown Inertial Navigation System in Swing State
CN103471616B (en) Initial Alignment Method under a kind of moving base SINS Large azimuth angle condition
CN103245359B (en) A kind of inertial sensor fixed error real-time calibration method in inertial navigation system
CN104374388B (en) Flight attitude determining method based on polarized light sensor
CN105371844B (en) A kind of inertial navigation system initial method based on inertia/astronomical mutual assistance
CN109556631B (en) INS/GNSS/polarization/geomagnetic combined navigation system alignment method based on least squares
CN102393201B (en) Dynamic arm compensation method for position and attitude measurement system (POS) for aerial remote sensing
CN103364817B (en) POS system double-strapdown calculating post-processing method based on R-T-S smoothness
CN103792561B (en) A kind of tight integration reduced-dimensions filtering method based on GNSS passage difference
CN104949687A (en) Whole parameter precision evaluation method for long-time navigation system
CN106595715B (en) Odometer Calibration Method and Device Based on Strapdown Inertial Navigation and Satellite Integrated Navigation System
CN111982106A (en) Navigation method, navigation device, storage medium and electronic device
CN104236586B (en) Moving base transfer alignment method based on measurement of misalignment angle
CN105318876A (en) Inertia and mileometer combination high-precision attitude measurement method
CN102052921B (en) Method for determining initial heading of single-axis rotating strapdown inertial navigation system
CN103217699B (en) Integrated navigation system recursion optimizing initial-alignment method based on polarization information
CN101900573B (en) Method for realizing landtype inertial navigation system movement aiming
Xue et al. In-motion alignment algorithm for vehicle carried SINS based on odometer aiding
CN104062672A (en) SINSGPS integrated navigation method based on strong tracking self-adaptive Kalman filtering

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150930

RJ01 Rejection of invention patent application after publication