CN104914165A - 一种风电风机叶片裂纹损伤在线监测装置及监测方法 - Google Patents

一种风电风机叶片裂纹损伤在线监测装置及监测方法 Download PDF

Info

Publication number
CN104914165A
CN104914165A CN201510228326.4A CN201510228326A CN104914165A CN 104914165 A CN104914165 A CN 104914165A CN 201510228326 A CN201510228326 A CN 201510228326A CN 104914165 A CN104914165 A CN 104914165A
Authority
CN
China
Prior art keywords
wind
fan blade
electricity generation
module
powered electricity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510228326.4A
Other languages
English (en)
Other versions
CN104914165B (zh
Inventor
靳子洋
陆永耕
张彬
姚晓龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN201510228326.4A priority Critical patent/CN104914165B/zh
Publication of CN104914165A publication Critical patent/CN104914165A/zh
Application granted granted Critical
Publication of CN104914165B publication Critical patent/CN104914165B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Wind Motors (AREA)

Abstract

一种风电风机叶片裂纹损伤在线监测装置,包括:压电薄膜传感器模块,设置在风电风机叶片上,并与电荷放大模块、A/D转换模块和无线发射模块电连接;无线信号接收模块,接收来自压电薄膜传感器模块所采集,并经由无线发射模块输出之信号;数据处理模块,对无线信号接收模块所接收之信号进行处理,以在线监测风电风机叶片之裂纹损伤与否;主控系统通讯模块,与数据处理模块电连接,并对风电风机叶片之运行进行控制。本发明采用固有振动频率段进行损伤判断,降低了环境变化和风机自身各部件振动的影响,提高了监测准确性,并更具适应性,能够快速准确的进行风电风机叶片之裂纹损伤的在线实时监测。

