CN104909352A - 一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法 - Google Patents

一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法 Download PDF

Info

Publication number
CN104909352A
CN104909352A CN201510296297.5A CN201510296297A CN104909352A CN 104909352 A CN104909352 A CN 104909352A CN 201510296297 A CN201510296297 A CN 201510296297A CN 104909352 A CN104909352 A CN 104909352A
Authority
CN
China
Prior art keywords
chloride
ruthenium
nitrate
hollow
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510296297.5A
Other languages
English (en)
Other versions
CN104909352B (zh
Inventor
谭强强
王鹏飞
徐宇兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201510296297.5A priority Critical patent/CN104909352B/zh
Publication of CN104909352A publication Critical patent/CN104909352A/zh
Application granted granted Critical
Publication of CN104909352B publication Critical patent/CN104909352B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种空心结构过渡金属和钌复合氧化物纳米材料及其制备方法。所述材料为过渡金属和钌组成的复合氧化物的空心结构,空心结构的直径为10nm~20nm,空心结构材料均匀的分散于碳材料表面。所述制备方法包括如下步骤:先用油胺还原法制备过渡金属M的纳米颗粒,然后以M纳米颗粒作为种子进一步用油胺还原钌,得到一种空心合金材料,然后将其负载于碳材料,洗涤,干燥,煅烧即制得空心结构的过渡金属氧化物和二氧化钌复合材料。本发明工艺简单、产率高、成本低、无污染,可不经空化处理而直接得到空心结构材料,且制得的空心二氧化钌复合纳米材料颗粒尺寸细小,比表面积巨大,分散均一,在储能、催化等领域具有广阔的应用前景。

Description

一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法
技术领域
本发明属于无机材料领域,特别涉及一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法。
背景技术
过渡金属元素氧化物的应用研究是目前科学研究的前沿之一,其广泛应用在催化,吸附,传感,储能,超导等广泛的技术领域。氧化材料在催化,传感,储能等领域的应用都与材料的结构有直接的关系,特别是材料的比表面积对材料的性能会有很大的影响。目前制备空心氧化物材料的方法有很多,例如喷雾造粒法,等离子喷雾热解法,软模板法,牺牲模板法等等。
CN 201310060381公开了一种热喷涂用的纳米氧化物陶瓷空心球的制备方法,该方法利用聚乙二醇等作为分散剂,将前驱体制成悬浊液,然后喷雾造粒得到一种微米级的空心球,该方法得到的空心球颗粒尺寸为10~150μm,未能有效提高颗粒的比表面积,而且分散-喷雾的方法也难以在制备均相复合氧化物的领域发挥有效作用。
CN 101066873公开一种等离子喷雾热解制备纳米氧化物空心微球粉末的方法,该方法采取等离子喷雾热解制备纳米晶体结构氧化物空心微球粉末,需要用等离子将喷雾形成固态熔滴,然后快速冷却固化,该方法形成的颗粒晶粒小,组分均匀,成分可控,但是等离子喷雾法能耗高,成本过高,产品少,难以大面积的工业应用。
