CN104913730A - Spherical surface shape rotation and translation absolute detection method - Google Patents

Spherical surface shape rotation and translation absolute detection method Download PDF

Info

Publication number
CN104913730A
CN104913730A CN201410089712.5A CN201410089712A CN104913730A CN 104913730 A CN104913730 A CN 104913730A CN 201410089712 A CN201410089712 A CN 201410089712A CN 104913730 A CN104913730 A CN 104913730A
Authority
CN
China
Prior art keywords
delta
measured
mirror
sphere
sigma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410089712.5A
Other languages
Chinese (zh)
Inventor
高志山
史琪琪
杨忠明
李闽珏
王新星
田雪
王帅
成金龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201410089712.5A priority Critical patent/CN104913730A/en
Publication of CN104913730A publication Critical patent/CN104913730A/en
Pending legal-status Critical Current

Links

Abstract

The invention discloses a spherical surface shape rotation and translation absolute detection method. According to the method of the invention, based on the measurement data of the rotation and translation of a detected spherical surface are utilized, an equation set of Zernike polynomial coefficients which are about the detected spherical surface and a reference surface is constructed through adopting a Zernike polynomial fitting-based rotation and translation algorithm, and the coefficients of a Zernike polynomial are solved through utilizing a least square method, and therefore, the absolute surface shapes of the detected spherical surface and the reference surface can be obtained; and adjustment errors in large-numerical value aperture spherical surface phase-shift detection are adopted as independent error terms, and the adjustment errors are applied to an absolute detection process, and the adjustment errors and interferometer system errors are removed together from test wave surface data, and therefore, computation accuracy can be improved, and the method has an important application value.

