CN104931818B - Extraction Method of Equivalent Electromagnetic Parameters of Asymmetric Artificial Electromagnetic Materials - Google Patents
Extraction Method of Equivalent Electromagnetic Parameters of Asymmetric Artificial Electromagnetic Materials Download PDFInfo
- Publication number
- CN104931818B CN104931818B CN201510291977.8A CN201510291977A CN104931818B CN 104931818 B CN104931818 B CN 104931818B CN 201510291977 A CN201510291977 A CN 201510291977A CN 104931818 B CN104931818 B CN 104931818B
- Authority
- CN
- China
- Prior art keywords
- relative
- medium
- electromagnetic
- equivalent
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000463 material Substances 0.000 title claims abstract description 79
- 238000000605 extraction Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000012937 correction Methods 0.000 claims abstract description 19
- 230000008859 change Effects 0.000 claims abstract description 4
- 230000008569 process Effects 0.000 claims abstract description 4
- 230000035699 permeability Effects 0.000 claims description 21
- 230000014509 gene expression Effects 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 claims description 6
- 230000005672 electromagnetic field Effects 0.000 claims description 6
- 230000007704 transition Effects 0.000 claims description 4
- 230000005684 electric field Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 14
- 238000004088 simulation Methods 0.000 description 12
- 239000002184 metal Substances 0.000 description 8
- 239000000284 extract Substances 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000002131 composite material Substances 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000004038 photonic crystal Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提出一种非对称人工电磁材料电磁参数的提取方法,用以解决由于结构的不对称性导致无法提取材料电磁参数的问题,提取方法实施步骤是:单独仿真第一层材料的散射参数S′;利用S′与对称结构算法计算第一层材料的电磁参数;仿真非对称人工电磁材料的外部散射参数S;基于S与第一层的电磁参数获得第二层的电磁参数;利用S与第二层电磁参数重新修正第一层的电磁参数;循环上述步骤,直至修正后的两层中的电磁参数在整个频段内不再明显变化,将此作为最终电磁参数;将最终参数进行仿真得到散射参数S",与实际结构的S参数完全吻合,证实了本发明的准确性,可行性和实用性,实现了用对称的方法提取非对称人工电磁材料等效电磁参数的过程。
The invention proposes a method for extracting electromagnetic parameters of asymmetric artificial electromagnetic materials to solve the problem that the electromagnetic parameters of materials cannot be extracted due to structural asymmetry. The implementation steps of the extraction method are: separately simulate the scattering parameter S of the first layer of materials '; use S' and the symmetric structure algorithm to calculate the electromagnetic parameters of the first layer material; simulate the external scattering parameter S of the asymmetric artificial electromagnetic material; obtain the electromagnetic parameters of the second layer based on S and the electromagnetic parameters of the first layer; use S and The electromagnetic parameters of the second layer re-correct the electromagnetic parameters of the first layer; the above steps are repeated until the electromagnetic parameters of the two layers after correction do not change significantly in the entire frequency band, and this is taken as the final electromagnetic parameter; the final parameter is simulated to obtain Scattering parameter S ", completely coincides with the S parameter of actual structure, has verified the accuracy of the present invention, feasibility and practicality, has realized the process of extracting the equivalent electromagnetic parameter of asymmetrical artificial electromagnetic material with symmetrical method.
Description
技术领域technical field
本发明属于电磁场,电磁材料技术领域,进一步涉及到电磁参数提取方法,利用解析方法结合数值迭代方法提取人工电磁材料的等效电磁参数;该方法解决了非对称人工电磁材料的电磁参数提取问题。The invention belongs to the technical field of electromagnetic fields and electromagnetic materials, and further relates to an electromagnetic parameter extraction method, which uses an analytical method combined with a numerical iteration method to extract equivalent electromagnetic parameters of artificial electromagnetic materials; the method solves the problem of extracting electromagnetic parameters of asymmetric artificial electromagnetic materials.
背景技术Background technique
新型人工电磁材料(metamaterials)是一种异于天然的人工复合结构或复合材料,具有诸如负折射效应、反常多普勒效应、反常切伦科夫效应、完美透镜等超常物理特性;New artificial electromagnetic materials (metamaterials) are artificial composite structures or composite materials that are different from natural ones, and have extraordinary physical properties such as negative refraction effect, abnormal Doppler effect, abnormal Cerenkov effect, and perfect lens;
1967年,前苏联科学家Veselago对电磁波在介电常数和磁导率同时为负的媒质中的传播特点作了理论研究,19世纪80年代,人们在实验中发现了微波频段介电常数和磁导率小于1的手征媒质,1996年和1999年,英国的Pendry等人先后提出用细金属线阵列来实现负介电常数,用开口谐振环(Splitring Resonator)阵列来实现负的磁导率,从而实现介电常数和磁导率同时为负值的媒质,2000年,美国杜克大学的Smith等人根据Pendry提出的理论模型,设计出了开口谐振环与导线阵列构成的左手材料,并通过棱镜实验验证了这种左手材料具有的负折射率特性;迄今发展出的“人工电磁材料”包括:“左手材料”、“光子晶体”、“超磁性材料”等;人工电磁材料(metamaterial)重要的三个重要特征是:In 1967, Veselago, a former Soviet scientist, made a theoretical study on the propagation characteristics of electromagnetic waves in a medium with negative permittivity and magnetic permeability. In 1996 and 1999, Pendry et al. in the United Kingdom successively proposed to use thin metal wire arrays to achieve negative permittivity, and split ring resonator (Splitring Resonator) arrays to achieve negative magnetic permeability. In order to realize the medium with negative dielectric constant and magnetic permeability at the same time, in 2000, Smith et al. of Duke University in the United States designed a left-handed material composed of a split resonator ring and a wire array according to the theoretical model proposed by Pendry, and passed Prism experiments have verified the negative refractive index characteristics of this left-handed material; the "artificial electromagnetic materials" developed so far include: "left-handed materials", "photonic crystals", and "supermagnetic materials"; artificial electromagnetic materials (metamaterial) are important The three important characteristics of are:
(1)metamaterial通常是具有新奇人工结构的复合材料;(1) metamaterial is usually a composite material with a novel artificial structure;
(2)metamaterial具有超常的物理性质,往往是自然界材料中所不具备的;(2) Metamaterial has extraordinary physical properties, which are often not available in natural materials;
(3)metamaterial的性质往往不是由构成材料的本征性质决定,而决定于其中的人工结构;(3) The nature of metamaterial is often not determined by the intrinsic properties of the constituent materials, but by the artificial structure in it;