Xu等[Template synthesis of hollow fusiform RuO2center dot xH2Onanostructure and its supercapacitor performance.Journal of Materials ChemistryA,1,3:469-472]利用α-Fe2O3作为牺牲模板通过水热方法得到空心的RuO2材料,该方法虽然提高了RuO2的比表面积,有利于其在储能领域的应用,但是由于模板α-Fe2O3颗粒在400~500nm,对材料比表面积的提高形成了一定限制,同时Fe2O3材料作为牺牲模板,增加了处理的流程,也浪费了原材料。
发明内容
针对现有技术中存在的不足,本发明的目的之一在于提供一种MOx-RuO2/C复合纳米材料;其具有空心结构,尺寸细小,粒度均匀,分散良好,比表面积大,在储能、催化等领域具有广阔的应用前景。
为达上述目的,本发明采用如下技术方案:
一种MOx-RuO2/C复合纳米材料,其中M为过渡金属,所述材料为过渡金属和钌组成的复合氧化物的空心结构,空心结构的直径为10nm~20nm,空心结构材料均匀的分散于碳材料表面。
优选地,所述M为铜、镍、钴、铁、钒、锌、钛中的1种或2种以上的组合。
优选地,所述材料的比表面积为20~50m2/g。
本发明的目的之一还在于提供一种MOx-RuO2/C复合纳米材料的制备方法,包括如下步骤:
(a)将M前驱体加入到油胺中,搅拌溶解;然后加热回流反应;
(b)向步骤(a)反应后的溶液中加入钌前驱体,继续加热回流反应;
(c)将步骤(b)所得反应产物分离,洗涤,加入碳材料,吸附后分离,洗涤,干燥;
(d)将步骤(c)所得产物煅烧,即可得到空心结构的所述纳米材料。
本发明的方法可以制备出尺寸细小,粒度均匀,分散良好,比表面积大的MOx-RuO2/C复合纳米材料;且本发明的制备方法具有工艺设备简单,产率高,成本低,无污染,易实现工业化规模生产等优点,因此具有广阔的应用前景
本发明的方法可以方便的获得纳米尺度的MOx-RuO2/C复合材料,为储能或催化应用提供了大比表面积的优势,同时纳米颗粒可以很好的分散于碳材料等基体上,有效防止纳米颗粒聚集成团。过渡金属M核被后还原的钌氧化向外扩散,形成空心结构合金,进一步得到原子尺度均匀混合的复合氧化物,这种复合结构有利于提高材料的性能。
作为优选,步骤(a)所述M前驱体为高氯酸铜,甲酸铜,氯化铜,柠檬酸铜,水杨酸铜,硝酸铜,溴化铜,乙酸铜,硬脂酸铜,油酸铜,乙酰丙酮铜,高氯酸镍,甲酸镍,氯化镍,柠檬酸镍,水杨酸镍,硝酸镍,溴化镍,乙酸镍,硬脂酸镍,油酸镍,乙酰丙酮镍,氯化锰,硝酸锰,溴化锰,乙酸锰,乙酰丙酮锰,氯化钴,硝酸钴,溴化钴,乙酸钴,乙酰丙酮钴,氯化铁,硝酸铁,溴化铁,乙酰丙酮铁,氯化钒,硝酸钒,溴化钒,乙酰丙酮钒,氯化锌,硝酸锌,溴化锌,乙酸锌,硬脂酸锌,乙酰丙酮锌,氯化钛,硝酸钛,溴化钛,硬脂酸钛,乙酰丙酮钛中1种或2种以上的组合;优选为氯化铜,硝酸铜,氯化镍,氯化锰,氯化钴,硝酸钴,氯化铁,硝酸铁,氯化钒,硝酸钒,氯化锌,硝酸锌,氯化钛,硝酸钛中1种或2种以上的组合;特别优选为氯化铜,氯化镍,氯化钴中1种或2种以上的组合。
优选地,所述M前驱体在油胺中的浓度为10mmol/L~100mmol/L,例如为13mmol/L,20mmol/L,40mmol/L,60mmol/L,80mmol/L,95mmol/L等,优选为20mmol/L~50mmol/L,进一步优选为25mmol。
优选地,所述加热回流的温度为100~220℃,例如为105℃,120℃、130℃、140℃、150℃、160℃、180℃、200℃、217℃等,该温度为M前驱体的还原温度,优选为160~190℃,进一步优选为180℃;所述加热回流反应的时间为2~24h,例如2.5h、4h、6h、8h、12h、16h、20h等,优选为3~10h,进一步优选为4h。该回流反应时间保证M前驱体可以完全还原,同时又不至于时间太久,颗粒熟化长大。
作为优选,步骤(b)所述钌前驱体为三氯化钌、(间异丙基甲苯)[(S,S)-Ts-DPEN]氯化钌、乙酰丙酮钌、三氯化六铵合钌、亚硝酰基硝酸钌中的1种或2种以上的组合。
优选地,所述M前驱体与钌前驱体的摩尔比为4:1~1:1,例如为3.5:1、3:1、5:2、2:1、1.3:1等,此比例保证钌能够完全在M核外还原而非单独被油胺还原,同时有足够的钌氧化M核,使纳米材料变成空心。优选为3:1~2:1,进一步优选为5:2。
优选地,所述回流加热反应的温度为180~260℃,例如为187℃、200℃、220℃、240℃等,此温度有利于钌的还原,优选为200~250℃,进一步优选为240℃;所述加热回流反应的时间为2~24h,例如为2h、4h、6h、8h、12h、16h、20h等,优选为3~10h,进一步优选为4h。