Description

A kind of spherical surface shape rotates translation absolute detection method
Technical field
The invention belongs to precision optics fields of measurement, particularly be a kind of sphere absolute detection method.
Background technology
Along with the development of Modern Optics Technology, spherical optics element machining precision is more and more higher, also more and more higher to the requirement of accuracy of detection, and rotating translation absolute sense technology can improve accuracy of detection effectively, obtains face shape information more accurately.
At present, the absolute detection method of sphere mainly contains two sphere methods and little method of spherical means, absolute sense mainly three plate methods and its extension of plane.Three plate methods need three pieces of flat boards, and wherein one flat plate needs turn-over, and in the detection under vertical condition, the factor of gravity effect cannot be eliminated.In two spherical methods of sphere absolute sense, the determination deviation of opal center can cause four leaf error and spherical aberrations; The reference surface time error detecting radius-of-curvature larger with bead averaging method is larger.Rotary flat shifting method can detect the reference surface of any radius-of-curvature, and what only need processing radius-of-curvature and it to match is just passable by side.Another similar method---translation shear absolute sense in the process of practical operation because translation mechanism can not completely ideal and cause producing larger method for quadratic term error, comprise astigmatism and out of focus.
Summary of the invention
A kind of spherical surface shape is the object of the present invention is to provide to rotate translation absolute detection method, using the alignment error existed during the phase shift of large-numerical aperture sphere detects as independent error item, and alignment error is put into absolute sense process remove in test corrugated data together with interferometer system error.。
The technical solution realizing the object of the invention is: a kind of spherical surface shape rotates translation absolute detection method, and prolong optical axis and put interferometer, reference mirror and mirror to be measured successively, step is as follows:
Definition alignment error W mis
W mis = ( c 2 - 1 Z 2 + c 2 - 2 Z 2 2 + c 2 - 3 Z 2 3 ) + ( c 3 - 1 Z 3 + c 3 - 2 Z 3 2 + c 3 - 3 Z 3 3 ) + ( c 4 Z 4 + c 8 Z 8 + c 15 Z 15 + c 24 Z 24 + c 35 Z 35 + c 48 Z 48 )
Wherein, c represents the coefficient of the Ze Nike item in alignment error item, Z ifor the Ze Nike item of correspondence,
Step 1: utilize interferometer measurement to obtain one group of original graphic data W of the sphere of the mirror to be measured that numerical aperture is NA 1:
W 1 = W r + Σ i = 5 K a i Z i ( x , y ) + W Omis = W r + Σ i = 5 K a i Z i ( x , y ) + ( c O 2 - 1 Z 2 + c O 2 - 2 Z 2 2 + c O 2 - 3 Z 2 3 ) + ( c O 3 - 1 Z 3 + c O 3 - 2 Z 3 2 + c O 3 - 3 Z 3 3 ) + ( c O 4 Z 4 + c O 8 Z 8 + c O 15 Z 15 + c O 24 Z 24 + c O 35 Z 35 + c O 48 Z 48 )
Wherein W rrepresent the face shape error of reference surface, W omisrepresent original type alignment error, a ifor the zernike coefficient of every, Z ifor the Ze Nike item of correspondence, K is the item number of Ze Nike matching;
Step 2: the sphere prolonging x direction translation mirror to be measured, and record face graphic data W with interferometer 2:
W 2 = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + W Xmis = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + ( c X 2 - 1 Z 2 + c X 2 - 2 Z 2 2 + c X 2 - 3 Z 2 3 ) + ( c X 3 - 1 Z 3 + c X 3 - 2 Z 3 2 + c X 3 - 3 Z 3 3 ) + ( c X 4 Z 4 + c X 8 Z 8 + c X 15 Z 15 + c X 24 Z 24 + c X 35 Z 35 + c X 48 Z 48 )
Wherein, W xmisrepresent the alignment error after prolonging the sphere of x direction translation mirror to be measured, c xrepresent the coefficient of the Ze Nike item prolonged after the sphere of x direction translation mirror to be measured in alignment error item;
Step 3: prolong y direction, the i.e. sphere of vertical optical axis direction translation mirror to be measured, and with interferometer measurement face graphic data W 3:
W 3 = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + W Ymis = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + ( c Y 2 - 1 Z 2 + c Y 2 - 2 Z 2 2 + c Y 2 - 3 Z 2 3 ) + ( c Y 3 - 1 Z 3 + c Y 3 - 2 Z 3 2 + c Y 3 - 3 Z 3 3 ) + ( c Y 4 Z 4 + c Y 8 Z 8 + c Y 15 Z 15 + c Y 24 Z 24 + c Y 35 Z 35 + c Y 48 Z 48 )