在近十年来,人工电磁材料已经成为了材料科学、物理、化学以及工程学等学科的前沿发展方向,它提供了一种可以让人们随心所欲的制造具有许多特殊物理性质的全新思路与方法;人工电磁材料的等效电磁参数包括等效波阻抗,等效折射率,等效介电常数,等效磁导率四个参量,对人工电磁材料的等效电磁参数的提取已经成为了对人工电磁材料的研究方向之一,通过研究人工电磁材料的等效电磁参数,可以更好地了解其电磁特性;2005年,Smith等人提出了一种用散射参数S提取人工电磁材料等效电磁参数的方法,该方法能够很好地提取电小尺寸的人工电磁材料的等效电磁参数,但是却不能提取非对称的人工电磁材料和电大尺寸的人工电磁材料的电磁参数,2010年,一种基于K-K关系的等效电磁参数提取方法被提了出来,该方法能较好地解决分支不明确的缺点,但是却需要一个广义积分,这在实际工程中是繁重而低效率的,上述均是提取对称人工电磁材料等效电磁参数的方法,对于非对称人工电磁材料的情况目前还没有提及,因此,对于非对称人工电磁材料的等效电磁参数的提取是非常重要的;In the past ten years, artificial electromagnetic materials have become the frontier development direction of materials science, physics, chemistry and engineering. It provides a new idea and method that allows people to manufacture many special physical properties as they like; The equivalent electromagnetic parameters of electromagnetic materials include four parameters: equivalent wave impedance, equivalent refractive index, equivalent permittivity, and equivalent magnetic permeability. The extraction of equivalent electromagnetic parameters of artificial electromagnetic materials has become a One of the research directions of materials, by studying the equivalent electromagnetic parameters of artificial electromagnetic materials, we can better understand their electromagnetic properties; in 2005, Smith et al proposed a method to extract the equivalent electromagnetic parameters of artificial electromagnetic materials by using method, this method can well extract the equivalent electromagnetic parameters of electrically small-sized artificial electromagnetic materials, but it cannot extract the electromagnetic parameters of asymmetric artificial electromagnetic materials and electrically large-sized artificial electromagnetic materials. In 2010, a method based on K-K The method of extracting the equivalent electromagnetic parameters of the relationship is proposed, which can better solve the shortcoming of ambiguous branches, but requires a generalized integral, which is cumbersome and inefficient in actual engineering. The method of equivalent electromagnetic parameters of artificial electromagnetic materials has not been mentioned for the situation of asymmetric artificial electromagnetic materials, so it is very important to extract the equivalent electromagnetic parameters of asymmetric artificial electromagnetic materials;
发明内容Contents of the invention
本发明提出了一种提取非对称人工电磁材料等效电磁参数的方法,采用了分层的方法提取等效电磁参数,经过多次迭代实现了非对称人工电磁材料的等效电磁参数的提取,解决了本技术领域中存在的非对称人工电磁材料的等效电磁参数的提取难题;The present invention proposes a method for extracting equivalent electromagnetic parameters of asymmetric artificial electromagnetic materials, adopts a layered method to extract equivalent electromagnetic parameters, and realizes the extraction of equivalent electromagnetic parameters of asymmetric artificial electromagnetic materials through multiple iterations. Solve the problem of extracting equivalent electromagnetic parameters of asymmetric artificial electromagnetic materials existing in the technical field;
本方法的技术思路是:将非对称人工电磁材料在电磁波的传播方向上分成两层对称结构,把每一层对称结构均等效成均匀媒质,沿着电磁波的传播方向分别设为媒质Ⅱ和媒质Ⅲ,非对称人工电磁材料两侧为测试环境,设与媒质Ⅱ相邻的测试环境为媒质Ⅰ,与媒质Ⅲ相邻的测试环境为媒质Ⅳ;媒质Ⅰ和媒质Ⅱ的交界面作为边界一,媒质Ⅱ和媒质Ⅲ的交界面作为边界二,媒质Ⅲ和媒质Ⅳ的交界面作为边界三,接着分别对每层等效媒质中的电磁场进行理论解析,得到关于媒质Ⅱ和媒质Ⅲ的电磁参数的解析形式,然后通过确定媒质Ⅱ的电磁参数为求解初值,采用迭代的方法对求解过程中的媒质Ⅱ和媒质Ⅲ的电磁参数进行修正,最终求得媒质Ⅱ和媒质Ⅲ的电磁参数最终值,并将此最终值分别作为第一层结构和第二层结构的等效电磁参数,用这两组参数来共同描述整个非对称人工电磁材料的电磁特性;通过将媒质Ⅱ和媒质Ⅲ的电磁参数的最终值带入到全波仿真软件中再次进行建模仿真,得到外部散射参数S",比较仿真得到的外部散射参数S"与实际人工电磁材料的外部散射参数S是否吻合,以验证提取的等效电磁参数的准确性;The technical idea of this method is: divide the asymmetric artificial electromagnetic material into two layers of symmetrical structures in the propagation direction of electromagnetic waves, and make each layer of symmetrical structures equivalent to a uniform medium, and set them as medium II and medium respectively along the propagation direction of electromagnetic waves. Ⅲ, the two sides of the asymmetric artificial electromagnetic material are the test environment, let the test environment adjacent to the medium Ⅱ be the medium Ⅰ, and the test environment adjacent to the medium Ⅲ is the medium Ⅳ; the interface between the medium Ⅰ and the medium Ⅱ is regarded as the boundary 1, The interface between medium Ⅱ and medium Ⅲ is regarded as boundary 2, and the interface between medium Ⅲ and medium Ⅳ is regarded as boundary 3. Then, the electromagnetic field in each layer of equivalent medium is theoretically analyzed, and the electromagnetic parameters of medium Ⅱ and Ⅲ are obtained. Analytical form, and then by determining the electromagnetic parameters of medium II as the initial value of the solution, using an iterative method to correct the electromagnetic parameters of medium II and medium III during the solution process, and finally obtain the final values of the electromagnetic parameters of medium II and medium III, And this final value is used as the equivalent electromagnetic parameters of the first-layer structure and the second-layer structure respectively, and these two sets of parameters are used to describe the electromagnetic characteristics of the entire asymmetric artificial electromagnetic material; by combining the electromagnetic parameters of medium II and medium III Bring the final value of the final value into the full-wave simulation software for modeling and simulation again to obtain the external scattering parameter S", and compare whether the external scattering parameter S" obtained by the simulation is consistent with the external scattering parameter S of the actual artificial electromagnetic material, so as to verify the extracted Accuracy of equivalent electromagnetic parameters;
实现本发明目的的技术方法的步骤如下:The steps of the technical method for realizing the object of the present invention are as follows:
(1)使用全波仿真软件HFSS对第一层结构单独进行仿真,得到其外部散射参数S′;(1) Use the full-wave simulation software HFSS to simulate the first layer structure separately to obtain its external scattering parameter S′;
(2)采用对称结构的等效电磁参数提取方法,利用步骤(1)中得到的散射参数S′计算获得第一层结构的相对等效波阻抗,相对等效折射率,把所得到的相对等效波阻抗和相对等效折射率作为媒质Ⅱ的相对波阻抗和相对折射率,并将这两个值作为两层结构的等效电磁参数提取方法的迭代初值;(2) Using the equivalent electromagnetic parameter extraction method of the symmetrical structure, using the scattering parameter S′ obtained in step (1) to calculate the relative equivalent wave impedance and relative equivalent refractive index of the first layer structure, the obtained relative The equivalent wave impedance and relative equivalent refractive index are used as the relative wave impedance and relative refractive index of medium II, and these two values are used as the iterative initial value of the equivalent electromagnetic parameter extraction method of the two-layer structure;
(3)使用全波仿真软件HFSS对非对称人工电磁材料进行仿真,得到两层结构的外部散射参数S,所述S包括S11,S21,S12,S22四个参量;(3) Use the full-wave simulation software HFSS to simulate the asymmetric artificial electromagnetic material to obtain the external scattering parameter S of the two-layer structure, and the S includes four parameters of S11, S21, S12, and S22;