作为优选,步骤(c)中所述碳材料为活性炭、炭黑、石墨、石墨烯、SuperP、乙炔黑、BP2000、VulcanXC-72、VulcanXC-72R、碳纳米管和碳纤维中的1种或2种以上的混合。
优选地,所述碳材料与钌前驱体的质量比为5:1~1:3,例如为4.5:1、3:1、1:1、1:2、1:2.8等。此比例有利于氧化物材料完全负载,同时具有较高的负载量,优选为2:1~1:2,进一步优选为1:1。
优选地,所述吸附的时间为1h以上,例如为2h、4h、6h、8h、12h、16h、20h等,优选为2~24h,进一步优选为3h。
优选地,步骤(c)中将步骤(b)所得反应产物分离后的洗涤使用甲醇、乙醇、丙醇、丙酮、正丁醇中的1种或2种以上的混合进行;优选为甲醇和/或乙醇;进一步优选为乙醇。
优选地,吸附后分离后的洗涤使用甲醇、乙醇、水中的1种或2种以上的混合进行。
优选地,所述洗涤为3次以上,优选为5次。
步骤(c)中的分离可使用任何合适的方法进行分离,优选为离心分离。
优选地,所述有机溶剂为甲苯、二甲苯、氯苯、二氯苯、四氯化碳、环己烷、己烷、氯丙烷、己烷、庚烷中的1种或2种以上的混合。
作为优选,步骤(d)所述煅烧在空气或氧气氛围中进行。
优选地,所述煅烧的温度为200℃~500℃,例如为210℃、250℃、300℃、350℃、400℃、450℃等,该温度可以保证M和Ru被氧化,同时避免碳材料的氧化,优选为300~400℃,进一步优选为350℃;所述煅烧的时间为1~10h,例如为1h、2h、4h、6h、8h、10h等,优选为2~5h,进一步优选为4h。
本发明提供的MOx-RuO2/C复合纳米材料及其制备方法的特点是:
(1)以油胺同时作为还原剂和保护剂,可得到大小均一、粒度细小的MOx-RuO2颗粒,MOx-RuO2的颗粒尺寸在10-30nm。
(2)采用油胺还原氧化的方法制备得到MOx-RuO2/C纳米复合材料,制备工艺简单,产量高,污染小,易于规模化生产。
(3)制得的MOx-RuO2纳米复合材料为空心结构的纳米颗粒,均匀分散于碳基体的表面,比表面积达20-50m2/g,在储能、催化等领域可具有广阔的应用前景。
附图说明
图1为实施例1得到的NiO-RuO2/C复合材料的TEM图;
图2为实施例1得到的NiO-RuO2/C复合材料的XRD图。
具体实施方式
为便于理解本发明,本发明列举实施例如下。本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
实施例1
(a)准确称取25.92mg氯化镍,加入到20mL油胺中,加热搅拌分散,使氯化镍充分溶解,然后在150℃油浴下,加热回流4h;
(b)再加入10.35mg氯化钌,在180℃下继续加热回流6h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤3次,然后分散于甲苯中,加入19.65mg碳材料,吸附12h,然后离心,用乙醇洗涤3次,干燥;
(d)然后在空气中,200℃条件下加热1h,即可得到NiO-RuO2/C复合材料。
图1为本实施例制得的NiO-RuO2/C复合材料的TEM图,可以看出,制备纳米材料为空心球,空心颗粒尺寸约10-20nm,壁厚约2nm,颗粒大小均匀,且均匀分散在碳材料的表面;图2为本实施例制得的NiO-RuO2/C复合材料的XRD图,从XRD图中可以判断出制得的材料为NiO-RuO2复合氧化物。
实施例2
(a)准确称取221.6mg柠檬酸镍,加入到21mL油胺中,加热搅拌分散,使柠檬酸镍充分溶解;然后在160℃油浴下,加热回流6h;
(b)再加入27.32mg氯化钌,在190℃下继续加热回流2h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤4次,然后分散于甲苯中,加入43.5mg碳材料,吸附2h,然后离心,用乙醇洗涤4次,干燥;
(d)然后在空气中,300℃条件下加热2h,即可得到NiO-RuO2/C复合材料。
实施例3
(a)准确称取174.6mg水杨酸镍,加入到22mL油胺中,加热搅拌分散,使水杨酸镍充分溶解,然后在180℃油浴下,加热回流8h;
(b)再加入49.68mg氯化钌,在200℃下继续加热回流16h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤5次,然后分散于甲苯中,加入70.92mg碳材料,吸附4h,然后离心,用乙醇洗涤5次,干燥;
