CN102052921B - Method for determining initial heading of single-axis rotating strapdown inertial navigation system - Google Patents

Method for determining initial heading of single-axis rotating strapdown inertial navigation system Download PDF

Info

Publication number
CN102052921B
CN102052921B CN2010105508924A CN201010550892A CN102052921B CN 102052921 B CN102052921 B CN 102052921B CN 2010105508924 A CN2010105508924 A CN 2010105508924A CN 201010550892 A CN201010550892 A CN 201010550892A CN 102052921 B CN102052921 B CN 102052921B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
sin
mover
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105508924A
Other languages
Chinese (zh)
Other versions
CN102052921A (en
Inventor
孙枫
曹通
高鹏
高伟
奔粤阳
李举锋
唐李军
胡丹
李国强
曹冰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Priority to CN2010105508924A priority Critical patent/CN102052921B/en
Publication of CN102052921A publication Critical patent/CN102052921A/en
Application granted granted Critical
Publication of CN102052921B publication Critical patent/CN102052921B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • G01C25/005Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass initial alignment, calibration or starting-up of inertial devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Gyroscopes (AREA)

Abstract

The invention relates to a method for determining the initial heading of a single-axis rotating strapdown inertial navigation system, which comprises the steps of: 1 carrying out preheating preparation on the strapdown inertial navigation system; 2 determining an initial position parameter of a carrier by a global positioning system; 3 predetermining three attitudes of the carrier in position 1 and recording an output average value of a gyro in X direction and Y direction in position 1 within one minute; 4 collecting and recording an output average value of the gyro in X direction and Y direction in position 2 within one minute; 5 computing the constant drift epsilon x and epsilon y of the gyro in X direction and Y direction; 6 computing the precise azimuth aligning position of the strapdown inertial navigation system; and 7 estimating and compensating an azimuth misalignment angle by Kalman filtering to finish precise azimuth alignment. The existing single-axis rotating table is still used; and only the rotating table is controlled for putting an IMU (Inertial Measurement Unit) in a proper position for executing initial alignment so as to estimate the azimuth misalignment angle precisely, therefore, an initial heading angle is determined.

Description

method for determining initial course of single-axis rotation strapdown inertial navigation system
Technical Field
The invention relates to a measuring method. In particular to a method for determining the initial course of a strapdown inertial navigation system based on a single-axis rotary type optical fiber gyroscope.
Background
The rotary strapdown inertial navigation system is an autonomous and all-weather navigation system, and utilizes gyroscope and accelerometer to measure the linear motion and angular motion parameters of inertial unit (IMU) relative to inertial space, and under the condition of given initial condition, combines the angle value of IMU relative to carrier provided by rotating mechanism, and uses computer to make integral operation so as to continuously and real-timely provide position, speed and attitude information. It has the advantages of good concealment, no limitation of weather conditions and the like, and is widely applied to the fields of aviation, aerospace and navigation. The initial alignment error, especially the initial course error, is a main factor which causes the navigation precision of the strapdown inertial navigation system to be difficult to improve, and the influence of the initial course error on the system is shown not only on the measurement output of the carrier attitude, but also on the measurement of the speed and the position. Therefore, before the rotary strapdown inertial navigation system enters the navigation state, the initial heading of the carrier must be determined first.
For a ship strapdown inertial navigation system, the measurement precision of the initial attitude directly influences the navigation precision of the system. In the past, when Kalman filtering is used for initial alignment of a fixed position, an azimuth misalignment angle has certain estimation deviation due to unobservable ordinary drift of an east gyroscope, and further the measurement precision of an initial course is restricted.
Disclosure of Invention
The invention aims to provide a method for determining the initial course of a single-axis rotation strapdown inertial navigation system, which can eliminate the influence of constant drift of an east gyroscope on the estimation precision of an azimuth misalignment angle and improve the measurement precision of the initial course
The purpose of the invention is realized as follows:
step 1, preheating preparation is carried out on a strapdown inertial navigation system;
step 2, determining initial position parameters of the carrier through a Global Positioning System (GPS), and binding the initial position parameters into a navigation computer;
step 3, collecting the output of the fiber-optic gyroscope and the accelerometer assembly at the initial position of the ship, recording the output as the position 1, performing coarse alignment, and preliminarily determining three postures of the download body at the position: pitch angle theta0Angle of inclination gamma0And course angle
Figure BDA0000033195670000011
And recording the output average value of the X, Y directional gyroscope at the position within one minute
Figure BDA0000033195670000012
And 4, on the basis of the position 1, controlling the single-shaft rotary table to rotate 180 degrees around the azimuth rotating shaft to another position, recording the position as 2, collecting and recording the output average value of the X, Y-direction gyroscope in one minute on the position 2
Figure BDA0000033195670000013
Step 5, outputting the average value of the X, Y-direction gyroscope recorded according to the position 1
Figure BDA0000033195670000014
And X, Y-direction gyro output mean value recorded at position 2
Figure BDA0000033195670000021
Calculating the gyro constant drift epsilon in the direction of X, Yx、εy
Step 6, combining the initial attitude angle theta determined in the coarse alignment stage in the step 30、γ0And
Figure BDA0000033195670000022
and the constant drift epsilon of the gyro in the X, Y direction obtained in the step 5x、εyCalculating the accurate alignment position of the strapdown inertial navigation system and recording as a position 3;
and 7, controlling the single-axis turntable to rotate by an angle beta around the azimuth axis to a position 3 on the basis of the position 1, collecting the output of the fiber-optic gyroscope and the accelerometer component, establishing a Kalman filter state equation and a measurement equation by taking the speed error as an observed quantity, and estimating and compensating an azimuth misalignment angle by utilizing Kalman filtering to complete azimuth precise alignment.
The innovation of the present invention is step 5 and step 6, which will be described in more detail with respect to step 5 and step 6.
1. Calculating the gyro constant drift epsilon in the direction of X, Yx、εyThe specific method comprises the following steps:
1) and acquiring and recording X, Y direction gyro output mean value at position 1
Figure BDA0000033195670000023