假设电磁波从媒质Ⅰ入射,经由媒质Ⅱ和媒质Ⅲ从媒质Ⅳ中出射,理论分析四层等效媒质的电磁场的表述形式,得到如下关系:Assuming that the electromagnetic wave is incident from the medium Ⅰ and emerges from the medium Ⅳ through the medium Ⅱ and Ⅲ, theoretically analyze the expression form of the electromagnetic field of the four-layer equivalent medium, and get the following relationship:
【1】 【1】
其中,in,
【2】 【2】
式【1】和式【2】中的S11为电磁波在边界一上的反射系数,S21为电磁波从媒质Ⅰ到媒质Ⅳ的传输系数,Z1为媒质Ⅰ的相对波阻抗,Z2为媒质Ⅱ的相对波阻抗,Z3为媒质Ⅲ的相对波阻抗,Z4为媒质Ⅳ的相对波阻抗,n2为媒质Ⅱ的相对折射率,n3为媒质Ⅲ的相对折射率,k0为电磁波在自由空间的波数,d2为媒质Ⅱ在沿电磁波传播方向上的厚度,d3为媒质Ⅲ在沿电磁波传播方向上的厚度,A,B均为式【1】运算的过渡变量;In formula [1] and formula [2], S11 is the reflection coefficient of electromagnetic wave on boundary 1, S21 is the transmission coefficient of electromagnetic wave from medium I to medium IV, Z1 is the relative wave impedance of medium I, and Z2 is medium II Z 3 is the relative wave impedance of medium Ⅲ, Z 4 is the relative wave impedance of medium Ⅳ, n 2 is the relative refractive index of medium Ⅱ, n 3 is the relative refractive index of medium Ⅲ, k 0 is the electromagnetic wave at The wave number of free space, d2 is the thickness of medium II along the direction of electromagnetic wave propagation, d3 is the thickness of medium III along the direction of electromagnetic wave propagation, A and B are the transition variables of formula [1] operation;
同理,若令入射波从媒质Ⅳ中入射,经由媒质Ⅲ和媒质Ⅱ从媒质Ⅰ中出射,则可以得到另外两个散射参数S22,S12的表达式如下:Similarly, if the incident wave enters from medium IV and exits from medium I through medium III and medium II, the other two scattering parameters S22 and S12 can be expressed as follows:
【3】 【3】
其中,in,
【4】 【4】
式【3】和式【4】的S22为电磁波在边界三上反射系数,S12为电磁波从媒质Ⅳ到媒质Ⅰ的传输系数,C,D均为式【3】运算的过渡变量;S22 in formula [3] and formula [4] is the reflection coefficient of electromagnetic wave on boundary 3, S12 is the transmission coefficient of electromagnetic wave from medium IV to medium I, and C and D are the transition variables for the operation of formula [3];
(4)最后采用数值迭代的方法用步骤(2)中获得的相对波阻抗和相对折射率作为迭代初值进行迭代运算,确定两层人工电磁材料的最终等效电磁参数值,具体实施步骤如下:(4) Finally, the method of numerical iteration is used to use the relative wave impedance and relative refractive index obtained in step (2) as the initial value of the iteration to perform iterative calculations to determine the final equivalent electromagnetic parameter values of the two layers of artificial electromagnetic materials. The specific implementation steps are as follows :
(4.1)采用计算式【3】,【4】,基于步骤(2)中获得的媒质Ⅱ的相对波阻抗Z2 (0),相对折射率n2 (0),计算获得媒质Ⅲ的相对波阻抗Z3 (0),相对折射率n3 (0);(4.1) Using formulas [3] and [4], based on the relative wave impedance Z 2 (0) and relative refractive index n 2 (0) of medium II obtained in step (2), calculate the relative wave impedance of medium III Impedance Z 3 (0) , relative refractive index n 3 (0) ;
(4.2)采用计算式【1】,【2】,基于步骤(1)中获得的媒质Ⅲ的相对波阻抗Z3 (0),相对折射率n3 (0),计算得到媒质Ⅱ第一次修正后的相对波阻抗Z2 (1),相对折射率n2 (1);(4.2) Using formulas [1] and [2], based on the relative wave impedance Z 3 (0) and relative refractive index n 3 (0) of medium III obtained in step (1), calculate the first time of medium II Corrected relative wave impedance Z 2 (1) , relative refractive index n 2 (1) ;
(4.3)其次采用表达式【3】,【4】,基于步骤(4.2)中得到的媒质Ⅱ第一次修正后的相对波阻抗Z2 (1),相对折射率n2 (1),计算获得媒质Ⅲ第一次修正后的相对波阻抗Z3 (1),相对折射率n3 (1);(4.3) Next, using expressions [3] and [4], based on the relative wave impedance Z 2 (1) and relative refractive index n 2 (1) obtained in step (4.2) after the first correction of medium II, calculate Obtain the relative wave impedance Z 3 (1) and relative refractive index n 3 (1) of medium III after the first correction;
(4.4)再采用表达式【1】,【2】,基于步骤(4.3)中得到的媒质Ⅲ第一次修正后的相对波阻抗Z3 (1),相对折射率n3 (1),计算获得媒质Ⅱ第二次修正后的相对波阻抗Z2 (2),相对折射率n2 (2);(4.4) Using expressions [1] and [2] again, based on the relative wave impedance Z 3 (1) and relative refractive index n 3 (1) of medium III obtained in step (4.3) after the first correction, calculate Obtain the relative wave impedance Z 2 (2) and relative refractive index n 2 (2) of medium II after the second correction;
(4.5)循环步骤(4.3),(4.4)中的过程,直到多次修正后的媒质Ⅱ和媒质Ⅲ的相对波阻抗和相对折射率的值在整个频段内不再明显变化,则视重复修正后的相对波阻抗和相对折射率为最终的相对波阻抗和相对折射率,并将这两组最终相对波阻抗和相对折射率分别作为两层结构对应的相对等效波阻抗和相对等效折射率,用这两层对称结构的相对等效波阻抗和相对等效折射率共同描述非对称人工电磁材料的电磁特性,所述两层结构等效电磁参数中的相对等效介电常数和相对等效磁导率计算式如下:(4.5) Repeat the process in steps (4.3) and (4.4) until the values of the relative wave impedance and relative refractive index of medium II and medium III after multiple corrections do not change significantly in the entire frequency band, then repeat the correction The final relative wave impedance and relative refractive index are the final relative wave impedance and relative refractive index, and these two sets of final relative wave impedance and relative refractive index are respectively used as the relative equivalent wave impedance and relative equivalent refraction corresponding to the two-layer structure The relative equivalent wave impedance and the relative equivalent refractive index of the two-layer symmetrical structure are used to describe the electromagnetic characteristics of the asymmetric artificial electromagnetic material. The relative equivalent dielectric constant and relative The equivalent magnetic permeability calculation formula is as follows:
【5】 【5】
【6】 【6】
式【5】,式【6】中的ε2为第一层结构的相对等效介电常数,μ2为第一层结构的相对等效磁导率,ε3为第二层结构的相对等效介电常数,μ3为第二层结构的相对等效磁导率,n为最终修正次数。In formula [5] and formula [6], ε 2 is the relative equivalent permittivity of the first layer structure, μ 2 is the relative equivalent magnetic permeability of the first layer structure, ε 3 is the relative equivalent permeability of the second layer structure Equivalent permittivity, μ 3 is the relative equivalent magnetic permeability of the second layer structure, n is the final number of corrections.
本发明和现有技术对比所具有的优点如下:The advantages that the present invention has compared with prior art are as follows:
本发明采用理论解析和数值迭代相结合的方法,将非对称人工电磁材料在电磁波的传播方向上分成两层对称结构,用迭代的方法反复修正两层结构的等效电磁参数,用这两层对称结构的等效电磁参数共同描述非对称人工电磁材料的电磁特性,从而实现了非对称人工电磁材料的等效电磁参数提取问题;改变了现有技术只能提取对称结构的等效电磁参数,而不能提取非对称结构的等效电磁参数的现状。The present invention adopts the method of combining theoretical analysis and numerical iteration to divide the asymmetric artificial electromagnetic material into two layers of symmetrical structures in the propagation direction of electromagnetic waves, and repeatedly corrects the equivalent electromagnetic parameters of the two-layer structure by using iterative methods. The equivalent electromagnetic parameters of the symmetrical structure jointly describe the electromagnetic characteristics of the asymmetric artificial electromagnetic material, thereby realizing the extraction of the equivalent electromagnetic parameters of the asymmetric artificial electromagnetic material; changing the existing technology that can only extract the equivalent electromagnetic parameters of the symmetrical structure, But can not extract the current situation of the equivalent electromagnetic parameters of the asymmetric structure.