(d)然后在空气中,400℃条件下加热3h,即可得到NiO-RuO2/C复合材料。
实施例4
(a)准确称取149.6mg油酸镍,加入到23mL油胺中,加热搅拌分散,使油酸镍充分溶解,然后在120℃油浴下,加热回流12h;
(b)再加入82.8mg氯化钌,在210℃下继续加热回流20h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤6次,然后分散于甲苯中,加入109.2mg碳材料,吸附8h,然后离心,用乙醇洗涤6次,干燥;
(d)然后在空气中,500℃条件下加热4h,即可得到CuO-RuO2/C复合材料。
实施例5
(a)准确称取250mg硝酸锰,加入到24mL油胺中,加热搅拌分散,使硝酸锰充分溶解,然后在130℃油浴下,加热回流16h;
(b)再加入207mg氯化钌,在220℃下继续加热回流8h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤7次,然后分散于甲苯中,加入218mg碳材料,吸附12h,然后离心,用乙醇洗涤7次,干燥;
(d)然后在空气中,200℃条件下加热5h,即可得到MnO2-RuO2/C复合材料。
实施例6
(a)准确称取261.6mg乙酸钴和硝酸铜,加入到25mL油胺中,加热搅拌分散,使乙酸钴和硝酸铜充分溶解,然后在140℃油浴下,加热回流20h;
(b)再加入62.1mg氯化钌,在220℃下继续加热回流6h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤8次,然后分散于甲苯中,加入132.3mg碳材料,吸附16h,然后离心,用乙醇洗涤5次,干燥;
(d)然后在空气中,300℃条件下加热6h,即可得到Co2O3-CuO-RuO2/C复合材料。
实施例7
(a)准确称取387.2mg硝酸铁,加入到26mL油胺中,加热搅拌分散,使硝酸铁充分溶解,然后在150℃油浴下,加热回流2h;
(b)再加入163.4688mg三氯化六铵合钌,在230℃下继续加热回流12h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤9次,然后分散于甲苯中,加入191.8mg碳材料,吸附20h,然后离心,用乙醇洗涤5次,干燥;
(d)然后在空气中,400℃条件下加热7h,即可得到Fe3O4-RuO2/C复合材料。
实施例8
(a)准确称取58mg溴化钒,加入到27mL油胺中,加热搅拌分散,使溴化钒充分溶解,然后在160℃油浴下,加热回流4h;
(b)再加入25.37mg亚硝酰基硝酸钌,在240℃下继续加热回流4h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤10次,然后分散于甲苯中,加入24.04mg碳材料,吸附24h,然后离心,用乙醇洗涤5次,干燥;
(d)然后在空气中,500℃条件下加热8h,即可得到VOx-RuO2/C复合材料。
实施例9
(a)准确称取632mg硬脂酸锌,加入到28mL油胺中,加热搅拌分散,使硬脂酸锌充分溶解,然后在180℃油浴下,加热回流6h;
(b)再加入154.8mg三氯化六铵合钌,在260℃下继续加热回流4h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤11次,然后分散于甲苯中,加入134.5mg碳材料,吸附12h,然后离心,用乙醇洗涤5次,干燥;
(d)然后在空气中,200℃条件下加热9h,即可得到ZnO-RuO2/C复合材料。
实施例10
(a)准确称取524mg乙酰丙酮钛,加入到29mL油胺中,加热搅拌分散,使乙酰丙酮钛充分溶解,然后在220℃油浴下,加热回流12h;
(b)再加入634.2mg亚硝酰基硝酸钌,在240℃下继续加热回流24h;
(c)待反应结束后,离心,用甲苯和甲醇混合溶液洗涤12次,然后分散于甲苯中,加入706mg碳材料,吸附24h,然后离心,用乙醇洗涤5次,干燥;
(d)然后在空气中,300℃条件下加热10h,即可得到TiO2-RuO2/C复合材料。
上述实施例测得的比表面积在20-50m2/g。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种MOx-RuO2/C复合纳米材料,其中M为过渡金属,所述材料为过渡金属和钌组成的复合氧化物的空心结构,空心结构的直径为10nm~20nm,空心结构材料均匀的分散于碳材料表面。
2.根据权利要求1所述的复合纳米材料,其特征在于,所述M为铜、镍、钴、铁、钒、锌、钛中的1种或2种以上的组合;