Wherein, W ymisrepresent the alignment error after prolonging the sphere of y direction translation mirror to be measured, c yrepresent the coefficient of the Ze Nike item prolonged after the sphere of y direction translation mirror to be measured in alignment error item;
Step 4: take optical axis as rotation center, rotates the sphere of mirror to be measured, and records face graphic data W with interferometer 4:
W 4 = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + W Rmis = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + ( c R 2 - 1 Z 2 + c R 2 - 2 Z 2 2 + c R 2 - 3 Z 2 3 ) + ( c R 3 - 1 Z 3 + c R 3 - 2 Z 3 2 + c R 3 - 3 Z 3 3 ) + ( c R 4 Z 4 + c R 8 Z 8 + c R 15 Z 15 + c R 24 Z 24 + c R 35 Z 35 + c R 48 Z 48 )
Wherein, θ is the anglec of rotation, W rmisrepresent the alignment error after prolonging optical axis rotates the sphere of mirror to be measured, c rrepresent and prolong the coefficient that optical axis rotates the Ze Nike item after the sphere of mirror to be measured in alignment error item;
Step 5: in above-mentioned four steps, has often walked reference surface face graphic data W r, use W 2-W 1, W 3-W 1, W 4-W 1:
DxW = Σ i = 5 K a i Δ Z ix + ( c DX 2 - 1 Z 2 + c DX 2 - 2 Z 2 2 + c DX 2 - 3 Z 2 3 ) + ( c DX 3 - 1 Z 3 + c DX 3 - 2 Z 3 2 + c DX 3 - 3 Z 3 3 ) + ( c DX 4 Z 4 + c DX 8 Z 8 + c DX 15 Z 15 + c DX 24 Z 24 + c DX 35 Z 35 + c DX 48 Z 48 )
DyW = Σ i = 5 K a i Δ Z iy + ( c DY 2 - 1 Z 2 + c DY 2 - 2 Z 2 2 + c DY 2 - 3 Z 2 3 ) + ( c DY 3 - 1 Z 3 + c DY 3 - 2 Z 3 2 + c DY 3 - 3 Z 3 3 ) + ( c DY 4 Z 4 + c DY 8 Z 8 + c DY 15 Z 15 + c DY 24 Z 24 + c DY 35 Z 35 + c DY 48 Z 48 )
DrW = Σ i = 5 K a i Δ Z i + ( c DR 2 - 1 Z 2 + c DR 2 - 2 Z 2 2 + c DR 2 - 3 Z 2 3 ) + ( c DR 3 - 1 Z 3 + c DR 3 - 2 Z 3 2 + c DR 3 - 3 Z 3 3 ) + ( c DR 4 Z 4 + c DR 8 Z 8 + c DR 15 Z 15 + c DR 24 Z 24 + c DR 35 Z 35 + c DR 48 Z 48 )
Above-mentioned system of equations can be expressed as: GX=R
Wherein:
G = Δ Z 1 x ( 1,1 ) Δ Z 2 x ( 1,1 ) . . . Δ Z Kx ( 1,1 ) Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 x ( 1,2 ) Δ Z 2 x ( 1,2 ) . . . Δ Z Kx ( 1,2 ) Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 x ( M , N ) Δ Z 2 x ( M , N ) . . . Δ Z Kx ( M , N ) Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 y ( 1,1 ) Δ Z 2 y ( 1,1 ) . . . Δ Z Ky ( 1,1 ) 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 Δ Z 1 y ( 1,2 ) Δ Z 2 y ( 1,2 ) . . . Δ Z Ky ( 1,2 ) 0 0 . . . 0 Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 y ( M , N ) Δ Z 2 y ( M , N ) . . . Δ Z Ky ( M , N ) 0 0 . . . 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 Δ Z 1 r ( 1,1 ) Δ Z 2 r ( 1,1 ) . . . Δ Z Kr ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,2 ) Δ Z 1 r ( 1,2 ) Δ Z 2 r ( 1,2 ) . . . Δ Z Kr ( 1,2 ) 0 0 . . . 0 0 0 0 0 Z 2 ( 1,2 ) Z 2 2 . . . Z 48 ( 1,2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 r ( M , N ) Δ Z 2 r ( M , N ) . . . Δ Z Kr ( M . N ) 0 0 . . . 0 0 0 0 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N )
R = DxW ( 1,1 ) DxW ( 1,2 ) . . . DxW ( M , N ) DyW ( 1,1 ) DyW ( 1,2 ) . . . DyW ( M , N ) DrW ( 1,1 ) DrW ( 1,2 ) . . . DrW ( M , N )
X = a 5 a 6 . . . a K c DX 2 - 1 c DX 2 - 2 . . . c DX 48 c DY 2 - 1 c DY 2 - 2 . . . c DY 48 c DR 2 - 1 c DR 2 - 2 . . . c DR 48
Step 6: solve an equation and obtain X, obtains a then 5a k; Finally obtain tested surface shape
The present invention compared with prior art, its remarkable advantage: the 1. spherical surface shape that the present invention proposes rotates translation absolute detection method based on Zernike fitting of a polynomial, clear principle, and method is simply effective; 2. the spherical surface shape that the present invention proposes rotates translation absolute detection method using the alignment error existed in large-numerical aperture sphere phase shift detection as independent error item, and alignment error is put into absolute sense process remove in test corrugated data together with interferometer system error, effectively improve accuracy of detection, there is important using value.
Accompanying drawing explanation
Fig. 1 is detection architecture schematic diagram when tested sphere is concave mirror in the present invention.
Fig. 2 is that schematic diagram is detected in the original position of the sphere of mirror to be measured in the present invention.
Fig. 3 is the detection schematic diagram after the sphere of mirror to be measured in the present invention prolongs the displacement of x direction.
Fig. 4 is the detection schematic diagram after the sphere of mirror to be measured in the present invention prolongs the displacement of y direction.
Fig. 5 is the detection schematic diagram after the spherical rotary certain angle of mirror to be measured in the present invention.
Fig. 6 is the spherical surface type of the mirror to be measured resolving out after four face types detect.
Fig. 7 is method flow diagram of the present invention.
Embodiment
Below in conjunction with accompanying drawing, the present invention is described in further detail.
Composition graphs 1, a kind of spherical surface shape rotates translation absolute detection method, and prolong optical axis and put interferometer 1, reference mirror 2 and mirror to be measured 3 successively, wherein interferometer 1 comprises helium-neon laser, microcobjective, spatial filter, beam-splitter, collimator objective.
Be illustrated in figure 2 reference mirror and mirror to be measured to overlap in level and vertical direction, two spheres are in homocentric position.
The sphere of mirror 3 to be measured has carried out level, vertical displacement calculate its face graphic data on Fig. 2 position as shown in Figure 3,4.
The sphere of mirror 3 to be measured is after optical axis rotates to an angle as shown in Figure 5, and sphere and the reference surface of mirror 3 to be measured still keep homocentric position.
This method carries out four surface shape measurements to position behind position after position, vertical displacement after original position, horizontal shift and rotation, utilizes three face graphic data below to deduct original graphic data and calculates final face type data.The spherical surface shape that the present invention proposes rotates translation absolute detection method using the alignment error existed during the phase shift of large-numerical aperture sphere detects as independent error item, and alignment error is put into absolute sense process removes in test corrugated data together with interferometer system error.Effectively improve accuracy of detection, there is important using value.The detecting step of its method is as follows:
Composition graphs 7, a kind of spherical surface shape rotates translation absolute detection method, and prolong optical axis and put interferometer 1, reference mirror 2 and mirror to be measured 3 successively, step is as follows:
Definition alignment error W mis
W mis = ( c 2 - 1 Z 2 + c 2 - 2 Z 2 2 + c 2 - 3 Z 2 3 ) + ( c 3 - 1 Z 3 + c 3 - 2 Z 3 2 + c 3 - 3 Z 3 3 ) + ( c 4 Z 4 + c 8 Z 8 + c 15 Z 15 + c 24 Z 24 + c 35 Z 35 + c 48 Z 48 )
Wherein, c represents the coefficient of the Ze Nike item in alignment error item, Z ifor the Ze Nike item of correspondence, such as c 2-3represent the cube coefficient of Section 2 zernike polynomial.
Step 1: utilize interferometer 1 to measure one group of original the graphic data W obtaining the sphere of the mirror to be measured 3 that numerical aperture is NA 1:
W 1 = W r + Σ i = 5 K a i Z i ( x , y ) + W Omis = W r + Σ i = 5 K a i Z i ( x , y ) + ( c O 2 - 1 Z 2 + c O 2 - 2 Z 2 2 + c O 2 - 3 Z 2 3 ) + ( c O 3 - 1 Z 3 + c O 3 - 2 Z 3 2 + c O 3 - 3 Z 3 3 ) + ( c O 4 Z 4 + c O 8 Z 8 + c O 15 Z 15 + c O 24 Z 24 + c O 35 Z 35 + c O 48 Z 48 )
Wherein W rrepresent the face shape error of reference surface, W omisrepresent original type alignment error, a ifor the zernike coefficient of every, Z ifor the Ze Nike item of correspondence, K is the item number of Ze Nike matching;
Step 2: the sphere prolonging x direction translation mirror 3 to be measured, and record face graphic data W with interferometer 1 2:
W 2 = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + W Xmis = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + ( c X 2 - 1 Z 2 + c X 2 - 2 Z 2 2 + c X 2 - 3 Z 2 3 ) + ( c X 3 - 1 Z 3 + c X 3 - 2 Z 3 2 + c X 3 - 3 Z 3 3 ) + ( c X 4 Z 4 + c X 8 Z 8 + c X 15 Z 15 + c X 24 Z 24 + c X 35 Z 35 + c X 48 Z 48 )
Wherein, W xmisrepresent the alignment error after prolonging the sphere of x direction translation mirror 3 to be measured, c xrepresent the coefficient of the Ze Nike item prolonged after the sphere of x direction translation mirror 3 to be measured in alignment error item;
Step 3: prolong y direction, the i.e. sphere of vertical optical axis direction translation mirror 3 to be measured, and with interferometer 1 measuring surface graphic data W 3:
W 3 = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + W Ymis = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + ( c Y 2 - 1 Z 2 + c Y 2 - 2 Z 2 2 + c Y 2 - 3 Z 2 3 ) + ( c Y 3 - 1 Z 3 + c Y 3 - 2 Z 3 2 + c Y 3 - 3 Z 3 3 ) + ( c Y 4 Z 4 + c Y 8 Z 8 + c Y 15 Z 15 + c Y 24 Z 24 + c Y 35 Z 35 + c Y 48 Z 48 )
Wherein, W ymisrepresent the alignment error after prolonging the sphere of y direction translation mirror 3 to be measured, c yrepresent the coefficient of the Ze Nike item prolonged after the sphere of y direction translation mirror 3 to be measured in alignment error item;
Step 4: take optical axis as rotation center, rotates the sphere of mirror 3 to be measured, and records face graphic data W with interferometer 1 4:
W 4 = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + W Rmis = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + ( c R 2 - 1 Z 2 + c R 2 - 2 Z 2 2 + c R 2 - 3 Z 2 3 ) + ( c R 3 - 1 Z 3 + c R 3 - 2 Z 3 2 + c R 3 - 3 Z 3 3 ) + ( c R 4 Z 4 + c R 8 Z 8 + c R 15 Z 15 + c R 24 Z 24 + c R 35 Z 35 + c R 48 Z 48 )
Wherein, θ is the anglec of rotation, W rmisrepresent the alignment error after prolonging optical axis rotates the sphere of mirror 3 to be measured, c rrepresent and prolong the coefficient that optical axis rotates the Ze Nike item after the sphere of mirror 3 to be measured in alignment error item;
Step 5: in above-mentioned four steps, has often walked reference surface face graphic data W r, use W 2-W 1, W 3-W 1, W 4-W 1:
DxW = Σ i = 5 K a i Δ Z ix + ( c DX 2 - 1 Z 2 + c DX 2 - 2 Z 2 2 + c DX 2 - 3 Z 2 3 ) + ( c DX 3 - 1 Z 3 + c DX 3 - 2 Z 3 2 + c DX 3 - 3 Z 3 3 ) + ( c DX 4 Z 4 + c DX 8 Z 8 + c DX 15 Z 15 + c DX 24 Z 24 + c DX 35 Z 35 + c DX 48 Z 48 )
DyW = Σ i = 5 K a i Δ Z iy + ( c DY 2 - 1 Z 2 + c DY 2 - 2 Z 2 2 + c DY 2 - 3 Z 2 3 ) + ( c DY 3 - 1 Z 3 + c DY 3 - 2 Z 3 2 + c DY 3 - 3 Z 3 3 ) + ( c DY 4 Z 4 + c DY 8 Z 8 + c DY 15 Z 15 + c DY 24 Z 24 + c DY 35 Z 35 + c DY 48 Z 48 )
DrW = Σ i = 5 K a i Δ Z i + ( c DR 2 - 1 Z 2 + c DR 2 - 2 Z 2 2 + c DR 2 - 3 Z 2 3 ) + ( c DR 3 - 1 Z 3 + c DR 3 - 2 Z 3 2 + c DR 3 - 3 Z 3 3 ) + ( c DR 4 Z 4 + c DR 8 Z 8 + c DR 15 Z 15 + c DR 24 Z 24 + c DR 35 Z 35 + c DR 48 Z 48 )
Above-mentioned system of equations can be expressed as: GX=R
Wherein:
G = Δ Z 1 x ( 1,1 ) Δ Z 2 x ( 1,1 ) . . . Δ Z Kx ( 1,1 ) Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 x ( 1,2 ) Δ Z 2 x ( 1,2 ) . . . Δ Z Kx ( 1,2 ) Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 x ( M , N ) Δ Z 2 x ( M , N ) . . . Δ Z Kx ( M , N ) Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 y ( 1,1 ) Δ Z 2 y ( 1,1 ) . . . Δ Z Ky ( 1,1 ) 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 Δ Z 1 y ( 1,2 ) Δ Z 2 y ( 1,2 ) . . . Δ Z Ky ( 1,2 ) 0 0 . . . 0 Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 y ( M , N ) Δ Z 2 y ( M , N ) . . . Δ Z Ky ( M , N ) 0 0 . . . 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 Δ Z 1 r ( 1,1 ) Δ Z 2 r ( 1,1 ) . . . Δ Z Kr ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,2 ) Δ Z 1 r ( 1,2 ) Δ Z 2 r ( 1,2 ) . . . Δ Z Kr ( 1,2 ) 0 0 . . . 0 0 0 0 0 Z 2 ( 1,2 ) Z 2 2 . . . Z 48 ( 1,2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 r ( M , N ) Δ Z 2 r ( M , N ) . . . Δ Z Kr ( M . N ) 0 0 . . . 0 0 0 0 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N )
R = DxW ( 1,1 ) DxW ( 1,2 ) . . . DxW ( M , N ) DyW ( 1,1 ) DyW ( 1,2 ) . . . DyW ( M , N ) DrW ( 1,1 ) DrW ( 1,2 ) . . . DrW ( M , N )
X = a 5 a 6 . . . a K c DX 2 - 1 c DX 2 - 2 . . . c DX 48 c DY 2 - 1 c DY 2 - 2 . . . c DY 48 c DR 2 - 1 c DR 2 - 2 . . . c DR 48
Step 6: solve an equation and obtain X, obtains a then 5a k; Finally obtain tested surface shape
Embodiment
Utilize in embodiment method of the present invention to a radius-of-curvature be 36.7mm, numerical aperture is that the sphere of the mirror to be measured (3) of 0.7 detects, the step that the sphere of mirror to be measured (3) carries out rotating translation absolute sense is:
Step 1: utilize the sphere of Zygo GPI interferometer to mirror to be measured (3) to detect, wherein the optical wavelength of interferometer is 632.8nm, and peak valley (PV) value of surface testing precision is better than λ/10.One group of original graphic data of the sphere of the mirror to be measured (3) detected by interferometer:
W 1 = W r + Σ i = 5 K a i Z i ( x , y ) + W Omis = W r + Σ i = 5 K a i Z i ( x , y ) + ( c O 2 - 1 Z 2 + c O 2 - 2 Z 2 2 + c O 2 - 3 Z 2 3 ) + ( c O 3 - 1 Z 3 + c O 3 - 2 Z 3 2 + c O 3 - 3 Z 3 3 ) + ( c O 4 Z 4 + c O 8 Z 8 + c O 15 Z 15 + c O 24 Z 24 + c O 35 Z 35 + c O 48 Z 48 )
Wherein W rrepresent the face shape error of reference surface, W omisrepresent original type alignment error, a ifor the zernike coefficient of every, Z ifor the Ze Nike item of correspondence, K is the item number of Ze Nike matching.
W mis = ( c 2 - 1 Z 2 + c 2 - 2 Z 2 2 + c 2 - 3 Z 2 3 ) + ( c 3 - 1 Z 3 + c 3 - 2 Z 3 2 + c 3 - 3 Z 3 3 ) + ( c 4 Z 4 + c 8 Z 8 + c 15 Z 15 + c 24 Z 24 + c 35 Z 35 + c 48 Z 48 )
Wherein, c represents the coefficient of the Ze Nike item in alignment error item, such as c 2-3represent the cube coefficient of Section 2 zernike polynomial.
Step 2: the sphere prolonging x direction translation mirror to be measured (3), and measure one group of face graphic data with interferometer 1:
W 2 = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + W Xmis = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + ( c X 2 - 1 Z 2 + c X 2 - 2 Z 2 2 + c X 2 - 3 Z 2 3 ) + ( c X 3 - 1 Z 3 + c X 3 - 2 Z 3 2 + c X 3 - 3 Z 3 3 ) + ( c X 4 Z 4 + c X 8 Z 8 + c X 15 Z 15 + c X 24 Z 24 + c X 35 Z 35 + c X 48 Z 48 )
Wherein, W xmisrepresent the alignment error after prolonging the sphere of x direction translation mirror to be measured (3), c xrepresent the coefficient of the Ze Nike item prolonged after the sphere of x direction translation mirror to be measured (3) in alignment error item.
Step 3: prolong y direction, the i.e. sphere of vertical optical axis direction translation mirror to be measured (3), and measure one group of face graphic data with interferometer 1:
W 3 = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + W Ymis = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + ( c Y 2 - 1 Z 2 + c Y 2 - 2 Z 2 2 + c Y 2 - 3 Z 2 3 ) + ( c Y 3 - 1 Z 3 + c Y 3 - 2 Z 3 2 + c Y 3 - 3 Z 3 3 ) + ( c Y 4 Z 4 + c Y 8 Z 8 + c Y 15 Z 15 + c Y 24 Z 24 + c Y 35 Z 35 + c Y 48 Z 48 )
Wherein, W ymisrepresent the alignment error after prolonging the sphere of y direction translation mirror to be measured (3), c yrepresent the coefficient of the Ze Nike item prolonged after the sphere of y direction translation mirror to be measured (3) in alignment error item.
Step 4: take optical axis as rotation center, rotates the sphere of mirror to be measured (3), and measures one group of face graphic data with interferometer 1:
W 4 = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + W Rmis = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + ( c R 2 - 1 Z 2 + c R 2 - 2 Z 2 2 + c R 2 - 3 Z 2 3 ) + ( c R 3 - 1 Z 3 + c R 3 - 2 Z 3 2 + c R 3 - 3 Z 3 3 ) + ( c R 4 Z 4 + c R 8 Z 8 + c R 15 Z 15 + c R 24 Z 24 + c R 35 Z 35 + c R 48 Z 48 )
Wherein, θ is the anglec of rotation, W rmisrepresent the alignment error after prolonging optical axis rotates the sphere of mirror to be measured (3), c rrepresent and prolong the coefficient that optical axis rotates the Ze Nike item after the sphere of mirror to be measured (3) in alignment error item.
Step 5: in 4 measuring processes, have reference surface face graphic data in each measurement, the equation that the equation obtained in step 2,3,4 deducts in step 1 obtains:
DxW = Σ i = 5 K a i Δ Z ix + ( c DX 2 - 1 Z 2 + c DX 2 - 2 Z 2 2 + c DX 2 - 3 Z 2 3 ) + ( c DX 3 - 1 Z 3 + c DX 3 - 2 Z 3 2 + c DX 3 - 3 Z 3 3 ) + ( c DX 4 Z 4 + c DX 8 Z 8 + c DX 15 Z 15 + c DX 24 Z 24 + c DX 35 Z 35 + c DX 48 Z 48 )
DyW = Σ i = 5 K a i Δ Z iy + ( c DY 2 - 1 Z 2 + c DY 2 - 2 Z 2 2 + c DY 2 - 3 Z 2 3 ) + ( c DY 3 - 1 Z 3 + c DY 3 - 2 Z 3 2 + c DY 3 - 3 Z 3 3 ) + ( c DY 4 Z 4 + c DY 8 Z 8 + c DY 15 Z 15 + c DY 24 Z 24 + c DY 35 Z 35 + c DY 48 Z 48 )
DrW = Σ i = 5 K a i Δ Z i + ( c DR 2 - 1 Z 2 + c DR 2 - 2 Z 2 2 + c DR 2 - 3 Z 2 3 ) + ( c DR 3 - 1 Z 3 + c DR 3 - 2 Z 3 2 + c DR 3 - 3 Z 3 3 ) + ( c DR 4 Z 4 + c DR 8 Z 8 + c DR 15 Z 15 + c DR 24 Z 24 + c DR 35 Z 35 + c DR 48 Z 48 )
Above-mentioned system of equations can be expressed as: GX=R
Wherein:
G = Δ Z 1 x ( 1,1 ) Δ Z 2 x ( 1,1 ) . . . Δ Z Kx ( 1,1 ) Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 x ( 1,2 ) Δ Z 2 x ( 1,2 ) . . . Δ Z Kx ( 1,2 ) Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 x ( M , N ) Δ Z 2 x ( M , N ) . . . Δ Z Kx ( M , N ) Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 y ( 1,1 ) Δ Z 2 y ( 1,1 ) . . . Δ Z Ky ( 1,1 ) 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 Δ Z 1 y ( 1,2 ) Δ Z 2 y ( 1,2 ) . . . Δ Z Ky ( 1,2 ) 0 0 . . . 0 Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 y ( M , N ) Δ Z 2 y ( M , N ) . . . Δ Z Ky ( M , N ) 0 0 . . . 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 Δ Z 1 r ( 1,1 ) Δ Z 2 r ( 1,1 ) . . . Δ Z Kr ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,2 ) Δ Z 1 r ( 1,2 ) Δ Z 2 r ( 1,2 ) . . . Δ Z Kr ( 1,2 ) 0 0 . . . 0 0 0 0 0 Z 2 ( 1,2 ) Z 2 2 . . . Z 48 ( 1,2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 r ( M , N ) Δ Z 2 r ( M , N ) . . . Δ Z Kr ( M . N ) 0 0 . . . 0 0 0 0 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N )
R = DxW ( 1,1 ) DxW ( 1,2 ) . . . DxW ( M , N ) DyW ( 1,1 ) DyW ( 1,2 ) . . . DyW ( M , N ) DrW ( 1,1 ) DrW ( 1,2 ) . . . DrW ( M , N )
X = a 5 a 6 . . . a K c DX 2 - 1 c DX 2 - 2 . . . c DX 48 c DY 2 - 1 c DY 2 - 2 . . . c DY 48 c DR 2 - 1 c DR 2 - 2 . . . c DR 48
Step 6: solving an equation obtains X and then obtain a 5a k; Finally obtain tested surface shape result as shown in Figure 6.
Process according to the face graphic data of above-mentioned steps to the sphere of mirror to be measured (3), calculating its PV value for 35.3975nm, RMS value is 3.6809nm, has higher precision.