Description

一种风电风机叶片裂纹损伤在线监测装置及监测方法
技术领域
本发明涉及发电系统技术领域,尤其涉及一种风电风机叶片裂纹损伤在线监测装置及监测方法。
背景技术
风电是世界上增长最快的能源,每年的装机容量增长速度超过30%。2005年2月,旨在限制发达国家温室气体排放,以抑制全球变暖的《京都协定书》生效,这为风电行业的发展带来了十分积极的影响。欧洲风能协会和全球风能协会发布的数据显示,2009年全球风能发电装机容量达到37500兆瓦,相当于23台EPR核电机组的发电总量。
风力发电是一种新兴产业,尽管当前与常规火电相比存在产业规模小,一次性投资大等不利因素,但风力发电对改善环境,减少污染物排放,优化资源配置,优化电力结构等有着不可估量的作用。从长远利益看,风力发电是保证可持续发展的战略举措。
风力发电作为当今世界重点发展的一个新兴产业,叶片是风力发电机组最关键的部件之一,它的安全运行直接关系到整个风力发电机组的安全。一般风力发电机组在运行两到三年后叶片表面就会出现裂纹。风力发电机组的每次自振、停车都会使裂纹加深加长,裂纹在扩张的同时空气中的污垢、风沙也会乘虚而入,使得裂纹加深加宽。裂纹的扩展可导致叶片断裂,严重威胁叶片的安全。因此,叶片裂纹情况的监测是非常重要的。然而,常规的叶片裂纹监测方法对监测条件要求十分苛刻,需要逐点扫描,工作量繁重,降低了监测效率。
寻求一种可灵敏接收到叶片裂纹损伤在活动过程中的振动信号,并经过对信号的分析处理,可以获得损伤部位的动态信息之监测装置和方法已成为本领域亟待解决的技术问题之一。
故针对现有技术存在的问题,本案设计人凭借从事此行业多年的经验,积极研究改良,于是有了本发明一种风电风机叶片裂纹损伤在线监测装置及监测方法。
发明内容
本发明是针对现有技术中,传统的风电风机叶片裂纹情况之监测方法对监测条件要求十分苛刻,需要逐点扫描,工作量繁重,降低了监测效率等缺陷提供一种风电风机叶片裂纹损伤在线监测装置。
本发明之第二目的是针对现有技术中,传统的风电风机叶片裂纹情况之监测方法对监测条件要求十分苛刻,需要逐点扫描,工作量繁重,降低了监测效率等缺陷提供一种风电风机叶片裂纹损伤在线监测方法。
为实现本发明之第一目的,本发明提供一种风电风机叶片裂纹损伤在线监测装置,所述风电风机叶片裂纹损伤在线监测装置,包括:压电薄膜传感器模块,设置在风电风机叶片上,并与电荷放大模块、A/D转换模块和无线发射模块电连接;无线信号接收模块,接收来自所述压电薄膜传感器模块所采集,并经由所述无线发射模块输出之信号;数据处理模块,进一步包括滤波去噪模块、固有频率段提取模块、固有频率数据库、固有频率更新模块、信号比较模块,并对所述无线信号接收模块所接收之信号进行处理,以在线监测所述风电风机叶片之裂纹损伤与否;主控系统通讯模块,与所述数据处理模块电连接,并对所述风电风机叶片之运行进行控制。
可选地,所述压电薄膜传感器模块为贴片式,且所述压电薄膜传感器模块通过贴片方式呈对称的设置在所述风电风机叶片之应力敏感点处。
可选地,根据所述风电风机叶片出厂时载荷的计算,获得所述风电风机叶片之振动模态特征,然后将所述压电薄膜传感器模块通过贴片方式呈对称设置在所述应力敏感点处。
可选地,所述压电薄膜传感器模块之传感器数量和安装的位置依据所述风电风机叶片之结构进行设定。
可选地,所述风电风机叶片之各应力敏感点处的压电薄膜传感器的数量为2个。
为实现本发明第二目的,本发明提供一种风电风机叶片裂纹损伤在线监测装置之监测方法,所述风电风机叶片裂纹损伤在线监测装置的监测方法,包括:
执行步骤S1:所述压电薄膜传感器模块探测所述风电风机叶片之振动,并通过所述无线发射模块将信号输送至所述无线信号接收模块;
执行步骤S2:所述数据处理模块将来自所述无线信号接收模块之信息进行滤波、去噪,并将经过滤波处理后的时域振动信号进行快速傅里叶变换,以将所述时域信号转换为频域信号;
执行步骤S3:通过所述频域信号的幅值变化提取风电风机叶片之第一固有振动频率段,并进行存储;
执行步骤S4:重复执行步骤S1~步骤S3,提取所述风电风机叶片之第二固有振动频率段,并将所述第二固有振动频率段和所述第一固有振动频率段进行比较,进而判定所述风电风机叶片之损伤与否。
可选地,若所述第二固有振动频率段和所述第一固有振动频率段的重合率α<预设阈值β,则判定所述风电风机叶片出现损伤,并将损伤信号发送至主控系统通讯模块,以提供预警;若所述第二固有振动频率段和所述第一固有振动频率段的重合率α>预设阈值β,则判定所述风电风机叶片正常,并计算所述第一固有振动频率段和所述第二固有振动频率段之平均值第三固有振动频率段,且以所述第三固有振动频率段为参考频段,进行下一时刻损伤判断。
可选地,所述时域信号的滤波采用有限脉冲滤波。
综上所述,本发明风电风机叶片裂纹损伤在线监测方法采用固有振动频率段进行损伤判断,降低了环境变化和风机自身各部件振动的影响,提高了监测准确性,并更具适应性,能够快速准确的进行风电风机叶片之裂纹损伤的在线实时监测。
附图说明
图1所示为本发明风电风机叶片裂纹损伤在线监测装置的框架结构图;
图2所示为本发明风电风机叶片裂纹损伤在线监测装置之压电薄膜传感器结构示意图;
图3所示为本发明风电风机叶片裂纹损伤在线监测之方法的流程图。
具体实施方式