优选地,所述材料的比表面积为20~50m2/g。
3.一种权利要求1或2所述的MOx-RuO2/C复合纳米材料的制备方法,包括如下步骤:
(a)将M前驱体加入到油胺中,搅拌溶解;然后加热回流反应;
(b)向步骤(a)反应后的溶液中加入钌前驱体,继续加热回流反应;
(c)将步骤(b)所得反应产物分离,洗涤,重新分散于有机溶剂,加入碳材料,吸附后分离,洗涤,干燥;
(d)将步骤(c)所得产物煅烧,即可得到空心结构的所述纳米材料。
4.根据权利要求3所述的制备方法,其特征在于,步骤(a)所述M前驱体为高氯酸铜,甲酸铜,氯化铜,柠檬酸铜,水杨酸铜,硝酸铜,溴化铜,乙酸铜,硬脂酸铜,油酸铜,乙酰丙酮铜,高氯酸镍,甲酸镍,氯化镍,柠檬酸镍,水杨酸镍,硝酸镍,溴化镍,乙酸镍,硬脂酸镍,油酸镍,乙酰丙酮镍,氯化锰,硝酸锰,溴化锰,乙酸锰,乙酰丙酮锰,氯化钴,硝酸钴,溴化钴,乙酸钴,乙酰丙酮钴,氯化铁,硝酸铁,溴化铁,乙酰丙酮铁,氯化钒,硝酸钒,溴化钒,乙酰丙酮钒,氯化锌,硝酸锌,溴化锌,乙酸锌,硬脂酸锌,乙酰丙酮锌,氯化钛,硝酸钛,溴化钛,硬脂酸钛,乙酰丙酮钛中1种或2种以上的组合;优选为氯化铜,硝酸铜,氯化镍,氯化锰,氯化钴,硝酸钴,氯化铁,硝酸铁,氯化钒,硝酸钒,氯化锌,硝酸锌,氯化钛,硝酸钛中1种或2种以上的组合;特别优选为氯化铜,氯化镍,氯化钴中1种或2种以上的组合;
优选地,所述M前驱体在油胺中的浓度为10mmol/L~100mmol/L,优选为20mmol/L~50mmol/L,进一步优选为25mmol。
5.根据权利要求3或4所述的制备方法,其特征在于,步骤(a)所述加热回流的温度为100~220℃,优选为160~190℃,进一步优选为180℃;所述加热回流反应的时间为2~24h,优选为3~10h,进一步优选为4h。
6.根据权利要求3-5任一项所述的制备方法,其特征在于,步骤(b)所述钌前驱体为三氯化钌、(间异丙基甲苯)[(S,S)-Ts-DPEN]氯化钌、乙酰丙酮钌、三氯化六铵合钌、亚硝酰基硝酸钌中的1种或2种以上的组合;
优选地,所述M前驱体与钌前驱体的摩尔比为4:1~1:1,优选为3:1~2:1,进一步优选为5:2。
7.根据权利要求3-6任一项所述的制备方法,其特征在于,步骤(b)所述回流加热反应的温度为180~260℃;所述加热回流反应的时间为2~24h,优选为3~10h,进一步优选为4h。
8.根据权利要求3-7任一项所述的制备方法,其特征在于,步骤(c)中所述碳材料为活性炭、炭黑、石墨、石墨烯、SuperP、乙炔黑、BP2000、VulcanXC-72、VulcanXC-72R、碳纳米管和碳纤维中的1种或2种以上的混合;
优选地,所述碳材料与钌前驱体的质量比为5:1~1:3,优选为2:1~1:2,进一步优选为1:1;
优选地,所述吸附的时间为1h以上,优选为2~24h,进一步优选为3h。
9.根据权利要求3-8任一项所述的制备方法,其特征在于,步骤(c)中将步骤(b)所得反应产物分离后的洗涤使用甲醇、乙醇、丙醇、丙酮、正丁醇中的1种或2种以上的混合进行;优选为甲醇和/或乙醇;进一步优选为乙醇;
优选地,吸附后分离后的洗涤使用甲醇、乙醇、水中的1种或2种以上的混合进行;
优选地,所述洗涤为3次以上,优选为5次;
优选地,所述有机溶剂为甲苯、二甲苯、氯苯、二氯苯、四氯化碳、环己烷、己烷、氯丙烷、己烷、庚烷中的1种或2种以上的混合;
优选地,所述分离为离心分离。
10.根据权利要求3-9任一项所述的制备方法,其特征在于,步骤(d)所述煅烧在空气或氧气氛围中进行;
优选地,所述煅烧的温度为200℃~500℃,优选为300~400℃,进一步优选为350℃;所述煅烧的时间为1~10h,优选为2~5h,进一步优选为4h。
CN201510296297.5A 2015-06-02 2015-06-02 一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法 Active CN104909352B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510296297.5A CN104909352B (zh) 2015-06-02 2015-06-02 一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510296297.5A CN104909352B (zh) 2015-06-02 2015-06-02 一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104909352A true CN104909352A (zh) 2015-09-16