本发明采用全波仿真软件HFSS对具有等效电磁参数的等效模型进行仿真,得到等效模型的外部散射参数S",得到的S"与实际结构的散射参数S完全吻合,验证了本发明方法在提取非对称人工电磁材料等效电磁参数中的准确性,可行性与有效性;可推广用于非对称人工电磁材料等效电磁参数的提取。The present invention adopts full-wave simulation software HFSS to simulate the equivalent model with equivalent electromagnetic parameters, and obtains the external scattering parameter S" of the equivalent model, and the obtained S" is completely consistent with the scattering parameter S of the actual structure, which verifies the present invention Accuracy, feasibility and effectiveness of the method in extracting equivalent electromagnetic parameters of asymmetric artificial electromagnetic materials; it can be extended to extract equivalent electromagnetic parameters of asymmetric artificial electromagnetic materials.
下面结合附图和实施例对本发明作进一步说明:Below in conjunction with accompanying drawing and embodiment the present invention will be further described:
附图说明Description of drawings
图1为非对称人工电磁材料的单元结构图;Fig. 1 is a unit structure diagram of an asymmetric artificial electromagnetic material;
图2为本发明提取非对称人工电磁材料电磁参数的流程图;Fig. 2 is the flow chart of the present invention extracting the electromagnetic parameter of asymmetric artificial electromagnetic material;
图3为第一层结构的相对等效波阻抗图;Fig. 3 is the relative equivalent wave impedance diagram of the first layer structure;
图4为第二层结构的相对等效波阻抗图;Fig. 4 is the relative equivalent wave impedance diagram of the second layer structure;
图5为第一层结构的相对等效折射率图;Fig. 5 is the relative equivalent refractive index diagram of the first layer structure;
图6为第二层结构的相对等效折射率图;Fig. 6 is the relative equivalent refractive index diagram of the second layer structure;
图7为第一层结构的相对等效介电常数图;Fig. 7 is the relative equivalent dielectric constant diagram of the first layer structure;
图8为第二层结构的相对等效介电常数图;Fig. 8 is the relative equivalent dielectric constant diagram of the second layer structure;
图9为第一层结构的相对等效磁导率图;Fig. 9 is a relative equivalent magnetic permeability diagram of the first layer structure;
图10为第二层结构的相对等效磁导率图;Fig. 10 is the relative equivalent magnetic permeability diagram of the second layer structure;
图11为反演的S11"的振幅与实际的S11的振幅的对比图;Fig. 11 is the comparison chart of the amplitude of the S11 " of inversion and the amplitude of actual S11;
图12为反演的S21"的振幅与实际的S21的振幅的对比图;Fig. 12 is the contrast figure of the amplitude of the S21 " of inversion and the amplitude of actual S21;
图13为反演的S12"的振幅与实际的S12的振幅的对比图;Fig. 13 is the contrast figure of the amplitude of the S12 " of inversion and the amplitude of actual S12;
图14为反演的S22"的振幅与实际的S22的振幅的对比图;Fig. 14 is the contrast figure of the amplitude of the S22 " of inversion and the amplitude of actual S22;
图15为反演的S11"的相位与实际的S11的相位的对比图;Fig. 15 is the contrast figure of the phase of the S11 " of inversion and the phase of actual S11;
图16为反演的S21"的相位与实际的S21的相位的对比图;Fig. 16 is the contrast figure of the phase of the S21 " of inversion and the phase of actual S21;
图17为反演的S12"的相位与实际的S12的相位的对比图;Fig. 17 is the contrast figure of the phase of the S12 " of inversion and the phase of actual S12;
图18为反演的S22"的相位与实际的S22的相位的对比图;Fig. 18 is the contrast figure of the phase of the S22 " of inversion and the phase of actual S22;
具体实施方式:detailed description:
本发明给出一个具体的非对称人工电磁材料作为实施例The present invention provides a specific asymmetric artificial electromagnetic material as an example
如图1所示,将非对称人工电磁材料单元分成两层,每一层均为对称结构,两层结构均由介质基板和印刷在介质基板两侧的金属图案层构成,其中,介质基板的长和宽均为2.5mm,厚度为0.25mm,其外部被长,宽,高均为2.5mm的空气盒子包裹,介质基板位于空气盒子的正中央;两层介质基板的材料属性为FR4;第一层结构背面的印刷金属条宽度为0.14mm,长度为2.5mm,正面的金属开口谐振环外环边长为2.2mm,线宽为0.2mm,各环开口间隙为0.3mm,内外环的间距为0.15mm,整个印刷图案居中排列;第二层结构中的印刷金属图案为将第一层正面的金属内环移至背面和将背面的金属条移至顶面,并将移动后的金属条减掉其底部支出外环的部分而成;介质基板表面的金属图案的材料属性设为理想导体;端口类型设置为波端口,扫频类型为离散扫频,采用波导法对其进行散射参数仿真;将第一层结构等效为媒质Ⅱ,将第二层结构等效为媒质Ⅲ;As shown in Figure 1, the asymmetric artificial electromagnetic material unit is divided into two layers, and each layer is a symmetrical structure. The two-layer structure is composed of a dielectric substrate and metal pattern layers printed on both sides of the dielectric substrate. Among them, the dielectric substrate The length and width are both 2.5mm, and the thickness is 0.25mm. The outside is wrapped by an air box with a length, width, and height of 2.5mm. The dielectric substrate is located in the center of the air box; the material property of the two-layer dielectric substrate is FR4; The width of the printed metal strip on the back of the one-layer structure is 0.14mm, and the length is 2.5mm. 0.15mm, the entire printed pattern is arranged in the center; the printed metal pattern in the second layer structure is to move the metal inner ring on the front of the first layer to the back and the metal strip on the back to the top surface, and move the metal strip It is formed by subtracting the part of the outer ring at the bottom; the material property of the metal pattern on the surface of the dielectric substrate is set as an ideal conductor; the port type is set as a wave port, the frequency sweep type is discrete frequency sweep, and the waveguide method is used to simulate its scattering parameters ; The first layer structure is equivalent to medium II, and the second layer structure is equivalent to medium III;
参照图2,对图1中的非对称人工电磁材料进行等效电磁参数的提取,等效电磁参数一共分为两组,分别为第一层结构的等效电磁参数和第二层结构的等效电磁参数,提取的等效电磁参数为等效波阻抗,等效折射率,等效介电常数,等效磁导率四个物理量,具体实施步骤如下:Referring to Figure 2, the equivalent electromagnetic parameters of the asymmetric artificial electromagnetic material in Figure 1 are extracted. The equivalent electromagnetic parameters are divided into two groups, which are the equivalent electromagnetic parameters of the first layer structure and the equivalent electromagnetic parameters of the second layer structure. Effective electromagnetic parameters, the extracted equivalent electromagnetic parameters are four physical quantities of equivalent wave impedance, equivalent refractive index, equivalent dielectric constant, and equivalent magnetic permeability. The specific implementation steps are as follows:
步骤1,令电磁波从左向右传播,将非对称人工电磁材料沿着电磁波的传播方向看成是由两层均匀媒质组成,分别设为媒质Ⅱ和媒质Ⅲ,非对称人工电磁材料两侧为测试环境,设与媒质Ⅱ相邻的测试环境为媒质Ⅰ,与媒质Ⅲ相邻的测试环境为媒质Ⅳ,媒质Ⅰ、媒质Ⅳ均为空气;媒质Ⅰ和媒质Ⅱ的交界面作为边界一,媒质Ⅱ和媒质Ⅲ的交界面作为边界二,媒质Ⅲ和媒质Ⅳ的交界面作为边界三;Step 1. Let the electromagnetic wave propagate from left to right. The asymmetric artificial electromagnetic material is regarded as composed of two layers of uniform media along the propagation direction of the electromagnetic wave, which are respectively set as medium II and medium III. The two sides of the asymmetric artificial electromagnetic material are The test environment, assuming that the test environment adjacent to medium II is medium I, and the test environment adjacent to medium III is medium IV, both medium I and medium IV are air; the interface between medium I and medium II is taken as boundary one, medium The interface between Ⅱ and medium Ⅲ is regarded as boundary 2, and the interface between medium Ⅲ and medium Ⅳ is regarded as boundary 3;
(1)假设电磁波从媒质Ⅰ入射,经由媒质Ⅱ和媒质Ⅲ从媒质Ⅳ出射,采用笛卡尔直角坐标系,边界一位于坐标系中z=0的平面,首先采用电磁场理论分析各层媒质中的电磁场表述形式如下:(1) Assuming that the electromagnetic wave is incident from the medium Ⅰ and emerges from the medium Ⅳ through the medium Ⅱ and Ⅲ, the Cartesian coordinate system is adopted, and the boundary 1 is located on the plane of z=0 in the coordinate system. The expression of the electromagnetic field is as follows:
媒质Ⅰ:Medium Ⅰ:
【7】 【7】
式【7】中的为媒质Ⅰ中的总电场矢量;为媒质Ⅰ中的总磁场矢量;为电场矢量所在方向的单位方向矢量;为磁场矢量所在方向的单位方向矢量;Ei1为媒质Ⅰ中的入射电场振幅;Hi1为媒质Ⅰ中的入射磁场振幅;Er1为媒质Ⅰ中的反射电场振幅;Hr1为媒质Ⅰ中的反射磁场振幅;k1为电磁波在媒质Ⅰ中的波数;z为场点在z坐标轴上的位置;In formula [7] is the total electric field vector in medium Ⅰ; is the total magnetic field vector in medium I; is the unit direction vector of the direction of the electric field vector; is the unit direction vector of the direction of the magnetic field vector; E i1 is the amplitude of the incident electric field in the medium Ⅰ; H i1 is the amplitude of the incident magnetic field in the medium Ⅰ; E r1 is the amplitude of the reflected electric field in the medium Ⅰ; The amplitude of the reflected magnetic field; k 1 is the wave number of the electromagnetic wave in the medium I; z is the position of the field point on the z coordinate axis;
媒质Ⅱ:Medium II:
【8】 【8】
式【8】中的为媒质Ⅱ中的总电场矢量;为媒质Ⅱ中的总磁场矢量;Ei2为媒质Ⅱ中的入射电场振幅;Hi2为媒质Ⅱ中的入射磁场振幅;Er2为媒质Ⅱ中的反射电场振幅;Hr2为媒质Ⅱ中的反射磁场振幅;k0为电磁波在空气中的波数;n2为媒质Ⅱ的相对折射率;In formula [8] is the total electric field vector in medium II; is the total magnetic field vector in medium II; E i2 is the incident electric field amplitude in medium II; H i2 is the incident magnetic field amplitude in medium II; E r2 is the reflected electric field amplitude in medium II; H r2 is the reflection in medium II Magnetic field amplitude; k 0 is the wave number of electromagnetic wave in air; n 2 is the relative refractive index of medium II;
媒质Ⅲ:Medium III:
【9】 【9】
式【9】中的为媒质Ⅲ中的总电场矢量;为媒质Ⅲ中的总磁场矢量;Ei3为媒质Ⅲ中的入射电场振幅;Hi3为媒质Ⅲ中的入射磁场振幅;Er3为媒质Ⅲ中的反射电场振幅;Hr3为媒质Ⅲ中的反射磁场振幅;n3为媒质Ⅲ的相对折射率;d2为媒质Ⅱ沿电磁波传播方向上的厚度;d3为媒质Ⅲ沿电磁波传播方向上的厚度;In formula [9] is the total electric field vector in medium III; is the total magnetic field vector in medium III; E i3 is the incident electric field amplitude in medium III; H i3 is the incident magnetic field amplitude in medium III; E r3 is the reflected electric field amplitude in medium III; H r3 is the reflected electric field in medium III Magnetic field amplitude; n 3 is the relative refractive index of medium III; d2 is the thickness of medium II along the direction of electromagnetic wave propagation; d3 is the thickness of medium III along the direction of electromagnetic wave propagation;
媒质Ⅳ:Medium IV:
【10】 【10】
式【10】中的为媒质Ⅳ中的总电场矢量;为媒质Ⅳ中的总磁场矢量;Ei4为媒质Ⅳ中的透射电场振幅;Hi4为媒质Ⅳ中的透射磁场振幅;k4为媒质Ⅳ中的波数;In formula [10] is the total electric field vector in medium IV; is the total magnetic field vector in medium IV; E i4 is the transmitted electric field amplitude in medium IV; H i4 is the transmitted magnetic field amplitude in medium IV; k 4 is the wave number in medium IV;
(2)考虑三个交界面处的电磁场表述如下:(2) Consider the electromagnetic fields at the three interfaces as follows:
边界一左侧:Boundary one left:
【11】 【11】
式【11】中的为边界一左侧的总电场强度;为边界一左侧的总磁场强度;Z1为媒质Ⅰ的相对波阻抗;In formula [11] is the total electric field intensity on the left side of boundary one; is the total magnetic field intensity on the left side of boundary one; Z 1 is the relative wave impedance of medium I;
边界一右侧:Right side of boundary one:
【12】 【12】
式【12】中的为边界一右侧的总电场强度;为边界一右侧的总磁场强度;Z2为媒质Ⅱ的相对波阻抗;In formula [12] is the total electric field intensity on the right side of boundary one; is the total magnetic field intensity on the right side of boundary one; Z2 is the relative wave impedance of medium II ;
边界二左侧:On the left side of boundary two:
【13】 【13】
式【13】中的为边界二左侧的总电场强度;为边界二左侧的总磁场强度;In formula [13] is the total electric field intensity on the left side of boundary 2; is the total magnetic field intensity on the left side of boundary 2;
边界二右侧:On the right side of boundary two:
【14】 【14】
式【14】中的为边界二右侧的总电场强度;为边界二右侧的总磁场强度;Z3为媒质Ⅲ中的相对波阻抗;In formula [14] is the total electric field intensity on the right side of boundary 2; is the total magnetic field intensity on the right side of boundary 2; Z 3 is the relative wave impedance in medium Ⅲ;
边界三左侧:Left side of boundary three:
【15】 【15】
式【15】中的为边界三左侧的总电场强度;为边界三左侧的总磁场强度;In formula [15] is the total electric field intensity on the left side of boundary 3; is the total magnetic field intensity on the left side of boundary 3;
边界三右侧:On the right side of boundary three:
【16】 【16】
式【16】中的为边界三右侧的总电场强度;为边界三右侧的总磁场强度;Z4为媒质Ⅳ的相对波阻抗;In formula [16] is the total electric field intensity on the right side of boundary 3; is the total magnetic field intensity on the right side of boundary three; Z 4 is the relative wave impedance of medium IV;
(3)在三个边界处施加边界条件,即:边界一,边界二,边界三两侧的电场和磁场均相等,得到如下关系式:(3) Boundary conditions are applied at the three boundaries, namely: the electric field and magnetic field on both sides of boundary 1, boundary 2, and boundary 3 are equal, and the following relationship is obtained:
边界一处:One border:
【17】 【17】
边界二处:Boundary two:
【18】 【18】
在边界三处:At border three:
【19】 【19】
(4)结合上述边界条件和散射参数S,可以得到如下表达式:(4) Combining the above boundary conditions and scattering parameter S, the following expression can be obtained:
【1】 【1】
其中,in,
【2】 【2】
式【1】,式【2】中的S11为边界一左侧的反射系数;S21为边界一左侧到边界三右侧的传输系数;A,B均为中间变量,没有实际物理意义;In formula [1], S11 in formula [2] is the reflection coefficient on the left side of boundary one; S21 is the transmission coefficient from the left side of boundary one to the right side of boundary three; A and B are intermediate variables, which have no actual physical meaning;
同理,若令入射波从媒质Ⅳ入射,经由媒质Ⅲ和媒质Ⅱ从媒质Ⅰ出射,则可以得到另外两个散射参数S22,S12,其表达式如下:In the same way, if the incident wave enters from medium IV and exits from medium I through medium III and medium II, the other two scattering parameters S22 and S12 can be obtained, and their expressions are as follows:
【3】 【3】
其中,in,
【4】 【4】
式【3】,式【4】中的S22为边界三右侧的反射系数;S12为边界三右侧到边界一左侧的传输系数;C,D均为中间变量,没有实际物理意义;其余变量与方程组【1】,【2】中的物理含义相同;S22 in Equation [3] and Equation [4] is the reflection coefficient on the right side of boundary three; S12 is the transmission coefficient from the right side of boundary three to the left side of boundary one; C and D are intermediate variables and have no actual physical meaning; the rest Variables have the same physical meaning as in equations [1], [2];
(5)求解方程组【1】,【2】和【3】,【4】即可分别得到等效电磁参数Z2,n2和Z3,n3的表达式;(5) Solve the equations [1], [2] and [3], [4] to obtain the expressions of the equivalent electromagnetic parameters Z 2 , n 2 and Z 3 , n 3 respectively;
步骤2,利用已经成熟的对称结构的等效电磁参数提取方法通过单独仿真第一层结构的外部散射参数S′,获得第一层结构在没有第二层结构影响下的等效电磁参数Z2 (0)和n2 (0),把这两个等效电磁参数作为媒质Ⅱ的电磁参数;Step 2, using the mature equivalent electromagnetic parameter extraction method for symmetrical structures, by separately simulating the external scattering parameter S′ of the first layer structure, to obtain the equivalent electromagnetic parameter Z 2 of the first layer structure without the influence of the second layer structure (0) and n 2 (0) , take these two equivalent electromagnetic parameters as the electromagnetic parameters of medium II;
步骤3,用全波仿真软件HFSS对非对称人工电磁材料进行仿真,得到其外部散射参数S,采用步骤1中的表达式【3】,【4】,基于步骤2中得到的媒质Ⅱ的电磁参数,获得媒质Ⅲ的相对波阻抗Z3 (0)和相对折射率n3 (0);Step 3, use the full-wave simulation software HFSS to simulate the asymmetric artificial electromagnetic material to obtain its external scattering parameter S, and use the expressions [3] and [4] in step 1, based on the electromagnetic properties of medium II obtained in step 2 parameters to obtain the relative wave impedance Z 3 (0) and relative refractive index n 3 (0) of the medium III;
步骤4,采用步骤1中的表达式【1】,【2】,基于步骤3中获得的媒质Ⅲ的相对波阻抗Z3 (0)和相对折射率n3 (0),得到媒质Ⅱ第一次修正后的相对波阻抗Z2 (1)和相对折射率n2 (1);Step 4, using the expressions [1] and [2] in step 1, based on the relative wave impedance Z 3 (0) and relative refractive index n 3 (0) of medium III obtained in step 3, the first Relative wave impedance Z 2 (1) and relative refractive index n 2 (1) after the second correction;
步骤5,再次采用步骤1中的表达式【3】,【4】,基于步骤4中得到的媒质Ⅱ第一次修正后的相对波阻抗Z2 (1)和相对折射率n2 (1),获得媒质Ⅲ第一次修正后的相对波阻抗Z3 (1)和相对折射率n3 (1);Step 5, using the expressions [3] and [4] in step 1 again, based on the first corrected relative wave impedance Z 2 (1) and relative refractive index n 2 (1) of medium II obtained in step 4 , to obtain the relative wave impedance Z 3 (1) and relative refractive index n 3 (1) of medium III after the first correction;
步骤6,采用步骤1中的表达式【1】,【2】,基于步骤5中获得的媒质Ⅲ第一次修正后的相对波阻抗Z3 (1)和相对折射率n3 (1),得到媒质Ⅱ第二次修正后的相对波阻抗Z2 (2)和相对折射率n2 (2);Step 6, using the expressions [1] and [2] in step 1, based on the first corrected relative wave impedance Z 3 (1) and relative refractive index n 3 (1) of medium III obtained in step 5, Obtain the relative wave impedance Z 2 (2) and relative refractive index n 2 (2) of medium II after the second correction;
步骤7,循环上述步骤5和步骤6,直到重复修正后的媒质Ⅱ和媒质Ⅲ的相对等效波阻抗和相对等效折射率的值经继续迭代在整个频段内不再明显变化,这里选取迭代步数为50步,此时,可视重复修正后的相对等效波阻抗和相对等效折射率为最终的相对等效波阻抗和相对等效折射率,并将这两组最终相对波阻抗和相对折射率分别作为两层对称结构对应的相对等效波阻抗和相对等效折射率,最后通过如下表达式得到相对等效介电常数和相对等效磁导率:Step 7, repeat the above steps 5 and 6, until the values of the relative equivalent wave impedance and relative equivalent refractive index of medium II and medium III after repeated iterations do not change significantly in the whole frequency band, the iteration is selected here The number of steps is 50. At this time, the relative equivalent wave impedance and relative equivalent refractive index after repeated corrections can be seen to be the final relative equivalent wave impedance and relative equivalent refractive index, and the two sets of final relative wave impedance and the relative refractive index are respectively used as the relative equivalent wave impedance and relative equivalent refractive index corresponding to the two-layer symmetrical structure, and finally the relative equivalent permittivity and relative equivalent magnetic permeability are obtained by the following expressions:
【5】 【5】
【6】 【6】
式【5】,式【6】中的ε2为第一层结构的相对等效介电常数,μ2为第一层结构的相对等效磁导率,ε3为第二层结构的相对等效介电常数,μ3为第二层结构的相对等效磁导率,Z2 (50)为第一层结构修正50次时的相对等效波阻抗,n2 (50)为第一层结构修正50次时的相对等效折射率,Z3 (50)为第二层结构修正50次时的相对等效波阻抗,n3 (50)为第二层结构修正50次时的相对等效折射率。In formula [5] and formula [6], ε 2 is the relative equivalent permittivity of the first layer structure, μ 2 is the relative equivalent magnetic permeability of the first layer structure, ε 3 is the relative equivalent permeability of the second layer structure Equivalent permittivity, μ 3 is the relative equivalent magnetic permeability of the second layer structure, Z 2 (50) is the relative equivalent wave impedance when the first layer structure is corrected 50 times, n 2 (50) is the first The relative equivalent refractive index when the layer structure is modified 50 times, Z 3 (50) is the relative equivalent wave impedance when the second layer structure is modified 50 times, n 3 (50) is the relative equivalent wave impedance when the second layer structure is modified 50 times equivalent refractive index.
相对等效介电常数和相对等效磁导率曲线如图7~图10所示;The relative equivalent permittivity and relative equivalent permeability curves are shown in Figures 7 to 10;
步骤7,在全波仿真软件HFSS中建立两个与原模型中的空气盒子尺寸相同的无材料属性的正方体模型,用以模拟等效媒质Ⅱ和等效媒质Ⅲ,将最终得到的两组等效电磁参数作为材料参数分别带入到建立好的两个模型中进行全波仿真,其他设置均保持不变,获得其外部散射参数S",将此散射参数与实际结构的散射S进行比较,如图11~图18所示。Step 7: In the full-wave simulation software HFSS, two cube models without material properties with the same size as the air box in the original model are established to simulate the equivalent medium II and the equivalent medium III. The effective electromagnetic parameters are brought into the two established models as material parameters for full-wave simulation, and other settings are kept unchanged, and the external scattering parameter S" is obtained, and this scattering parameter is compared with the scattering S of the actual structure, As shown in Figure 11 to Figure 18.
下面结合附图描述本发明的等效电磁参数提取的效果:Describe the effect that the equivalent electromagnetic parameter of the present invention extracts below in conjunction with accompanying drawing:
图3表示了非对称人工电磁材料中第一层结构的最终相对等效波阻抗的实部和虚部;图4表示了非对称人工电磁材料中第二层结构的最终相对等效波阻抗的实部和虚部;图5表示了非对称人工电磁材料中第一层结构的最终相对等效折射率的实部和虚部;图6表示了非对称人工电磁材料中第二层结构的最终相对等效折射率的实部和虚部;图7表示了非对称人工电磁材料中第一层结构的最终相对等效介电常数的实部和虚部;图8表示了非对称人工电磁材料中第二层结构的最终相对等效介电常数的实部和虚部;图9表示了非对称人工电磁材料中第一层结构的最终相对等效磁导率的实部和虚部;图10表示了非对称人工电磁材料中第二层结构的最终相对等效磁导率的实部和虚部;Figure 3 shows the real part and imaginary part of the final relative equivalent wave impedance of the first layer structure in the asymmetric artificial electromagnetic material; Figure 4 shows the final relative equivalent wave impedance of the second layer structure in the asymmetric artificial electromagnetic material Real part and imaginary part; Figure 5 shows the real part and imaginary part of the final relative equivalent refractive index of the first layer structure in the asymmetric artificial electromagnetic material; Figure 6 shows the final result of the second layer structure in the asymmetric artificial electromagnetic material The real and imaginary parts of the relative equivalent refractive index; Figure 7 shows the real and imaginary parts of the final relative equivalent dielectric constant of the first layer structure in the asymmetric artificial electromagnetic material; Figure 8 shows the asymmetric artificial electromagnetic material The real part and the imaginary part of the final relative equivalent permittivity of the second layer structure in the middle; Fig. 9 has shown the real part and the imaginary part of the final relative equivalent magnetic permeability of the first layer structure in the asymmetric artificial electromagnetic material; Fig. 10 represents the real part and the imaginary part of the final relative equivalent magnetic permeability of the second layer structure in the asymmetric artificial electromagnetic material;
本发明使用全波仿真软件HFSS对最后提取得到的等效电磁参数进行建模仿真;首先建立两个与图1中实际材料结构中的空气盒子尺寸相同的无材料属性的正方体模型,然后将所提取的两组等效电磁参数作为材料参数分别赋给所对应的正方体模型,采用波导法对其进行全波仿真,获得外部散射参数S",仿真结果与实际结构的散射参数S的对比结果如图11~18所示:图11表示了采用提取得到的等效电磁参数进行仿真得到的S11"振幅与实际结构的S11振幅的对比图,两条曲线完全吻合;图12表示了采用提取得到的等效电磁参数进行仿真得到的S21"振幅与实际结构的S21振幅的对比图,两条曲线完全吻合;图13表示了采用提取得到的等效电磁参数进行仿真得到的S12"振幅与实际结构的S12振幅的对比图,两条曲线完全吻合;图14表示了采用提取得到的等效电磁参数进行仿真得到的S22"振幅与实际结构的S22振幅的对比图,两条曲线完全吻合;图15表示了采用提取得到的等效电磁参数进行仿真得到的S11"相位与实际结构的S11相位的对比图,两条曲线完全吻合;图16表示了采用提取得到的等效电磁参数进行仿真得到的S21"相位与实际结构的S21相位的对比图,两条曲线完全吻合;图17表示了采用提取得到的等效电磁参数进行仿真得到的S12"相位与实际结构的S12相位的对比图,两条曲线完全吻合;图18表示了采用提取得到的等效电磁参数进行仿真得到的S22"相位与实际结构的S22相位的对比图,两条曲线完全吻合;The present invention uses full-wave simulation software HFSS to model and simulate the equivalent electromagnetic parameters extracted at last; firstly, two cube models without material attributes with the same size as the air box in the actual material structure in Fig. 1 are established, and then the obtained The extracted two sets of equivalent electromagnetic parameters are respectively assigned to the corresponding cube model as material parameters, and the waveguide method is used to perform full-wave simulation on it to obtain the external scattering parameter S". As shown in Figures 11 to 18: Figure 11 shows the comparison between the S11" amplitude obtained by simulation using the extracted equivalent electromagnetic parameters and the S11 amplitude of the actual structure, and the two curves are completely consistent; Figure 12 shows the obtained by using the extracted The comparison chart of the S21" amplitude obtained by the simulation of the equivalent electromagnetic parameters and the S21 amplitude of the actual structure, the two curves are completely consistent; Figure 13 shows the S12" amplitude obtained by the simulation using the extracted equivalent electromagnetic parameters and the actual structure. The comparison diagram of the S12 amplitude, the two curves are completely consistent; Figure 14 shows the comparison diagram between the S22 "amplitude obtained by the simulation using the extracted equivalent electromagnetic parameters and the S22 amplitude of the actual structure, and the two curves are completely consistent; Fig. 15 shows Figure 16 shows the S21" phase obtained by simulation using the extracted equivalent electromagnetic parameters and the S11 phase of the actual structure. The comparison diagram of the phase and the S21 phase of the actual structure, the two curves are completely consistent; Figure 17 shows the comparison diagram of the S12" phase obtained by using the extracted equivalent electromagnetic parameters for simulation and the S12 phase of the actual structure, the two curves are completely consistent coincide; Fig. 18 shows the comparison diagram between the S22" phase obtained by the simulation using the extracted equivalent electromagnetic parameters and the S22 phase of the actual structure, and the two curves are completely consistent;
综上,本发明能够针对非对称人工电磁材料准确提取其等效电磁参数,提取的两组等效电磁参数能够准确地描述非对称人工电磁材料的电磁特性,通过仿真验证了具有所提取的等效电磁参数的模型的外部散射参数S"的准确性,结果与实际结构的外部S参数完全吻合,进一步证实了本发明的可行性与实用性。In summary, the present invention can accurately extract its equivalent electromagnetic parameters for asymmetric artificial electromagnetic materials, and the extracted two sets of equivalent electromagnetic parameters can accurately describe the electromagnetic characteristics of asymmetric artificial electromagnetic materials, and it has been verified by simulation that the extracted equivalent electromagnetic parameters have The accuracy of the external scattering parameter S" of the model of the effective electromagnetic parameter, the result is in full agreement with the external S parameter of the actual structure, further confirming the feasibility and practicability of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510291977.8A CN104931818B (en) | 2015-06-01 | 2015-06-01 | Extraction Method of Equivalent Electromagnetic Parameters of Asymmetric Artificial Electromagnetic Materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510291977.8A CN104931818B (en) | 2015-06-01 | 2015-06-01 | Extraction Method of Equivalent Electromagnetic Parameters of Asymmetric Artificial Electromagnetic Materials |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104931818A CN104931818A (en) | 2015-09-23 |