Claims (1)

1. spherical surface shape rotates a translation absolute detection method, prolongs optical axis and puts interferometer (1), reference mirror successively
(2) and mirror to be measured (3), it is characterized in that, step is as follows:
Definition alignment error W mis
W mis = ( c 2 - 1 Z 2 + c 2 - 2 Z 2 2 + c 2 - 3 Z 2 3 ) + ( c 3 - 1 Z 3 + c 3 - 2 Z 3 2 + c 3 - 3 Z 3 3 ) + ( c 4 Z 4 + c 8 Z 8 + c 15 Z 15 + c 24 Z 24 + c 35 Z 35 + c 48 Z 48 )
Wherein, c represents the coefficient of the Ze Nike item in alignment error item, Z ifor the Ze Nike item of correspondence;
Step 1: utilize interferometer (1) to measure and obtain one group of original graphic data W that numerical aperture is the sphere of the mirror to be measured (3) of NA 1:
W 1 = W r + Σ i = 5 K a i Z i ( x , y ) + W Omis = W r + Σ i = 5 K a i Z i ( x , y ) + ( c O 2 - 1 Z 2 + c O 2 - 2 Z 2 2 + c O 2 - 3 Z 2 3 ) + ( c O 3 - 1 Z 3 + c O 3 - 2 Z 3 2 + c O 3 - 3 Z 3 3 ) + ( c O 4 Z 4 + c O 8 Z 8 + c O 15 Z 15 + c O 24 Z 24 + c O 35 Z 35 + c O 48 Z 48 )
Wherein W rrepresent the face shape error of reference surface, W omisrepresent original type alignment error, a ifor the zernike coefficient of every, Z ifor the Ze Nike item of correspondence, K is the item number of Ze Nike matching;
Step 2: the sphere prolonging x direction translation mirror to be measured (3), and record face graphic data W with interferometer (1) 2:
W 2 = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + W Xmis = W r + Σ i = 5 K a i Z i ( x + Δx , y ) + ( c X 2 - 1 Z 2 + c X 2 - 2 Z 2 2 + c X 2 - 3 Z 2 3 ) + ( c X 3 - 1 Z 3 + c X 3 - 2 Z 3 2 + c X 3 - 3 Z 3 3 ) + ( c X 4 Z 4 + c X 8 Z 8 + c X 15 Z 15 + c X 24 Z 24 + c X 35 Z 35 + c X 48 Z 48 )
Wherein, W xmisrepresent the alignment error after prolonging the sphere of x direction translation mirror to be measured (3), c xrepresent the coefficient of the Ze Nike item prolonged after the sphere of x direction translation mirror to be measured (3) in alignment error item;
Step 3: prolong y direction, the i.e. sphere of vertical optical axis direction translation mirror to be measured (3), and with interferometer (1) measuring surface graphic data W 3:
W 3 = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + W Ymis = W r + Σ i = 5 K a i Z i ( x , y + Δy ) + ( c Y 2 - 1 Z 2 + c Y 2 - 2 Z 2 2 + c Y 2 - 3 Z 2 3 ) + ( c Y 3 - 1 Z 3 + c Y 3 - 2 Z 3 2 + c Y 3 - 3 Z 3 3 ) + ( c Y 4 Z 4 + c Y 8 Z 8 + c Y 15 Z 15 + c Y 24 Z 24 + c Y 35 Z 35 + c Y 48 Z 48 )
Wherein, W ymisrepresent the alignment error after prolonging the sphere of y direction translation mirror to be measured (3), c yrepresent the coefficient of the Ze Nike item prolonged after the sphere of y direction translation mirror to be measured (3) in alignment error item;
Step 4: take optical axis as rotation center, rotates the sphere of mirror to be measured (3), and records face graphic data W with interferometer (1) 4:
W 4 = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + W Rmis = W r + Σ i = 5 K a i Z i ( r , θ + Δθ ) + ( c R 2 - 1 Z 2 + c R 2 - 2 Z 2 2 + c R 2 - 3 Z 2 3 ) + ( c R 3 - 1 Z 3 + c R 3 - 2 Z 3 2 + c R 3 - 3 Z 3 3 ) + ( c R 4 Z 4 + c R 8 Z 8 + c R 15 Z 15 + c R 24 Z 24 + c R 35 Z 35 + c R 48 Z 48 )
Wherein, θ is the anglec of rotation, W rmisrepresent the alignment error after prolonging optical axis rotates the sphere of mirror to be measured (3), c rrepresent and prolong the coefficient that optical axis rotates the Ze Nike item after the sphere of mirror to be measured (3) in alignment error item;
Step 5: in above-mentioned four steps, has often walked reference surface face graphic data W r, use W 2-W 1, W 3-W 1, W 4-W 1:
DxW = Σ i = 5 K a i Δ Z ix + ( c DX 2 - 1 Z 2 + c DX 2 - 2 Z 2 2 + c DX 2 - 3 Z 2 3 ) + ( c DX 3 - 1 Z 3 + c DX 3 - 2 Z 3 2 + c DX 3 - 3 Z 3 3 ) + ( c DX 4 Z 4 + c DX 8 Z 8 + c DX 15 Z 15 + c DX 24 Z 24 + c DX 35 Z 35 + c DX 48 Z 48 )
DyW = Σ i = 5 K a i Δ Z iy + ( c DY 2 - 1 Z 2 + c DY 2 - 2 Z 2 2 + c DY 2 - 3 Z 2 3 ) + ( c DY 3 - 1 Z 3 + c DY 3 - 2 Z 3 2 + c DY 3 - 3 Z 3 3 ) + ( c DY 4 Z 4 + c DY 8 Z 8 + c DY 15 Z 15 + c DY 24 Z 24 + c DY 35 Z 35 + c DY 48 Z 48 )
DrW = Σ i = 5 K a i Δ Z i + ( c DR 2 - 1 Z 2 + c DR 2 - 2 Z 2 2 + c DR 2 - 3 Z 2 3 ) + ( c DR 3 - 1 Z 3 + c DR 3 - 2 Z 3 2 + c DR 3 - 3 Z 3 3 ) + ( c DR 4 Z 4 + c DR 8 Z 8 + c DR 15 Z 15 + c DR 24 Z 24 + c DR 35 Z 35 + c DR 48 Z 48 )
Above-mentioned system of equations can be expressed as: GX=R
Wherein:
G = Δ Z 1 x ( 1,1 ) Δ Z 2 x ( 1,1 ) . . . Δ Z Kx ( 1,1 ) Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 x ( 1,2 ) Δ Z 2 x ( 1,2 ) . . . Δ Z Kx ( 1,2 ) Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 x ( M , N ) Δ Z 2 x ( M , N ) . . . Δ Z Kx ( M , N ) Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 0 0 . . . 0 Δ Z 1 y ( 1,1 ) Δ Z 2 y ( 1,1 ) . . . Δ Z Ky ( 1,1 ) 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,1 ) 0 0 . . . 0 Δ Z 1 y ( 1,2 ) Δ Z 2 y ( 1,2 ) . . . Δ Z Ky ( 1,2 ) 0 0 . . . 0 Z 2 ( 1,2 ) Z 2 2 ( 1,2 ) . . . Z 48 ( 1,2 ) 0 0 . . . 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 y ( M , N ) Δ Z 2 y ( M , N ) . . . Δ Z Ky ( M , N ) 0 0 . . . 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N ) 0 0 . . . 0 Δ Z 1 r ( 1,1 ) Δ Z 2 r ( 1,1 ) . . . Δ Z Kr ( 1,1 ) 0 0 . . . 0 0 0 . . . 0 Z 2 ( 1,1 ) Z 2 2 ( 1,1 ) . . . Z 48 ( 1,2 ) Δ Z 1 r ( 1,2 ) Δ Z 2 r ( 1,2 ) . . . Δ Z Kr ( 1,2 ) 0 0 . . . 0 0 0 0 0 Z 2 ( 1,2 ) Z 2 2 . . . Z 48 ( 1,2 ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Δ Z 1 r ( M , N ) Δ Z 2 r ( M , N ) . . . Δ Z Kr ( M . N ) 0 0 . . . 0 0 0 0 0 Z 2 ( M , N ) Z 2 2 ( M , N ) . . . Z 48 ( M , N )
R = DxW ( 1,1 ) DxW ( 1,2 ) . . . DxW ( M , N ) DyW ( 1,1 ) DyW ( 1,2 ) . . . DyW ( M , N ) DrW ( 1,1 ) DrW ( 1,2 ) . . . DrW ( M , N )
X = a 5 a 6 . . . a K c DX 2 - 1 c DX 2 - 2 . . . c DX 48 c DY 2 - 1 c DY 2 - 2 . . . c DY 48 c DR 2 - 1 c DR 2 - 2 . . . c DR 48
Step 6: solve an equation and obtain X, obtains a then 5a k; Finally obtain tested surface shape
CN201410089712.5A 2014-03-12 2014-03-12 Spherical surface shape rotation and translation absolute detection method Pending CN104913730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410089712.5A CN104913730A (en) 2014-03-12 2014-03-12 Spherical surface shape rotation and translation absolute detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410089712.5A CN104913730A (en) 2014-03-12 2014-03-12 Spherical surface shape rotation and translation absolute detection method