CN104909352B CN104909352B (zh) 2017-03-01

Family

ID=54078865

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510296297.5A Active CN104909352B (zh) 2015-06-02 2015-06-02 一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN104909352B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783228A (zh) * 2016-12-12 2017-05-31 成都育芽科技有限公司 一种超级电容器用电极及其制备方法
CN106925268A (zh) * 2015-12-30 2017-07-07 中国科学院过程工程研究所 一种空心结构铈基复合氧化物催化剂及其制备方法
CN106925265A (zh) * 2015-12-30 2017-07-07 中国科学院过程工程研究所 一种过渡金属复合氧化物催化剂
CN107025951A (zh) * 2015-09-25 2017-08-08 三星电子株式会社 电导体、其制造方法、和包括其的电子器件
CN114166898A (zh) * 2021-11-23 2022-03-11 上海大学 一种非晶贵金属RuOx/ZnO MEMS氢气传感器的制备方法
CN115747830A (zh) * 2023-01-05 2023-03-07 山东赛克赛斯氢能源有限公司 一种钌基多元金属氧析出催化剂的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465122A (zh) * 2014-11-28 2015-03-25 中国科学院过程工程研究所 超级电容器用空心结构或摇铃型二氧化钌/碳复合纳米材料、制备方法及其用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104465122A (zh) * 2014-11-28 2015-03-25 中国科学院过程工程研究所 超级电容器用空心结构或摇铃型二氧化钌/碳复合纳米材料、制备方法及其用途

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BYUNG CHUL KIM ET AL.: "Capacitive properties of RuO2 and Ru-Co mixed oxide deposited on single-walled carbon nanotubes for high-performance supercapacitors", 《SYNTHETIC METALS》 *
PENGFEI WANG ET AL.: "Carbon/carbon nanotube-supported RuO2 nanoparticles with a hollow interior as excellent electrode materials for supercapacitors", 《NANO ENERGY》 *
YANG LIU ET AL.: "Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors", 《ELECTROCHIMICA ACTA》 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107025951A (zh) * 2015-09-25 2017-08-08 三星电子株式会社 电导体、其制造方法、和包括其的电子器件
CN107025951B (zh) * 2015-09-25 2020-02-18 三星电子株式会社 电导体、其制造方法、和包括其的电子器件
CN106925268A (zh) * 2015-12-30 2017-07-07 中国科学院过程工程研究所 一种空心结构铈基复合氧化物催化剂及其制备方法
CN106925265A (zh) * 2015-12-30 2017-07-07 中国科学院过程工程研究所 一种过渡金属复合氧化物催化剂