They are related to the constant drift of the gyro in the X, Y direction by
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula, ωx、ωyIs the true output value of the X, Y directional gyroscope;
2) collected and recorded X, Y at position 2Output mean value of directional gyroscope
Figure BDA0000033195670000025
They are related to the constant drift of the gyro in the X, Y direction by
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
(1) Adding the equation (2) to obtain a constant gyro drift epsilon in the direction of X, Yx、εyIs composed of
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
2. The method for calculating the accurate azimuth alignment position of the strapdown inertial navigation system comprises the following steps:
the coordinate system of the northeast is taken as a navigation coordinate system, and a speed error equation and an attitude error equation of the strapdown inertial navigation system under the static base are expressed as
<math> <mrow> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>=</mo> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>-</mo> <mi>g</mi> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mo>&dtri;</mo> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msub> <mo>=</mo> <mo>-</mo> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mi>V</mi> <mi>e</mi> </msub> <mo>+</mo> <mi>g</mi> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <mo>+</mo> <msub> <mo>&dtri;</mo> <mi>n</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>=</mo> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>-</mo> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mi>c</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>n</mi> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <mo>-</mo> <msub> <mi>&epsiv;</mi> <mi>n</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>u</mi> </msub> <mo>=</mo> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> <msub> <mi>&phi;</mi> <mi>e</mi> </msub> <mo>-</mo> <msub> <mi>&epsiv;</mi> <mi>u</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mi>e</mi> <mo>)</mo> </mrow> </mrow> </math>
In the formula, omegan=ωiecosL,Ωu=ωiesinL,ωieIs the rotational angular velocity of the earth, L is the local geographical latitude, and is represented by phi in the formula (4-a)nAnd phi in (4-c)uMove to the left of the equation, respectively, to obtain
<math> <mrow> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mi>g</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>-</mo> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>-</mo> <msub> <mo>&dtri;</mo> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>-</mo> <mi>a</mi> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>-</mo> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mi>&phi;</mi> <mi>n</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>-</mo> <mi>b</mi> <mo>)</mo> </mrow> </mrow> </math>
After the two-sided derivation of formula (5-b), the
Figure BDA0000033195670000035
Move to the left of the equation to obtain
<math> <mrow> <msub> <mover> <mi>&phi;</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>g</mi> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>V</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>n</mi> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow> </math>
Then the (5-a) and the (6) are substituted into the (5-b) to obtain
<math> <mrow> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mrow> <mi>g</mi> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>V</mi> <mrow> <mo>&CenterDot;</mo> <mo>&CenterDot;</mo> </mrow> </mover> <mi>n</mi> </msub> <mo>+</mo> <mn>3</mn> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <msub> <mover> <mi>V</mi> <mo>&CenterDot;</mo> </mover> <mi>e</mi> </msub> <mo>-</mo> <mn>2</mn> <msup> <msub> <mi>&Omega;</mi> <mi>u</mi> </msub> <mn>2</mn> </msup> <msub> <mi>V</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> <msub> <mo>&dtri;</mo> <mi>e</mi> </msub> <mo>-</mo> <mfrac> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula, Vn
Figure BDA0000033195670000038
Are all directly measurable, i.e. the right front half of formula (7)
Figure BDA0000033195670000039
Are known; and epsilone
Figure BDA00000331956700000310
For unmeasurable states, the azimuthal misalignment angle phi is estimated using Kalman filteringuThe azimuth misalignment angle will have a steady state estimation error delta phiu
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> <msub> <mo>&dtri;</mo> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Since the accelerometer accuracy is much higher than the gyroscope accuracy, i.e.
Figure BDA00000331956700000312
Therefore, the formula (8) is simplified to
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
An initial attitude matrix can be obtained by coarse alignment of the strapdown inertial navigation system
Figure BDA00000331956700000314
InitialI is an identity matrix, wherein b is a carrier matrixA label system; s is an IMU coordinate system; p is a calculated navigation coordinate system; for the conversion of the initial time between the s-system and the p-systemIs shown as
C s p ( t 0 ) = C b p ( t 0 ) C s b ( t 0 )
<math> <mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein the pitch angle theta0Angle of inclination gamma0And course angle
Figure BDA0000033195670000043
Three attitude angles obtained for coarse alignment;
after the single-shaft rotary type strapdown inertial navigation system rotates around the azimuth axis of the single-shaft rotary type strapdown inertial navigation system, the projection epsilon of the gyro constant drift under a navigation coordinate systemnIs composed of
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, the IMU coordinate system s is converted into the navigation coordinate system n
Figure BDA0000033195670000045
Is shown as
C s n ( t ) = C p n ( t ) C s p ( t ) - - - ( 12 )
In the formula
Figure BDA0000033195670000047
Phi (t) x is an antisymmetric matrix of the misalignment angle phi (t), and the formula (12) is substituted into the formula (11) to obtain
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Neglecting the quadratic term error on the right side of the equation, equation (13) reduces to
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, C s p ( t ) = C b p ( t 0 ) C s b ( t )
<math> <mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> beta is the angle of rotation of the turntable
Extending equation (14) and taking east projection epsilon of gyro constant drifte
εe=C11εx+C12εy+C13εz (15)
Wherein,
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>11</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>12</mn> </msub> <mo>=</mo> <mo>-</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>13</mn> </msub> <mo>=</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
at a pitch angle theta when the vessel is moored or at rest0Angle of inclination gamma0Are all small, and the attitude matrix element C13Is not changed by the rotation of the IMU; thus, C13Approximately zero, combining the formulas (9) and (15) to obtain
<math> <mrow> <mi>&Delta;</mi> <msub> <mi>&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>C</mi> <mn>11</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <mn>12</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
As can be seen from the formula (16), Δ φuOnly with the rotation angle β; therefore, if the azimuth misalignment angle estimation error Δ φ is madeuAt zero, the rotation angle β should satisfy the following relation
<math> <mrow> <mfrac> <msub> <mi>C</mi> <mn>11</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <mn>12</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
I.e. beta should satisfy
<math> <mrow> <mi>tan</mi> <mi>&beta;</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
The rotation angle beta of the azimuth axis is obtained according to the formula (18), that is, the specific position of the position 3 is
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>arctan</mi> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mi>&pi;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
the invention has the effective effect that the existing single-axis rotary table is continuously used, and the azimuth misalignment angle can be estimated with high precision only by controlling the rotary table to place the IMU at a proper position for initial alignment, so as to determine the initial course angle. The measuring technology is simple to operate. Compared with the prior fixed position initial alignment method, the technology greatly improves the measurement precision of the initial course on the premise of not reducing the initial alignment time, thereby improving the navigation performance of the fiber-optic gyroscope strapdown inertial navigation system.
In order to verify the effect of the initial course measurement technique, simulation was performed by Matlab software. The beneficial effects are shown in table one.
Watch 1
Azimuthal misalignment angle/(/) (·) Conventional methods Improved method
Set value 0.5000 0.5000
Estimated value 0.5613 0.5008
Estimation accuracy 12.26% 1.60%
As can be seen from the table I, compared with the traditional method, the method has the advantages that the estimation accuracy reaches 1.60%, the high-accuracy initial course measurement is realized, and the navigation accuracy of the system is further improved.
The method starts from analyzing the east gyro constant drift, adjusts and controls the rotary table to place the IMU at a proper position, so that the projection component of the gyro constant drift in the navigation coordinate system can be automatically offset, the influence of the east gyro constant drift on the estimation precision of the azimuth misalignment angle is eliminated, and the measurement precision of the initial course is further improved.
Drawings
FIG. 1 is a single axis turntable orientation at position 1;
FIG. 2 is a single axis turret orientation at position 2;
FIG. 3 is a single axis turret orientation at position 3;
FIG. 4 is a comparison of the effect of the azimuthal misalignment angle estimation of the conventional method and the improved method;
FIG. 5 is a flow chart of an initial heading measurement technique.
Detailed Description
Step 1, preheating preparation is carried out on the strapdown inertial navigation system, and specific preheating time is set according to the requirements of the system.
And 2, determining initial position parameters of the carrier through a Global Positioning System (GPS), and binding the initial position parameters into a navigation computer.
And 3, after preheating, acquiring the output of the fiber-optic gyroscope and the accelerometer assembly at the initial position (recorded as position 1) of the ship, adjusting the strapdown inertial navigation system to complete the coarse alignment task of initial alignment, and preliminarily determining three attitude angles of the carrier at the position: pitch angle theta0Angle of inclination gamma0And course angle
Figure BDA0000033195670000061
And recording the output average value of the X, Y directional gyroscope at the position within one minute
Figure BDA0000033195670000062
And 4, controlling the single-shaft rotary table to rotate 180 degrees around the azimuth rotating shaft to another position on the basis of the position 1, and recording the position as a position 2. Average output from X, Y gyros was collected and recorded at position 2 over a one minute period
Figure BDA0000033195670000063
Step 5, outputting the average value of the X, Y-direction gyroscope recorded according to the position 1
Figure BDA0000033195670000064
And X, Y-direction gyro output mean value recorded at position 2
Figure BDA0000033195670000065
Calculating the gyro constant drift epsilon in the direction of X, Yx、εy
Step 6, combining the initial attitude angle theta determined in the coarse alignment stage in the step 30、γ0And
Figure BDA0000033195670000066
and the constant drift epsilon of the gyro in the X, Y direction obtained in the step 5x、εyAnd calculating the position of the strapdown inertial navigation system, and recording the position as 3.
And 7, controlling the single-shaft rotary table to rotate around the azimuth axis by an angle beta to a position 3 on the basis of the position 1. Collecting the output of the fiber-optic gyroscope and the accelerometer component, establishing a Kalman filter state equation and a measurement equation by taking the speed error as an observed quantity, and estimating and compensating an azimuth misalignment angle by utilizing Kalman filtering to complete an azimuth precise alignment task.
The invention also has the following features:
1. the specific features of step 5 are described below
1) And acquiring and recording X, Y direction gyro output mean value at position 1
Figure BDA0000033195670000067
They are related to the constant drift of the gyro in the X, Y direction by
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula, ωx、ωyIs the true output value of the X, Y directional gyroscope.
2) And collecting and recording X, Y direction gyro output average value at position 2
Figure BDA0000033195670000072
They are related to the constant drift of the gyro in the X, Y direction by
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>21</mn> <mo>)</mo> </mrow> </mrow> </math>
(20) When the equation (21) is added to the equation (a), the gyro constant shifts ε in the X, Y directionx、εyCan be expressed as
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow> </math>
2. The specific features of step 6 are described below:
an initial attitude matrix can be obtained by coarse alignment of the strapdown inertial navigation systemInitial
Figure BDA0000033195670000076
(I is an identity matrix). Wherein, b is a carrier coordinate system; s is an IMU coordinate system; p is a calculated navigation coordinate system; for the conversion of the initial time between the s-system and the p-system
Figure BDA0000033195670000077
Is shown as
C s p ( t 0 ) = C b p ( t 0 ) C s b ( t 0 )
<math> <mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>-</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> </mtd> <mtd> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein the pitch angle theta0Angle of inclination gamma0And course angle
Figure BDA00000331956700000710
Three attitude angles obtained for coarse alignment.
The rotation angle β of the azimuth axis can be obtained from the expressions (22) and (23), that is, the specific position of the position 3 is
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>arctan</mi> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mi>&pi;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>24</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <mi>cos</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mi>&gamma;</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>sin</mi> <msub> <mi>&psi;</mi> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mi>&theta;</mi> <mn>0</mn> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>

Claims (3)

1. A method for determining an initial course of a single-axis rotating strapdown inertial navigation system is characterized by comprising the following steps:
step 1, preheating preparation is carried out on a strapdown inertial navigation system;
step 2, determining initial position parameters of the carrier through a global positioning system, and binding the initial position parameters into a navigation computer;
step 3, collecting the output of the fiber-optic gyroscope and the accelerometer assembly at the initial position of the ship, recording the output as the position 1, performing coarse alignment, and preliminarily determining three postures of the download body at the position: pitch angle theta0Angle of inclination gamma0And course angle
Figure FDA0000126526590000011
And recording the output average value of the X, Y directional gyroscope at the position within one minute
Figure FDA0000126526590000012
And 4, on the basis of the position 1, controlling the single-shaft rotary table to rotate 180 degrees around the azimuth rotating shaft to another position, recording the position as 2, collecting and recording the output average value of the X, Y-direction gyroscope in one minute on the position 2
Figure FDA0000126526590000013
Step 5, outputting the average value of the X, Y-direction gyroscope recorded according to the position 1
Figure FDA0000126526590000014
And X, Y-direction gyro output mean value recorded at position 2
Figure FDA0000126526590000015
Calculating the gyro constant drift epsilon in the direction of X, Yx、εy
Step 6, combining the initial attitude angle theta determined in the coarse alignment stage in the step 30、γ0And
Figure FDA0000126526590000016
and the constant drift epsilon of the gyro in the X, Y direction obtained in the step 5x、εyCalculating the accurate alignment position of the strapdown inertial navigation system and recording as a position 3;
step 7, on the basis of the position 1, controlling the single-shaft turntable to rotate around the azimuth axis by an angle beta to a position 3, <math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>arctan</mi> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mi>&pi;</mi> <mo>,</mo> </mrow> </math> <math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mtext>)(</mtext> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>)</mo> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> collecting the output of the fiber-optic gyroscope and the accelerometer component, establishing a Kalman filter state equation and a measurement equation by taking the speed error as an observed quantity, and estimating and compensating an azimuth misalignment angle by utilizing Kalman filtering to complete azimuth precise alignment.
2. According to the claimsSolving 1 the method for determining the initial course of the single-axis rotation strapdown inertial navigation system is characterized by comprising the following steps: the gyro constant drift epsilon in the X, Y direction is calculatedx、εyThe specific method comprises the following steps:
(1) and acquiring and recording X, Y direction gyro output mean value at position 1
Figure FDA0000126526590000019
They are related to the constant drift of the gyro in the X, Y direction by
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <msub> <mi>&omega;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula, ωx、ωyIs the output true value of the X, Y directional gyroscope;
(2) And collecting and recording X, Y direction gyro output average value at position 2They are related to the constant drift of the gyro in the X, Y direction by
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <msub> <mrow> <mo>-</mo> <mi>&omega;</mi> </mrow> <mi>x</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mo>-</mo> <msub> <mi>&omega;</mi> <mi>y</mi> </msub> <mo>+</mo> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow> </math>
(1) Adding the equation (2) to obtain a constant gyro drift epsilon in the direction of X, Yx、εyIs composed of
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </math>
3. The method for determining the initial heading of the single-axis rotating strapdown inertial navigation system as claimed in claim 2, wherein: the method for calculating the accurate azimuth alignment position of the strapdown inertial navigation system comprises the following steps:
the coordinate system of the northeast is taken as a navigation coordinate system, and a speed error equation and an attitude error equation of the strapdown inertial navigation system under the static base are expressed as
Figure FDA0000126526590000023
Figure FDA0000126526590000024
Figure FDA0000126526590000026
Figure FDA0000126526590000027
In the formula, omegan=ωie cos L,Ωu=ωie sin L,ωieIs the rotational angular velocity of the earth, L is the local geographical latitude, will (4-a)
In the formulanAnd phi in (4-c)uMove to the left of the equation, respectively, to obtain
Figure FDA0000126526590000028
Figure FDA0000126526590000029
After the two-sided derivation of formula (5-b), the
Figure FDA00001265265900000210
Move to the left of the equation to obtain
Figure FDA00001265265900000211
Then the (5-a) and the (6) are substituted into the (5-b) to obtain
In the formula, Vn
Figure FDA0000126526590000031
Are all directly measurable, i.e. the right front half of formula (7)
Figure FDA0000126526590000032
Are known; and epsiloneFor unmeasurable states, the azimuthal misalignment angle phi is estimated using Kalman filteringuThe azimuth misalignment angle will have a steady state estimation error delta phiu
<math> <mrow> <msub> <mi>&Delta;&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <mo>-</mo> <mfrac> <mrow> <mi>tan</mi> <mi>L</mi> </mrow> <mi>g</mi> </mfrac> <msub> <mo>&dtri;</mo> <mi>e</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow> </math>
Since the accelerometer accuracy is much higher than the gyroscope accuracy, i.e.
Figure FDA0000126526590000035
Therefore, the formula (8) is simplified to
<math> <mrow> <msub> <mi>&Delta;&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>&epsiv;</mi> <mi>e</mi> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow> </math>
An initial attitude matrix can be obtained by coarse alignment of the strapdown inertial navigation system
Figure FDA0000126526590000037
Initial
Figure FDA0000126526590000038
I is a unit matrix, wherein b is a carrier coordinate system; s is an IMU coordinate system; p is a calculated navigation coordinate system; for the conversion of the initial time between the s-system and the p-systemIs shown as
C s p ( t 0 ) = C b p ( t 0 ) C s b ( t 0 )
<math> <mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> </mtd> <mtd> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>-</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein the pitch angle theta0Angle of inclination gamma0And course angle
Figure FDA00001265265900000312
Three attitude angles obtained for coarse alignment;
after the single-shaft rotary type strapdown inertial navigation system rotates around the azimuth axis of the single-shaft rotary type strapdown inertial navigation system, the projection epsilon of the gyro constant drift under a navigation coordinate systemnIs composed of
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>11</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, the IMU coordinate system s is converted into the navigation coordinate system n
Figure FDA00001265265900000314
Is shown as
C s n ( t ) = C p n ( t ) C s p ( t ) - - - ( 12 )
In the formula
Figure FDA00001265265900000316
Phi (t) x is an antisymmetric matrix of the misalignment angle phi (t), and the formula (12) is substituted into the formula (11) to obtain
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>+</mo> <mrow> <mo>(</mo> <mi>&phi;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>&times;</mo> <mo>)</mo> </mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow> </math>
Neglecting the quadratic term error on the right side of the equation, equation (13) reduces to
<math> <mrow> <msup> <mi>&epsiv;</mi> <mi>n</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <msubsup> <mi>C</mi> <mi>s</mi> <mi>p</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <msup> <mi>&epsiv;</mi> <mi>s</mi> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein, C s p ( t ) = C b p ( t 0 ) C s b ( t )
<math> <mrow> <msubsup> <mi>C</mi> <mi>s</mi> <mi>b</mi> </msubsup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open='[' close=']'> <mtable> <mtr> <mtd> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mo>-</mo> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow> </math> beta is the angle of rotation of the turntable
Extending equation (14) and taking east projection epsilon of gyro constant drifte
εe=C11εx+C12εy+C13εz (15)
Wherein,
<math> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>C</mi> <mn>11</mn> </msub> <mo>=</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>12</mn> </msub> <mo>=</mo> <mo>-</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mi>sin</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <mi>cos</mi> <mi>&beta;</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>C</mi> <mn>13</mn> </msub> <mo>=</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </math>
at a pitch angle theta when the vessel is moored or at rest0Angle of inclination gamma0Are all small, and the attitude matrix element C13Is not changed by the rotation of the IMU; thus, C13Approximately zero, combining the formulas (9) and (15) to obtain
<math> <mrow> <msub> <mi>&Delta;&phi;</mi> <mi>u</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>C</mi> <mn>11</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <mn>12</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow> </math>
As can be seen from the formula (16), Δ φuOnly with the rotation angle β; therefore, if the azimuth misalignment angle estimation error Δ φ is madeuAt zero, the rotation angle β should satisfy the following relation
<math> <mrow> <mfrac> <msub> <mi>C</mi> <mn>11</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>+</mo> <mfrac> <msub> <mi>C</mi> <mn>12</mn> </msub> <msub> <mi>&Omega;</mi> <mi>n</mi> </msub> </mfrac> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow> </math>
I.e. beta should satisfy
<math> <mrow> <mi>tan</mi> <mi>&beta;</mi> <mo>=</mo> <mfrac> <mrow> <mrow> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> </mrow> <mrow> <mrow> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>)</mo> </mrow> <msub> <mi>&epsiv;</mi> <mi>y</mi> </msub> <mo>-</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mi>&epsiv;</mi> <mi>x</mi> </msub> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow> </math>
The rotation angle beta of the azimuth axis is obtained according to the formula (18), that is, the specific position of the position 3 is
<math> <mrow> <mi>&beta;</mi> <mo>=</mo> <mi>arctan</mi> <mfrac> <msub> <mi>k</mi> <mn>1</mn> </msub> <msub> <mi>k</mi> <mn>2</mn> </msub> </mfrac> <mo>+</mo> <mi>&pi;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow> </math>
In the formula,
<math> <mrow> <mfenced open='{' close=''> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mtext>)(</mtext> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> <mo>+</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>(</mo> <msub> <mrow> <mi>cos</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>+</mo> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>sin</mi> <mi>&gamma;</mi> </mrow> <mn>0</mn> </msub> <mo>)</mo> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>y</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msub> <mrow> <mi>sin</mi> <mi>&psi;</mi> </mrow> <mn>0</mn> </msub> <msub> <mrow> <mi>cos</mi> <mi>&theta;</mi> </mrow> <mn>0</mn> </msub> <mo>(</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mover> <mi>&omega;</mi> <mo>^</mo> </mover> <mrow> <mi>x</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> </math>
CN2010105508924A 2010-11-19 2010-11-19 Method for determining initial heading of single-axis rotating strapdown inertial navigation system Expired - Fee Related CN102052921B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105508924A CN102052921B (en) 2010-11-19 2010-11-19 Method for determining initial heading of single-axis rotating strapdown inertial navigation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105508924A CN102052921B (en) 2010-11-19 2010-11-19 Method for determining initial heading of single-axis rotating strapdown inertial navigation system

Publications (2)

Publication Number Publication Date
CN102052921A CN102052921A (en) 2011-05-11
CN102052921B true CN102052921B (en) 2012-08-22

Family

ID=43957486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105508924A Expired - Fee Related CN102052921B (en) 2010-11-19 2010-11-19 Method for determining initial heading of single-axis rotating strapdown inertial navigation system

Country Status (1)

Country Link
CN (1) CN102052921B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102997918B (en) * 2011-09-15 2016-05-25 北京自动化控制设备研究所 A kind of inertia/attitude of satellite fusion method
CN102680740A (en) * 2012-05-07 2012-09-19 北京航空航天大学 System-level fitting calibration method for quadratic term error of accelerometer
CN103575297B (en) * 2013-10-31 2017-02-01 中国人民解放军国防科学技术大学 Estimation method of course angle of GNSS (Global Navigation Satellite System) and MIMU (MEMS based Inertial Measurement Units) integrated navigation based on satellite navigation receiver
CN103900609B (en) * 2014-03-26 2016-08-17 哈尔滨工程大学 The course precision real-time detecting system of a kind of marine aided inertial navigation system and detection method
CN104121927B (en) * 2014-05-29 2016-09-28 湖北航天技术研究院总体设计所 A kind of it is applicable to the low precision Inertial Measurement Unit scaling method without azimuth reference single shaft indexing apparatus
US10228252B2 (en) * 2014-09-03 2019-03-12 Invensense, Inc. Method and apparatus for using multiple filters for enhanced portable navigation
CN108871326B (en) * 2018-07-09 2019-05-21 北京航空航天大学 A kind of single-shaft-rotation modulation inertia-astronomy deep integrated navigation method
CN110044319A (en) * 2019-04-30 2019-07-23 北京航天发射技术研究所 A kind of measurement method and measuring device of the deformation of Strapdown Inertial Navigation System damper
CN114383603B (en) * 2022-03-23 2022-06-28 西北工业大学 Guided projectile aerial attitude identification method based on rotation modulation method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730249A (en) * 2005-08-04 2006-02-08 河北工业大学 Autonomic positioning method of mobile manipulator used for repairing leakages of dangerous chemicals container
CN1786666A (en) * 2005-12-15 2006-06-14 北京航空航天大学 Method for initial aiming of arbitrary double position of strapdown inertial navigation system
CN101514899A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0808081D0 (en) * 2008-05-02 2008-06-11 In2Games Ltd Bridging ultrasonic position with accelerometer/gyroscope inertial guidance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1730249A (en) * 2005-08-04 2006-02-08 河北工业大学 Autonomic positioning method of mobile manipulator used for repairing leakages of dangerous chemicals container
CN1786666A (en) * 2005-12-15 2006-06-14 北京航空航天大学 Method for initial aiming of arbitrary double position of strapdown inertial navigation system
CN101514899A (en) * 2009-04-08 2009-08-26 哈尔滨工程大学 Optical fibre gyro strapdown inertial navigation system error inhibiting method based on single-shaft rotation

Also Published As

Publication number Publication date
CN102052921A (en) 2011-05-11

Similar Documents

Publication Publication Date Title
CN102052921B (en) Method for determining initial heading of single-axis rotating strapdown inertial navigation system
CN100516775C (en) Method for determining initial status of strapdown inertial navigation system
CN102486377B (en) Method for acquiring initial course attitude of fiber optic gyro strapdown inertial navigation system
CN101514900B (en) Method for initial alignment of a single-axis rotation strap-down inertial navigation system (SINS)
CN108594283B (en) Free installation method of GNSS/MEMS inertial integrated navigation system
CN110631574B (en) inertia/odometer/RTK multi-information fusion method
CN103900565B (en) A kind of inertial navigation system attitude acquisition method based on differential GPS
CN103453917A (en) Initial alignment and self-calibration method of double-shaft rotation type strapdown inertial navigation system
CN103217159B (en) A kind of SINS/GPS/ polarized light integrated navigation system modeling and initial alignment on moving base method
CN102393201B (en) Dynamic lever arm compensating method of position and posture measuring system (POS) for aerial remote sensing
CN104977004B (en) A kind of used group of laser and odometer Combinated navigation method and system
CN101975872B (en) Method for calibrating zero offset of quartz flexible accelerometer component
CN103697878B (en) A kind of single gyro list accelerometer rotation modulation north finding method
CN107677292B (en) Vertical line deviation compensation method based on gravity field model
CN101187567A (en) Optical fiber gyroscope strap-down inertial navigation system initial posture determination method
CN108051866A (en) Gravimetric Method based on strap down inertial navigation/GPS combination subsidiary level angular movement isolation
CN102679978B (en) Initial alignment method of static base of rotary type strap-down inertial navigation system
CN103256943A (en) Compensation method for scale factor error in single-axial rotating strapdown inertial navigation system
CN106017507A (en) Method for fast calibration of medium-and-low-precision optical fiber inertia units
CN102749079A (en) Optical fiber strapdown inertial navigation double-shaft rotation modulation method and double-shaft rotation mechanism
CN103697911A (en) Initial attitude determination method for strapdown inertial navigation system under circumstance of unknown latitude
CN101701824A (en) High-precision uniaxial rotation attitude measuring system based on laser gyro
CN103364817B (en) POS system double-strapdown calculating post-processing method based on R-T-S smoothness
CN103900566B (en) A kind of eliminate the method that rotation modulation type SINS precision is affected by rotational-angular velocity of the earth
CN104165638A (en) Multi-position self-calibration method for biaxial rotating inertial navigation system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120822

Termination date: 20171119

CF01 Termination of patent right due to non-payment of annual fee