Publications (1)

Publication Number Publication Date
CN104913730A true CN104913730A (en) 2015-09-16

Family

ID=54083000

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410089712.5A Pending CN104913730A (en) 2014-03-12 2014-03-12 Spherical surface shape rotation and translation absolute detection method

Country Status (1)

Country Link
CN (1) CN104913730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949849A (en) * 2017-03-17 2017-07-14 衢州学院 Bearing ball deviation from spherical form method for quick based on laser interference Holographic test method
CN109708590A (en) * 2019-01-23 2019-05-03 中国科学院长春光学精密机械与物理研究所 A kind of calculation method and system of the absolute machined surface shape of reflecting mirror
CN110108229A (en) * 2019-05-06 2019-08-09 苏州慧利仪器有限责任公司 Optical flat rotary carrying device
CN110132167A (en) * 2019-05-06 2019-08-16 苏州慧利仪器有限责任公司 Optical flat bearing device and laser interference detection device
CN110966955A (en) * 2019-11-15 2020-04-07 南京理工大学 Spherical subaperture splicing method based on plane registration
CN113804122A (en) * 2021-09-06 2021-12-17 中国科学院光电技术研究所 Method for detecting plane mirror shape containing defocusing aberration by using translation and rotation absolute detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982490A (en) * 1997-02-04 1999-11-09 Nikon Corporation Apparatus and method for wavefront absolute calibration and method of synthesizing wavefronts
EP1251402A1 (en) * 2001-03-30 2002-10-23 ASML Netherlands B.V. Lithographic apparatus
CN102207378A (en) * 2011-03-09 2011-10-05 浙江大学 Wavefront-difference-based high-precision correction method for adjustment errors in spherical interference detection
CN102735185A (en) * 2012-06-19 2012-10-17 中国计量学院 Method for correcting adjustment error of spherical surface to be detected in spherical interference detection in high accuracy
CN103292738A (en) * 2013-06-26 2013-09-11 中国科学院光电技术研究所 Absolute detection method for surface shape error of spherical surface

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5982490A (en) * 1997-02-04 1999-11-09 Nikon Corporation Apparatus and method for wavefront absolute calibration and method of synthesizing wavefronts
EP1251402A1 (en) * 2001-03-30 2002-10-23 ASML Netherlands B.V. Lithographic apparatus
CN102207378A (en) * 2011-03-09 2011-10-05 浙江大学 Wavefront-difference-based high-precision correction method for adjustment errors in spherical interference detection
CN102735185A (en) * 2012-06-19 2012-10-17 中国计量学院 Method for correcting adjustment error of spherical surface to be detected in spherical interference detection in high accuracy
CN103292738A (en) * 2013-06-26 2013-09-11 中国科学院光电技术研究所 Absolute detection method for surface shape error of spherical surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DONGQI SU: "Absolute surface figure testing by shift-rotation method using Zernike polynomials", 《OPTICS LETTERS》 *
苏东奇: "光学面形绝对检测技术研究", 《中国博士学位论文全文数据库(信息科技辑)》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106949849A (en) * 2017-03-17 2017-07-14 衢州学院 Bearing ball deviation from spherical form method for quick based on laser interference Holographic test method
CN109708590A (en) * 2019-01-23 2019-05-03 中国科学院长春光学精密机械与物理研究所 A kind of calculation method and system of the absolute machined surface shape of reflecting mirror
CN110108229A (en) * 2019-05-06 2019-08-09 苏州慧利仪器有限责任公司 Optical flat rotary carrying device
CN110132167A (en) * 2019-05-06 2019-08-16 苏州慧利仪器有限责任公司 Optical flat bearing device and laser interference detection device
CN110966955A (en) * 2019-11-15 2020-04-07 南京理工大学 Spherical subaperture splicing method based on plane registration
CN113804122A (en) * 2021-09-06 2021-12-17 中国科学院光电技术研究所 Method for detecting plane mirror shape containing defocusing aberration by using translation and rotation absolute detection method
CN113804122B (en) * 2021-09-06 2023-05-26 中国科学院光电技术研究所 Method for measuring plane mirror surface type containing defocusing aberration by using translation rotation absolute detection method

Similar Documents

Publication Publication Date Title
CN104913730A (en) Spherical surface shape rotation and translation absolute detection method
JP5021054B2 (en) Refractive index distribution measuring method and refractive index distribution measuring apparatus
CN101876540B (en) Nonspherical absolute measuring system based on multiwave front lens compensator
CN101949690B (en) Optical surface shape detection device and method
CN102095385B (en) Novel spherical absolute measurement system and method thereof
CN102368139B (en) High-precision method for detecting wave aberration of system
Nafi et al. Novel CMM-based implementation of the multi-step method for the separation of machine and probe errors
WO2016173079A1 (en) Digital phase shift lateral shearing interferometer and optical system wave aberration measurement method
CN103196389B (en) The apparatus and method of detection computations holographic substrates face shape and discontinuity of materials error
CN104165755A (en) Grating shear wave aberration detection interferometer and detection method thereof
CN105571527A (en) Precision measurement method for tilt angle of turntable
Byman et al. MIKES’primary phase stepping gauge block interferometer
CN105444693A (en) Surface form error measurement method for shallow aspheric surface
Trivedi et al. Measurement of focal length using phase shifted moiré deflectometry
CN102620680B (en) Detecting device and method for tri-plane absolute measurement of optical surface
CN105091781A (en) Optical surface measuring method and apparatus using single-frame interference fringe pattern
CN106595529A (en) Measurement method and device for large-curvature-radius non-zero-digit interference based on virtual Newton's ring
CN101986097B (en) Method for removing defocusing error and tilt error in spherical surface form interference detection at high accuracy
Nguyen et al. Real-time 3D measurement of freeform surfaces by dynamic deflectometry based on diagonal spatial carrier-frequency pattern projection
CN105527027B (en) The structural failure bearing calibration of sub-micron pore size optical fiber point-diffraction wavefront measurement
CN102589472B (en) Method for highly precisely eliminating adjustment error in spherical surface shape interference detection
CN104330027B (en) Phase extraction method in phase-shifting interferometry based on error complementary correction
CN107388996A (en) A kind of plane of reference planarity checking method
CN103292730A (en) Detection method and device for high precision reference sphere
JP2002213930A (en) Method of measuring shape, and method of manufacturing highly precise lens

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150916