CN104931818B true CN104931818B (en) | 2017-09-05 |
Family
ID=54119077
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510291977.8A Expired - Fee Related CN104931818B (en) | 2015-06-01 | 2015-06-01 | Extraction Method of Equivalent Electromagnetic Parameters of Asymmetric Artificial Electromagnetic Materials |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104931818B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106093749B (en) * | 2016-06-12 | 2018-09-21 | 成都通量科技有限公司 | Embedding method and system are gone in a kind of millimeter wave/Terahertz ultra wide band open circuit-short circuit |
CN106772151A (en) * | 2016-11-10 | 2017-05-31 | 河北工业大学 | A kind of measuring method of the magnetic screen frame magnetic loss under alternating current-direct current mixed excitation |
CN109657277A (en) * | 2018-11-21 | 2019-04-19 | 上海无线电设备研究所 | A kind of composite material Extraction of electromagnetic parameters method under cabin structure |
CN109766630B (en) * | 2019-01-08 | 2022-05-03 | 电子科技大学 | Equivalent electromagnetic parameter extraction method of honeycomb wave-absorbing material |
CN110081826B (en) * | 2019-04-29 | 2021-03-02 | 中国矿业大学 | Measurement method of ceramic layer thickness of thermal barrier coating based on terahertz technology |
CN110133376B (en) * | 2019-05-10 | 2021-04-20 | 杭州电子科技大学 | Microwave sensor for measuring permittivity and permeability of magnetic dielectric materials |
CN111103327B (en) * | 2019-12-30 | 2022-05-17 | 中国人民解放军军事科学院国防科技创新研究院 | Equivalent electromagnetic parameter inversion method and device for artificial structure with non-uniform dielectric material |
CN114076886B (en) * | 2020-08-20 | 2024-09-03 | 深南电路股份有限公司 | Establishment method, correction method and correction system for correcting PCB dielectric constant model |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7072555B1 (en) * | 2003-05-01 | 2006-07-04 | The Regents Of The University Of California | Systems and methods for transmitting electromagnetic energy in a photonic device |
CN101620249A (en) * | 2009-07-27 | 2010-01-06 | 张莉 | Neural net method for measuring electromagnetic parameters of artificial electromagnetic material |
CN102149269A (en) * | 2011-04-21 | 2011-08-10 | 中国科学院光电技术研究所 | A method to realize efficient electromagnetic absorption by utilizing the conversion mechanism of propagating wave and evanescent wave |
CN103279600A (en) * | 2013-05-15 | 2013-09-04 | 西安电子科技大学 | Medium rough surface finite element electromagnetic simulation method based on integral boundary |
CN103296448A (en) * | 2012-02-29 | 2013-09-11 | 深圳光启创新技术有限公司 | Impedance matching element |
-
2015
- 2015-06-01 CN CN201510291977.8A patent/CN104931818B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7072555B1 (en) * | 2003-05-01 | 2006-07-04 | The Regents Of The University Of California | Systems and methods for transmitting electromagnetic energy in a photonic device |
CN101620249A (en) * | 2009-07-27 | 2010-01-06 | 张莉 | Neural net method for measuring electromagnetic parameters of artificial electromagnetic material |
CN102149269A (en) * | 2011-04-21 | 2011-08-10 | 中国科学院光电技术研究所 | A method to realize efficient electromagnetic absorption by utilizing the conversion mechanism of propagating wave and evanescent wave |
CN103296448A (en) * | 2012-02-29 | 2013-09-11 | 深圳光启创新技术有限公司 | Impedance matching element |
CN103279600A (en) * | 2013-05-15 | 2013-09-04 | 西安电子科技大学 | Medium rough surface finite element electromagnetic simulation method based on integral boundary |
Non-Patent Citations (2)
Title |
---|
用改进的方法提取人工电磁材料的等效电磁参数;侯伶利;《中国优秀硕士学位论文全文数据库》;20081215(第12期);第22页-第27页 * |
非均匀各向异性介质中斜线圈的数值建模及测井应用;刘正乾;《万方学位论文数据库》;20090821;第17页-第24页 * |
Also Published As
Publication number | Publication date |
---|---|
CN104931818A (en) | 2015-09-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104931818B (en) | Extraction Method of Equivalent Electromagnetic Parameters of Asymmetric Artificial Electromagnetic Materials | |
CN102129523A (en) | Method for analyzing electromagnetic scattering of complex target through MDA and MLSSM | |
Wang et al. | Multisolver domain decomposition method for modeling EMC effects of multiple antennas on a large air platform | |
CN112487755B (en) | A Numerical Calculation Method of Transient Electromagnetic Field Distribution in FLTD Cavity | |
CN109765538B (en) | Method for determining scattered field of inhomogeneous medium target body | |
CN102156764A (en) | Multi-resolution precondition method for analyzing aerial radiation and electromagnetic scattering | |
CN102930071A (en) | Three-dimensional electromagnetic field simulation method based on periodic structure of non-matching grid | |
CN112733364B (en) | Foil cloud scattering rapid calculation method based on impedance matrix partitioning | |
CN107256286A (en) | The emulation mode of anisotropy power spectrum and wave structure function characteristic in hypersonic turbulent flow | |
CN104809343A (en) | Method for realizing perfectly matched layer by using current density convolution in plasma | |
CN104731996B (en) | A kind of emulation mode of rapidly extracting electrically large sizes metal cavity target Transient Raleigh wave signal | |
CN104346488B (en) | TV university complex appearance metal target hybrid modeling and electromagnetic scattering rapid simulation method | |
CN107066702A (en) | A kind of electromagnetic scattering method of rapid solving conductor structure localized variation | |
CN103246827B (en) | The mesh free emulation mode of complex appearance metal target electromagnetic scattering | |
CN106777536A (en) | Electro-magnetic far-field two, three-dimensional visual processing method based on fine Electromagnetic Simulation | |
CN111767640B (en) | Rapid simulation method for target near-field radar echo | |
CN105740515A (en) | Hybrid topology optimization method based on sensitivity analysis | |
CN105486948A (en) | A method for rapidly extracting antenna-radome system electric performance parameters | |
CN104915324B (en) | Cavity electromagnetic scattering containing dielectric object hybrid analysis | |
CN104750960A (en) | Method for rapidly extracting electrical property parameter of metal truss-type radome | |
CN113033052A (en) | Electromagnetic rapid numerical modeling method for honeycomb wave-absorbing structure | |
CN105205299B (en) | The quick Dimension Reduction Analysis method of TV university electromagnetic characteristic of scattering | |
CN103474737B (en) | Millimeter wave E-plane filter and membrane modeling method based on support vector machine for membrane modeling | |
CN110146878A (en) | Quantitative Microwave Imaging Method Based on Iterative Update of Background Medium Based on Multiplicative Regularization | |
CN106066925A (en) | Magneto-electric coupled Meta Materials constitutive matrix method of acquiring |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20170905 |