为详细说明本发明创造的技术内容、构造特征、所达成目的及功效,下面将结合实施例并配合附图予以详细说明。
请参阅图1,图1所示为本发明风电风机叶片裂纹损伤在线监测装置的框架结构图。所述风电风机叶片裂纹损伤在线监测装置1,包括:压电薄膜传感器模块11,所述压电薄膜传感器模块11设置在风电风机叶片10上,并与电荷放大模块(未图示)、A/D转换模块(未图示)和无线发射模块12电连接;无线信号接收模块13,所述无线信号接收模块13接收来自所述压电薄膜传感器模块11所采集,并经由所述无线发射模块12输出之信号;数据处理模块14,所述数据处理模块14进一步包括滤波去噪模块141、固有频率段提取模块142、固有频率数据库143、固有频率更新模块144、信号比较模块145,并对所述无线信号接收模块13所接收之信号进行处理,以在线监测所述风电风机叶片10之裂纹损伤与否;主控系统通讯模块15,所述主控系统通讯模块15与所述数据处理模块14电连接,并对所述风电风机叶片10之运行进行控制。
请参阅图2,并结合参阅图1,图2所示为本发明风电风机叶片裂纹损伤在线监测装置之压电薄膜传感器结构示意图。作为具体的实施方式,优选地,所述压电薄膜传感器模块11为贴片式,且所述压电薄膜传感器模块11通过贴片方式呈对称的设置在所述风电风机叶片10之应力敏感点101处。更具体地,即在所述压电薄膜传感器模块11之安装使用过程中,首先根据所述风电风机叶片10出厂时载荷的计算,获得所述风电风机叶片10之振动模态特征,然后将所述压电薄膜传感器模块11通过贴片方式呈对称设置在所述应力敏感点101处,用以计算所述风电风机叶片10之振动程度。明显地,所述压电薄膜传感器模块11之传感器数量和安装的位置随所述风电风机叶片10之结构的不同而有异。即,所述压电薄膜传感器模块11之传感器数量和安装的位置依据所述风电风机叶片10之结构进行设定。
为了更直观的阐述本发明风电风机叶片裂纹损伤在线监测装置之结构,及其在线监测之工作原理,现以具体实施方式为例进行阐述。在具体实施方式中,所述风电风机叶片之结构、形状,以及压电薄膜传感器模块之数量等仅为列举,不应视为对本发明技术方案的限制。在具体实施方式中,例如所述压电薄膜传感器模块11之传感器分别对称于所述风电风机叶片10设置在上、下两侧,即在所述风电风机叶片10之应力敏感点101处的压电薄膜传感器的数量为上、下2个。
作为本领域技术人员,容易理解地,对于所述风电风机叶片10之裂纹损伤在线监测的方法,由于结构振动过程中响应只与结构本身的质量矩阵、刚度矩阵、阻尼矩阵和外部激励有关,所以当风电风机叶片10出现裂纹损伤时,其刚度矩阵将发生变化,进而导致阻尼矩阵和固有频率的变化。同时,所述阻尼矩阵和固有频率的变化可以通过风电风机叶片10的振动响应反映出来,故而可通过对所述风电风机叶片10之固有振动频率的变化来进行裂纹损伤判定。
请参阅图3,并结合参阅图1、图2,图3所示为本发明风电风机叶片裂纹损伤在线监测之方法的流程图。所述风电风机叶片裂纹损伤在线监测之方法,包括:
执行步骤S1:所述压电薄膜传感器模块11探测所述风电风机叶片10之振动,并通过所述无线发射模块12将信号输送至所述无线信号接收模块13;
执行步骤S2:所述数据处理模块14将来自所述无线信号接收模块13之信息进行滤波、去噪,并将经过滤波处理后的时域振动信号进行快速傅里叶变换,以将所述时域信号转换为频域信号;
执行步骤S3:通过所述频域信号的幅值变化提取风电风机叶片10之第一固有振动频率段,并进行存储;
执行步骤S4:重复执行步骤S1~步骤S3,提取所述风电风机叶片10之第二固有振动频率段,并将所述第二固有振动频率段和所述第一固有振动频率段进行比较,进而判定所述风电风机叶片10之损伤与否;
非限制性地,若所述第二固有振动频率段和所述第一固有振动频率段的重合率α<预设阈值β,则判定所述风电风机叶片10出现损伤,并将损伤信号发送至主控系统通讯模块15,以提供预警;若所述第二固有振动频率段和所述第一固有振动频率段的重合率α>预设阈值β,则判定所述风电风机叶片10正常,并计算所述第一固有振动频率段和所述第二固有振动频率段之平均值第三固有振动频率段,且以所述第三固有振动频率段为参考频段,进行下一时刻损伤判断。所述预设阈值β可根据本领域技术人员之常规技术手段进行设定。
其中,所述时域信号的滤波采用有限脉冲滤波(Finite Impulse ResponseFilter,FIR),而且所述数据处理模块14并结合自身的并行数据处理特点,可快速实时的对信号进行滤波和傅里叶变换。
明显地,本发明风电风机叶片10之裂纹损伤在线监测方法采用固有振动频率段进行损伤判断,降低了环境变化和风机自身各部件振动的影响,提高了监测准确性,并更具适应性,能够快速准确的进行风电风机叶片10之裂纹损伤的在线实时监测。
综上所述,本发明风电风机叶片裂纹损伤在线监测方法采用固有振动频率段进行损伤判断,降低了环境变化和风机自身各部件振动的影响,提高了监测准确性,并更具适应性,能够快速准确的进行风电风机叶片之裂纹损伤的在线实时监测。
本领域技术人员均应了解,在不脱离本发明的精神或范围的情况下,可以对本发明进行各种修改和变型。因而,如果任何修改或变型落入所附权利要求书及等同物的保护范围内时,认为本发明涵盖这些修改和变型。

Claims (8)

1.一种风电风机叶片裂纹损伤在线监测装置,其特征在于,所述风电风机叶片裂纹损伤在线监测装置,包括:
压电薄膜传感器模块,设置在风电风机叶片上,并与电荷放大模块、A/D转换模块和无线发射模块电连接;
无线信号接收模块,接收来自所述压电薄膜传感器模块所采集,并经由所述无线发射模块输出之信号;
数据处理模块,进一步包括滤波去噪模块、固有频率段提取模块、固有频率数据库、固有频率更新模块、信号比较模块,并对所述无线信号接收模块所接收之信号进行处理,以在线监测所述风电风机叶片之裂纹损伤与否;
主控系统通讯模块,与所述数据处理模块电连接,并对所述风电风机叶片之运行进行控制。
2.如权利要求1所述的风电风机叶片裂纹损伤在线监测装置,其特征在于,所述压电薄膜传感器模块为贴片式,且所述压电薄膜传感器模块通过贴片方式呈对称的设置在所述风电风机叶片之应力敏感点处。
3.如权利要求2所述的风电风机叶片裂纹损伤在线监测装置,其特征在于,根据所述风电风机叶片出厂时载荷的计算,获得所述风电风机叶片之振动模态特征,然后将所述压电薄膜传感器模块通过贴片方式呈对称设置在所述应力敏感点处。
4.如权利要求2所述的风电风机叶片裂纹损伤在线监测装置,其特征在于,所述压电薄膜传感器模块之传感器数量和安装的位置依据所述风电风机叶片之结构进行设定。
5.如权利要求4所述的风电风机叶片裂纹损伤在线监测装置,其特征在于,所述风电风机叶片之各应力敏感点处的压电薄膜传感器的数量为2个。
6.一种如权利要求1所述的风电风机叶片裂纹损伤在线监测装置之监测方法,其特征在于,所述风电风机叶片裂纹损伤在线监测装置的监测方法,包括:
执行步骤S1:所述压电薄膜传感器模块探测所述风电风机叶片之振动,并通过所述无线发射模块将信号输送至所述无线信号接收模块;
执行步骤S2:所述数据处理模块将来自所述无线信号接收模块之信息进行滤波、去噪,并将经过滤波处理后的时域振动信号进行快速傅里叶变换,以将所述时域信号转换为频域信号;
执行步骤S3:通过所述频域信号的幅值变化提取风电风机叶片之第一固有振动频率段,并进行存储;
执行步骤S4:重复执行步骤S1~步骤S3,提取所述风电风机叶片之第二固有振动频率段,并将所述第二固有振动频率段和所述第一固有振动频率段进行比较,进而判定所述风电风机叶片之损伤与否。
7.如权利要求6所述的风电风机叶片裂纹损伤在线监测装置之监测方法,其特征在于,若所述第二固有振动频率段和所述第一固有振动频率段的重合率α<预设阈值β,则判定所述风电风机叶片出现损伤,并将损伤信号发送至主控系统通讯模块,以提供预警;若所述第二固有振动频率段和所述第一固有振动频率段的重合率α>预设阈值β,则判定所述风电风机叶片正常,并计算所述第一固有振动频率段和所述第二固有振动频率段之平均值第三固有振动频率段,且以所述第三固有振动频率段为参考频段,进行下一时刻损伤判断。
8.如权利要求6所述的风电风机叶片裂纹损伤在线监测装置之监测方法,其特征在于,所述时域信号的滤波采用有限脉冲滤波。
CN201510228326.4A 2015-05-06 2015-05-06 一种风电风机叶片裂纹损伤在线监测装置及监测方法 Expired - Fee Related CN104914165B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510228326.4A CN104914165B (zh) 2015-05-06 2015-05-06 一种风电风机叶片裂纹损伤在线监测装置及监测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510228326.4A CN104914165B (zh) 2015-05-06 2015-05-06 一种风电风机叶片裂纹损伤在线监测装置及监测方法

Publications (2)

Publication Number Publication Date
CN104914165A true CN104914165A (zh) 2015-09-16
CN104914165B CN104914165B (zh) 2018-08-24

Family

ID=54083413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510228326.4A Expired - Fee Related CN104914165B (zh) 2015-05-06 2015-05-06 一种风电风机叶片裂纹损伤在线监测装置及监测方法

Country Status (1)

Country Link
CN (1) CN104914165B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240187A (zh) * 2015-11-18 2016-01-13 哈尔滨工业大学 基于混沌理论实现水轮机状态监测和故障诊断的方法
CN109946381A (zh) * 2019-01-08 2019-06-28 南京质联智能科技有限公司 一种检测方法及装置
CN111173687A (zh) * 2019-12-30 2020-05-19 国核信息科技有限公司 一种风电风机叶片裂纹损伤在线监测装置及方法
CN111426459A (zh) * 2020-04-13 2020-07-17 天津大学 基于叶尖定时和朴素贝叶斯算法的叶片裂纹在线测量方法
CN111766299A (zh) * 2020-07-02 2020-10-13 吉林省电力科学研究院有限公司 一种汽轮机叶片裂纹评估系统及汽轮机叶片裂纹预警方法
CN113217302A (zh) * 2021-06-08 2021-08-06 郑州爱因特电子科技有限公司 用于风电机组叶片及轴承裂纹的监测系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495434A1 (de) * 2011-03-03 2012-09-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur Überwachung des Zustands von Rotorblättern an Windernergieanlagen
CN102829977A (zh) * 2012-08-23 2012-12-19 天津瑞能电气有限公司 一种风力发电机组低频振动的监测方法
EP2565444A1 (de) * 2011-08-31 2013-03-06 Wölfel Beratende Ingenieure GmbH & Co. KG Verfarhen und Vorrichtung zur Zustandsüberwachung von Rotorblättern
CN103063428A (zh) * 2013-01-25 2013-04-24 国电联合动力技术有限公司 一种风机叶片模态参数的无线监测系统以及方法
CN103411659A (zh) * 2013-08-12 2013-11-27 国电联合动力技术有限公司 一种风力发电机叶片与塔筒状态监测方法及系统
CN203962299U (zh) * 2014-04-04 2014-11-26 上海电机学院 风力发电机叶片断裂诊断装置
CN204099123U (zh) * 2014-03-20 2015-01-14 上海电机学院 风力发电机叶片振动监测和保护装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2495434A1 (de) * 2011-03-03 2012-09-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. System zur Überwachung des Zustands von Rotorblättern an Windernergieanlagen
EP2565444A1 (de) * 2011-08-31 2013-03-06 Wölfel Beratende Ingenieure GmbH & Co. KG Verfarhen und Vorrichtung zur Zustandsüberwachung von Rotorblättern
CN102829977A (zh) * 2012-08-23 2012-12-19 天津瑞能电气有限公司 一种风力发电机组低频振动的监测方法
CN103063428A (zh) * 2013-01-25 2013-04-24 国电联合动力技术有限公司 一种风机叶片模态参数的无线监测系统以及方法
CN103411659A (zh) * 2013-08-12 2013-11-27 国电联合动力技术有限公司 一种风力发电机叶片与塔筒状态监测方法及系统
CN204099123U (zh) * 2014-03-20 2015-01-14 上海电机学院 风力发电机叶片振动监测和保护装置
CN203962299U (zh) * 2014-04-04 2014-11-26 上海电机学院 风力发电机叶片断裂诊断装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
王博 等: ""风力发电机旋转叶片振动分析"", 《机械设计与制造》 *
郭龙 等: ""风力发电机叶片动力学研究与分析"", 《机械研究与应用》 *
马源 等: ""基于变形及固有频率测量的纤维增强复合材料风机叶片等效弹性参数反求方法"", 《工程力学》 *
龚丽农 等: "《现代测试技术》", 31 July 2014 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105240187A (zh) * 2015-11-18 2016-01-13 哈尔滨工业大学 基于混沌理论实现水轮机状态监测和故障诊断的方法
CN109946381A (zh) * 2019-01-08 2019-06-28 南京质联智能科技有限公司 一种检测方法及装置
CN111173687A (zh) * 2019-12-30 2020-05-19 国核信息科技有限公司 一种风电风机叶片裂纹损伤在线监测装置及方法
CN111173687B (zh) * 2019-12-30 2022-04-26 国核信息科技有限公司 一种风电风机叶片裂纹损伤在线监测装置及方法
CN111426459A (zh) * 2020-04-13 2020-07-17 天津大学 基于叶尖定时和朴素贝叶斯算法的叶片裂纹在线测量方法
CN111766299A (zh) * 2020-07-02 2020-10-13 吉林省电力科学研究院有限公司 一种汽轮机叶片裂纹评估系统及汽轮机叶片裂纹预警方法
CN113217302A (zh) * 2021-06-08 2021-08-06 郑州爱因特电子科技有限公司 用于风电机组叶片及轴承裂纹的监测系统

Also Published As

Publication number Publication date
CN104914165B (zh) 2018-08-24

Similar Documents

Publication Publication Date Title
CN104914165A (zh) 一种风电风机叶片裂纹损伤在线监测装置及监测方法
US7708524B2 (en) Method and system for utilizing lateral tower acceleration to detect asymmetric icing
CN101446517A (zh) 一种输电线路高塔结构振动测试方法
EP1936186B1 (en) Wind turbine and method of detecting asymmetric icing on a wind turbine
CN102265169A (zh) 光伏设备中电弧的检测方法
CN102102629A (zh) 一种风电机组在线数据采集与分析装置
CN101787715A (zh) 一种用于公路隧道悬挂风机基础稳定性检测的方法和系统
CN101818724A (zh) 一种风力发电机智能叶片
CN103245913B (zh) 大型发电机组次同步振荡信号检测与分析的方法及系统
EP2400154A2 (en) Method and System for Utilizing Rotorspeed Acceleration to Detect Asymmetric Icing
CN104280683A (zh) 电力变压器电机和风扇的机械故障监测装置
CN107153002B (zh) 风力发电塔连接件松动程度检测方法和检测装置
CN105041571A (zh) 预测风速风向的智能控制系统及其控制方法
CN105553101A (zh) 一种电力输电线路智能检测方法
CN105508146B (zh) 风力发电机组的偏航测试系统
CN105528854A (zh) 一种电力电缆的防外力破坏系统
CN102435294B (zh) 一种应用于振动分析仪的振动分析方法
CN204256885U (zh) 一种电力电缆的防外力破坏系统
CN203479392U (zh) 一种输电塔振动监测系统
CN115807741A (zh) 一种风电机组叶尖净空测量系统
CN204731438U (zh) 沙尘环境参数检测平台设备
CN210319437U (zh) 一种给水网管漏损检测系统
CN204142926U (zh) 电力变压器电机和风扇的机械故障监测装置
CN103850274A (zh) 风力发电机组的基础的质量检测方法及装置
CN206960577U (zh) 一种风电次同步振荡的监测与抑制系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180824

Termination date: 20210506