CN106925265B (zh) * 2015-12-30 2019-09-24 中国科学院过程工程研究所 一种过渡金属复合氧化物催化剂
CN106925268B (zh) * 2015-12-30 2019-10-18 中国科学院过程工程研究所 一种空心结构铈基复合氧化物催化剂及其制备方法
CN106783228A (zh) * 2016-12-12 2017-05-31 成都育芽科技有限公司 一种超级电容器用电极及其制备方法
CN106783228B (zh) * 2016-12-12 2018-07-27 永春科盛机械技术开发有限公司 一种超级电容器用电极及其制备方法
CN114166898A (zh) * 2021-11-23 2022-03-11 上海大学 一种非晶贵金属RuOx/ZnO MEMS氢气传感器的制备方法
CN115747830A (zh) * 2023-01-05 2023-03-07 山东赛克赛斯氢能源有限公司 一种钌基多元金属氧析出催化剂的制备方法
CN115747830B (zh) * 2023-01-05 2023-04-07 山东赛克赛斯氢能源有限公司 一种钌基多元金属氧析出催化剂的制备方法

Also Published As

Publication number Publication date
CN104909352B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
CN104909352A (zh) 一种空心结构的过渡金属和钌复合氧化物纳米材料及其制备方法
Xu et al. Cobalt nanoparticles encapsulated in nitrogen-doped carbon shells: efficient and stable catalyst for nitrobenzene reduction
CN104028269B (zh) 一种石墨烯负载金属纳米复合材料、制备方法及应用
CN110085879B (zh) 一种Co9S8/硫氮共掺碳复合材料及其制备方法
CN105460978A (zh) 一种规模化制备碳掺杂铁氧体多孔微球的方法
CN102786097A (zh) 碳包覆四氧化三铁纳米颗粒的水热制备方法
CN103145199B (zh) 一种四氧化三钴/石墨烯复合纳米材料的制备方法
CN108213456B (zh) 一种立方体纳米铜粉的制备方法
CN106378093B (zh) 一种磁性空心石墨烯基复合微球材料的制备方法及其应用
CN102350357A (zh) 负载在石墨烯上的纳米镍催化剂及其制备方法
CN102554259B (zh) 粒度可控球形亚微米镍粉的制备方法
CN103447549B (zh) 钴纳米球的制备方法
CN105289433A (zh) 一种规模化制备过渡金属氧化物多孔微球的方法
CN104003448A (zh) 一种α相三氧化二铁多孔核壳微球及其可控合成制备方法
Huang et al. Synthesis of Cu2O nanoboxes, nanocubes and nanospheres by polyol process and their adsorption characteristic
CN105600828A (zh) 一种多孔纳米CuFe2O4的制备方法
Yang et al. Cu-anchored CNTs for effectively catalytic reduction of 4-nitrophenol
CN105521789A (zh) 一种多孔纳米BiFeO3的制备方法
CN105502286A (zh) 一种多孔纳米NiFe2O4的制备方法
Li et al. MOF derived porous Co@ C hexagonal-shaped prisms with high catalytic performance
CN103193225A (zh) 纳米金属氧化物石墨烯复合材料的制备方法
CN104891448A (zh) 一种过渡金属氧化物纳米材料、其制备方法及用途
CN105923625A (zh) 一种石墨烯负载均匀单一氧化物量子点的制备方法
CN105329932B (zh) 一种规模化制备碳掺杂混合过渡金属氧化物多孔微球的方法
CN108706568A (zh) 一种氮掺杂多孔中空碳纳米胶囊材料的制备方法及制备的材料

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant