CN104902814A - 检测生理信号的额部电极传感器的配置和空间放置 - Google Patents

检测生理信号的额部电极传感器的配置和空间放置 Download PDF

Info

Publication number
CN104902814A
CN104902814A CN201380060011.2A CN201380060011A CN104902814A CN 104902814 A CN104902814 A CN 104902814A CN 201380060011 A CN201380060011 A CN 201380060011A CN 104902814 A CN104902814 A CN 104902814A
Authority
CN
China
Prior art keywords
electrode
signal
equipment
substrate
physiological signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380060011.2A
Other languages
English (en)
Other versions
CN104902814B (zh
Inventor
T·P·科勒曼
马瑞
M·巴杰马
R·吉尔达科斯塔
R·方格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Salk Institute for Biological Studies
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of CN104902814A publication Critical patent/CN104902814A/zh
Application granted granted Critical
Publication of CN104902814B publication Critical patent/CN104902814B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/291Bioelectric electrodes therefor specially adapted for particular uses for electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/375Electroencephalography [EEG] using biofeedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/296Bioelectric electrodes therefor specially adapted for particular uses for electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/378Visual stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/38Acoustic or auditory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • A61B5/377Electroencephalography [EEG] using evoked responses
    • A61B5/381Olfactory or gustatory stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/167Personality evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/389Electromyography [EMG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6814Head

Abstract

公开了用于获取和分析生理信号的方法、系统和设备。在一个方面中,生理传感器设备包括由电绝缘材料制成并且构造成允许设备与用户头部的额部区域物理接触的衬底、配置在衬底上的第一位置处以获取用户的电生理信号的记录电极、配置在衬底上的第二位置处以获取电生理信号的参考信号的参考电极、以及配置在至少部分地在衬底上的第一位置与第二位置之间的第三位置处的接地电极,其中第一位置在第二位置和第三位置后方,以及其中当设备电耦合至电路时是可操作的以检测用户的生理信号。

Description

检测生理信号的额部电极传感器的配置和空间放置
相关申请的交叉引用
本专利文件要求2012年10月12日提交的标题为“METHODAND APPARATUS FOR OPTIMIZING CONFIGURATION ANDSPATIAL PLACEMENT OF FRONTAL ELECTRODE SENSORSTO DETECT EEG BRAIN SIGNALS OF INTEREST”的美国临时专利申请No.61/713,339的优先权的权益。前述专利申请的全部内容通过引用合并为本申请的公开的一部分。
技术领域
本专利文件涉及用于获取和分析生理信号的系统、设备和过程。
背景技术
脑电图(EEG)是使用受试者的头皮上安置的电极对由大脑展现的电活动的记录,形成包括EEG数据集的神经信号振荡的谱内容。例如,由EEG技术检测的大脑的电活动可以包括例如由大脑神经元内的离子电流流动产生的电压波动。在某些上下文中,EEG指的是短时间周期内(例如小于一小时)对大脑的自发性电活动的记录。EEG可以用于临床诊断应用(包括癫痫症、昏迷、脑病、脑死亡以及其它疾病和缺陷)以及睡眠和睡眠障碍的研究中。在一些情况下,EEG已经用于诊断肿瘤、中风以及其它病灶性脑紊乱。
EEG技术的一个示例包括事件相关电位(ERP)的记录,该事件相关电位的记录指的是与给定事件(例如,简单的剌激和复杂处理)相关的EEG记录的大脑反应。例如,ERP包括大脑的电反应-脑波-与感觉、运动和/或认知处理相关。ERP与大脑感知(例如,视觉、听觉等等)和认知(例如,注意力、语言、决策等等)的测量相关联。典型的ERP波形包括正电压偏转和负电压偏转(称为成分)的时间演变。例如,使用字母(N/P:负/正)和数字(以从刺激事件开始的毫秒来指示潜伏期,针对该时间该成分出现)对典型的成分进行分类。
发明内容
公开了用于使用有限数量的电极传感器获取感兴趣的生理信号(例如,可以用于确定认知和/或感觉表现、心理状态和/或行为偏好)的设备、系统和技术。
在一个方面中,生理传感器设备包括由电绝缘材料制成并且构造成允许设备与用户头部的额部区域物理接触的衬底、配置在衬底上的第一位置处以获取用户的电生理信号的第一电极、配置在衬底上的第二位置处以获取用户的第二电生理信号作为电生理信号的参考信号的第二电极、以及配置在衬底上以获取用户的第三电生理信号作为电接地信号的第三电极,其中第三电极配置在衬底上至少部分地在第一位置与第二位置之间的第三位置处,以及当生理传感器设备适当地放置在用户额部区域上时第一位置沿额部区域中的矢状方向配置在第二位置和第三位置后方,以及其中当设备电耦合至电路时,设备是可操作的以检测用户的生理信号。
生理传感器设备的实现方式可以可选地包括下列特征中的一个或者多个。在设备的一些实现方式中,例如,第一电极、第二电极和第三电极可以线性地布置在衬底上。例如,所检测的生理信号可以是从用户大脑感测的脑电图信号。在一些示例中,所检测的脑电图信号可以与事件相关电位相关联。例如,所检测的生理信号可以是从用户的头部肌肉感测的肌电图学信号,该肌电图学信号与用户的眨眼或者面部表情相关联。在设备的一些实现方式中,例如,衬底可以由构造成粘附至用户的皮肤或者可佩戴物品的机械柔性材料制成。在一些实现方式中,例如,设备还可以包括在衬底上单独形成并且分别通过导电导管电耦合至第一电极、第二电极和第三电极的电气接口组件,其中电路是通过导线电耦合至电气接口组件的外部电路。在一些实现方式中,例如,电路可以包括在示例性机械柔性衬底上形成的信号处理电路,该信号处理电路通过导电导管与第一电极、第二电极和第三电极电通信,其中信号处理电路可以放大所获取的生理信号。例如,电路可以包括衬底上的发射器单元,该发射器单元与信号处理电路电通信以向数据处理单元或者远程计算机系统中的至少一个发射放大的生理信号。在一些实现方式中,例如,设备还可以包括电耦合至电路的电源模块以向发射器单元提供电力。在一些示例中,生理传感器设备可以配置为用户头皮上佩戴的可佩戴贴片。在一些示例中,生理传感器设备可以配置在能够与用户头皮物理接触的可佩戴物品的区域中。在一些实现方式中,例如,设备还可以包括配置在衬底上的第四位置处以获取用户的第二电生理信号的第四电极,和配置在衬底上的第五位置处以获取用户的第三电生理信号的第五电极,其中第四位置配置在第一位置左边,以及第五位置配置在第一位置右边。
在生理传感器设备的一些实现方式中,例如,设备实现在用以提供认知或者感觉评估的系统中。系统可以包括数据处理系统,该数据处理系统与生理传感器设备通信并且构造成包括一个或者多个存储器单元和一个或者多个处理器,该一个或者多个处理器配置为将所检测的生理信号处理为生理数据,以生成包括与认知-感觉概况类别相关联的一个或者多个定量值的信息集,该认知-感觉概况类别指示认知或者感觉功能的一个或者多个方面。例如,数据处理单元的一个或者多个处理器可以配置为处理由生理传感器设备检测的生理信号以通过下列步骤生成信息集:基于呈现的刺激和认知-感觉概况类别在生理数据内选择感兴趣的时间间隔,将与所选择的感兴趣的时间间隔相对应的生理数据分组成一个或者多个分组数据集,以及提供跨分组数据集或者分组数据集内的关系的统计测量以生成一个或者多个定量值。例如,一个或者多个定量值可以包括基于用户的注意力、记忆力、学习能力、虚构(confabulation)特征、模式集成能力、语义集成能力、目标检测能力、情绪效价、偏好或者意识中的至少一个描绘认知和感觉表现中的一个或者两者的水平的定量分数,其中定量分数描绘在特定时间处的水平。在一些实现方式中,系统还可以包括刺激传送设备以基于认知-感觉概况类别产生呈现给佩戴生理传感器设备的用户的刺激序列,其中刺激包括视觉、听觉、嗅觉、触觉、或者味觉刺激介质中的至少一个,其中生理传感器设备接口连接至用户以在呈现刺激序列之前、期间和之后检测由用户展现的生理信号。在一些实现方式中,数据处理系统可以包括邻近生理传感器设备并且与生理传感器设备通信的本地计算机以从生理传感器设备接收所检测的生理信号,本地计算机配置为对所检测的生理信号进行初始处理以产生初始生理信号数据,以及远程计算机通过通信网络或者链路与本地计算机通信以从本地计算机接收初始生理信号数据,并且对初始生理信号数据进行处理以生成包括与认知感觉概况类别相关联的一个或者多个定量值的信息集。例如,本地计算机可以是移动通信设备,与所述生理传感器设备无线通信,包括智能手机或者平板电脑。
在另一个方面中,提供受试者的认知或者感觉评估的方法包括使用传感器设备从受试者头部的额部区域获取受试者的电生理信号以产生生理数据,以及对生理数据进行处理以生成包括与认知-感觉概况类别相关联的一个或者多个定量值的信息集,该认知-感觉概况类别指示认知或者感觉功能的一个或者多个方面,其中传感器设备包括由电绝缘材料制成并且构造成允许传感器设备与受试者头部的额部区域物理接触的衬底,以及三个电极,该三个电极包括记录电极、参考电极和接地电极以从沿着额部区域的矢状方向布置在衬底上的三个相应位置获取受试者的电生理信号,其中记录电极配置在接地电极和参考电极后方,以及接地电极配置在记录电极与参考电极之间。
附图说明
图1A和1B显示所公开技术的示例性额部电极生理传感器设备的框图。
图1C显示用于获取、分析和评估生理信号以产生单个或者群组的认识和/或意识概况的状态的所公开技术的示例性系统的图。
图1D-1F显示生成示例性认知和/或感觉概况的定量信息集的示例性方法的过程图。
图1G显示确定受试者头部的额部区域上的电极配置的示例性方法的图。
图2显示所呈现的视觉刺激的示例性序列的图。
图3A显示图示使用常规EEG系统的示例性额部电极配置以及来自用于检测EEG信号反应的常规EEG系统的实现方式的示例性结果的图。
图3B显示图示使用示例性三电极传感器设备的示例性额部电极配置以及来自用于检测EEG信号反应的示例性三电极传感器设备的实现方式的示例性结果的图。
图4A和4B分别显示使用沿着梯度电位配置和沿着等位线配置的示例性刚性电极的示例性三电极配置。
图5显示针对梯度电位配置和等位线配置两者在刺激呈现之前使用示例性刚性电极的示例性EEG在线记录的数据曲线。
图6显示针对梯度电位配置和等位线配置两者在示例性刺激呈现期间使用示例性刚性电极的示例性EEG在线记录的数据曲线。
图7A显示使用示例性刚性电极针对“目标”和“干扰项”的来自单个受试者的ERP波形的示例性数据曲线。
图7B显示使用示例性刚性电极针对“奖励”的来自单个受试者的ERP波形的示例性数据曲线。
图8显示示例性的制造、定制设计的刚性电极的图像。
图9A-9D显示针对“目标”、“干扰项”和“奖励”使用各种示例性刚性电极从单个受试者获取的ERP波形的示例性数据曲线。
图10显示示例性表皮电子额部三电极设计的示意图。
图11A和11B分别显示使用沿着梯度电位配置和沿着等位线配置的示例性柔性表皮电极的示例性三电极配置。
图12显示针对梯度电位配置和等位线配置两者在刺激呈现之前使用示例性柔性表皮电极的示例性EEG在线记录的数据曲线。
图13显示针对梯度电位配置和等位线配置两者在示例性刺激呈现期间使用示例性柔性表皮电极的示例性EEG在线记录的数据曲线。
图14A显示使用示例性柔性表皮电极针对“目标”和“干扰项”的来自单个受试者的ERP波形的示例性数据曲线。
图14B显示使用示例性柔性表皮电极针对“奖励”的来自单个受试者的ERP波形的示例性数据曲线。
图15显示针对失匹配负波ERP的示例性刺激序列的图。
图16A和16B分别显示示例性刚性EEG电极帽的额部通道中和用柔性表皮电极传感器的,所诱发的失匹配负波、异常刺激和标准刺激的示例性群组平均ERP波形的数据曲线。
图16C和16D也分别显示示例性刚性EEG电极帽的额部通道中和用柔性表皮电极传感器的,所诱发的失匹配负波、异常刺激和标准刺激的单个受试者的示例性ERP波形的数据曲线。
具体实施方式
在人的大脑信号与关联的认知/心理状态(例如,想法)之间建立可靠的相关性可以为临床以及其它运用提供宝贵的和期望的应用。在基础科学中广泛探索的这种相关性已经成为对专门应用(诸如认知损害评估和使身体损伤的人能够进行沟通)的各种平移尝试的焦点。
表征认知和心理状态的一些系统依赖过各种行为和脑成像技术,例如,功能性磁共振成像(fMRI)和脑电图。例如,fMRI是通过相关代谢功能(例如,血液流动中的氧消耗)间接测量大脑功能,而EEG是通过记录头皮处存在的电场变化直接测量大脑活动,该电场源自神经细胞产生的电活动。
在确定关于受试者的感觉和/或认知信息中有几个重要因素。例如,这种因素可以包括可以诱发受试者反应的刺激类型、刺激的持续时间、刺激间的间隔、每个刺激呈现的重复次数、刺激的级别(例如,声音、亮度或者对比度级别等等)、与每个刺激呈现的开始相关联的标记等等以及记录传感器和系统。同样,使用的一个或者多个生理参数(例如,电压、功率、频率等等)、用于分析的相关时窗和分析结构可以影响大脑信号记录和相关认知评估。来自这些参数中的一个或者多个参数的偏差或者错误会造成有用方法或者人为驱动的无用方法之间的差别。
一些传统EEG记录技术包括例如放置在头发上的覆盖整个头皮的EEG帽。这些完整帽的EEG系统通常既不舒适又不在美观上令人愉悦,并且在一些情况下需要使用导电凝胶,该导电凝胶对用户来说很麻烦,并且可能需要技术应用等等。尽管一些EEG记录技术不利用完整帽,但是还包括安装在皮肤上的电极连同空间相异的其它电极一起,并且需要就便携性和舒适度而言并不高效的笨重头戴式装置,和/或这种安装在皮肤上的电极系统经受差的信号质量,对ERP的最佳检测显示不足的信噪比。例如,尽管一类安装在皮肤上的电子系统使用具有额部电极和非额部电极(例如,放置在受试者耳朵后面的一些电极)的电极配置来获取肌肉和大脑信号,但是信号分辨仅能够提取粗略的肌肉和大脑信号(包括眨眼和当受试者闭眼时的阿尔法节律振荡),并且因此不能足够来检测较精细的大脑信号(诸如ERP)。这些技术难以或者不能获取相关大脑信号以提取反映行为的相关大脑信号和感兴趣的大脑测量,例如用于表征认知和/或心理状态。
例如,用于感觉、运动和/或认知分析的事件相关电位的测量可以包括在测量瞬态电移位(例如,ERP成分)中利用的技术,该瞬态电移位与所呈现刺激(例如,视觉、听觉、嗅觉、味觉或者触觉)的开始是时间锁定的并且在所探讨的神经心理过程期间反映潜在的大脑活动。例如,ERP成分可以表示多个感觉、运动和认知功能。各种ERP的幅度调制和头皮分布表示用于范围广泛的认知操作的正常神经心理处理的可靠和有效的大脑标记。另外,ERP的异常调制和潜伏期已经与和神经精神障碍有关的各种感觉和认知缺陷(诸如精神分裂症、阿尔兹海默症和帕金森症)相关联。
因而,这些大脑活动测量的使用对生物医学研究和发展以及用于神经障碍和神经精神障碍的有效诊断工具的临床应用有很大意义。然而,现今使用的ERP大脑标记仍然限于复杂的实验室环境和医疗设施。另外,记录EEG信号的传统方法是笨拙的、麻烦的并且不能有效地用于通用环境中。
公开了用于使用有限数量的电极传感器获取感兴趣的生理信号(例如,可以用于确定认知和/或感觉表现、心理状态和/或行为偏好)的设备、系统和方法。
在一个方面中,生理传感器设备包括由电绝缘材料制成并且构造成允许生理传感器设备与用户头部的额部区域物理接触的衬底以及当在用户前额上适当地应用设备时提供最小化设备覆盖区的衬底上的最优三电极配置。三个电极包括记录电极、参考电极和接地电极,以从沿着额部区域的矢状方向布置在衬底上的三个相应位置获取受试者的电生理信号,其中记录电极配置在接地电极和参考电极后方,以及接地电极配置在记录电极与参考电极之间。
所公开的技术将先进的认知神经科学、神经生理学、心理学和电磁学集成在前面地放置在前额上的生理信号检测电极的最优配置中,以使得能够进行各种认知方面的单个或者群组评估和生理/健康监测,例如,包括但不限于认知状态、认识、学习机制、行为偏好、神经和神经精神病理的易损性和/或症状的评估。可以在提供舒适的并且用户友好的操作、便携性和舒适度的设备中实现所公开的技术,由此允许真实世界使用和系统性的健康监控。另外,例如,所公开的技术可以用于各种健康、教育、娱乐和市场应用。
例如,所公开的技术包括使用位于用户前额的、不与头发重叠的额部EEG记录电极用于通用、快速和非强加的(non-obtrusive)生理数据获取(例如,包括大脑信号监控)的生理传感器设备和方法。例如,在一些实现方式中,示例性生理传感器设备配置成小尺寸并且可以用各种不同材料制成(例如,可以针对具体应用进行定制),使得设备可以容易地应用,几乎不会或者甚至不会被用户感觉到或者被他人看到。例如,可以由用户执行对这种设备的应用和操作,例如,通过用户遵循简单指令,而不需任何技术专长来应用或者操作设备或者系统。这可以显著地减轻存在于现有系统中的问题,包括需要用于操作的技术专长和缺乏传感器设备的舒适度和便携性。
例如,可以由临床环境外部的一般用户安全地并且精确地使用所公开的系统,允许在多种背景和位置中自由地使用,显著地降低大脑监控系统的使用成本和要求。非专家可以有效地使用所公开的设备和方法以将示例性额部电极传感器设备放置在待评估人的前额上(或者甚至允许受试者将额部电极放置在他们自身上),以最优地提取大脑信号(例如,在一些实现方式中可以与事件相关电位(ERP)相关联)并且提供一个或者多个受试者的认知和/或感觉概况。例如,实现生理数据获取或者解释由对所获取的生理数据的分析提供的用户的所生成的认知和/或感觉概况信息的这种非专家用户不必是神经学家、心理学家也不必是专业医生。例如,非专家用户可以实现所公开的系统和方法以获得一个或者多个待评估人(例如,他们自己或者其他人)的意识和精神信息概况。另外,例如,所公开设备、系统和方法的实现方式还可以用于脑机接口的背景内并且扩展这种系统的可能应用。
在一些方面中,所公开的技术包括用于设计用于受试者前额上的额部电极放置的最优传感器配置以精确地检测大脑事件相关电位的技术。在一些示例中,技术可以使用来自特定刺激呈现范式(例如,感觉剌激可以包括视觉、听觉、嗅觉、味觉或者躯体感觉提示)的信息,并且使所呈现的刺激与在特定时窗(例如,基于与作为ERP的基础的神经心理机制相关的生理学数据)和感兴趣的空间区域(例如,基于神经解剖学以及基于头皮地形电压图和神经发生器源分析)中的所记录的大脑电生理信号(例如,EEG)相关。
所公开的设备、系统和方法的示例性实施例
在一个示例性实施例中,当前技术的生理传感器设备包括由电绝缘材料制成并且构造成允许设备与用户头部的额部区域物理接触的衬底、配置在衬底上的第一位置处以获取用户的电生理信号的记录电极、配置在衬底上的第二位置处以获取用户的第二电生理信号作为电生理信号的参考信号的参考电极;以及配置在衬底上的第三位置处以获取用户的第三电生理信号作为电接地信号的接地电极。生理传感器设备配置为使得第一电极沿着额部区域中的矢状方向配置在第三电极和第二电极后方,以及第三电极至少部分地安置在衬底上的第一位置与第二位置之间。当电耦合至电路时,生理传感器设备是可操作的以检测用户的生理信号。
在示例性额部电极生理传感器设备的一些实现方式中,记录电极、接地电极和参考电极线性地布置在衬底上。例如,三个电极的布置可以沿着用户头部的额部区域的矢状方向基本上直线地对准,记录电极(例如,在第一位置处)安置在接地电极后方,该接地电极安置在参考电极后方。
在一些实现方式中,例如,由示例性额部电极生理传感器设备检测的生理信号可以是从用户大脑感测的脑电图(EEG)信号。例如,EEG信号可以与事件相关电位相关联(例如,基于呈现给在用户头部的额部区域上佩戴设备的用户的刺激)。在其它实现方式中,例如,由示例性额部电极生理传感器设备检测的生理信号可以是从用户头部肌肉(例如,包括面部肌肉)感测的肌电图(EMG)信号。例如,EMG信号可以是响应于事件相关电位用户眨眼的结果(例如,基于呈现给在用户头部的额部区域上佩戴设备的用户的刺激)。
在一些实施例中,例如,示例性额部电极生理传感器设备可以包括在衬底上单独形成并且(例如通过导电导管)电耦合至记录电极、接地电极和参考电极的电气接口组件(例如,电接触焊盘),其中电气接口组件提供要(例如,通过导线)连接至外部电路(例如,电信号放大器和/或处理单元)的电耦合部位。
在一些实施例中,例如,示例性额部电极生理传感器设备可以包括(i)用于信号放大/处理的电路和(ii)发射器单元,所有都在(例如通过导电导管)与记录电极、接地电极和参考电极电通信的机械柔性的衬底上。在该实施例中,传感器设备配置为记录生理信号、放大和处理它们以及向远程设备(例如,较远的电信号处理单元(诸如放大器和/或计算机系统))发射所记录的生理信号。同样,例如,示例性额部电极生理传感器设备可以包括电耦合至发射器单元的电源模块,以向发射器单元提供电力。
在一些实施例中,例如,示例性额部电极生理传感器设备可以包括衬底上配置的一个或者多个记录电极,以获取用户的多通道的电生理信号。例如,示例性额部电极生理传感器设备可以包括两个附加记录电极(其中设备包括五个电极:三个记录电极、一个参考电极和一个接地电极),其中附加记录电极邻近沿矢状方向布置的第一记录电极、接地电极和参考电极。在该示例中,可以沿与第一记录电极相同或者类似的矢状方向线性地布置两个附加电极。在其它示例中,附加电极中的一些可以安置在第一记录电极左边,而其它附加记录电极可以安置在第一记录电极右边。
在一些实现方式中,例如,示例性额部电极生理传感器设备配置为表皮电子传感器(EES)设备,其中衬底由构造为机械地顺应和/或粘附至用户的皮肤或者可佩戴物品的机械柔性和/或可拉伸材料制成。在当前技术的表皮生理传感器设备的一些示例中,设备可以包括由蛇状(serpentine-like)导线互连的超薄硅岛,所有蛇状导线都依靠在生物学上惰性的柔性聚合物上。在一些实现方式中,例如,表皮生理传感器设备可以包括处理单元,该处理单元配置在柔性衬底上并且构造为包括晶体管、电容器、电阻器、电感器和/或其它电路元件等等以处理由电极获取的电生理信号。在一些实现方式中,例如,表皮生理传感器设备的处理单元可以包括处理器和存储器单元。表皮生理传感器设备可以配置为具有接近人的头发的厚度。
图1A显示能够从受试者头部的额部区域获取电生理信号的额部电极传感器设备100的示例性实施例的框图。设备100包括电绝缘材料的衬底101(在一些设备实现方式中可以由机械柔性材料制成)。在一些示例中,衬底101可以包括聚二甲硅氧烷(PDMS)、具有丙烯酸粘合剂的薄聚氨酯、或者聚乙烯醇(PVA)等等。额部电极传感器设备100包括三电极配置,该三电极配置包括记录电极102、参考电极103和在衬底101的基础侧(例如,与用户皮肤接触的设备100的检测侧)上、配置在记录电极102与参考电极103之间的接地电极104。沿着额部区域中的矢状方向配置设备100的电极,以使得记录电极102安置在接地电极104后方,该接地电极安置在参考电极103后方。接地电极104至少部分地安置在衬底101上的记录电极102与参考电极103之间。用户头部的额部区域或者前额区域上的该记录电极-接地电极-参考电极布置可以最小化额部电极传感器设备100的总的电极覆盖区,这是这种传感器设备的显著益处。该记录电极-接地电极-参考电极布置还提供记录电极与参考电极之间的良好信号隔离,从而使得能够进行更灵敏和高质量的信号记录操作。电极沿矢状方向而不是垂直于矢状方向的水平方向的大体对准是该记录电极-接地电极-参考电极布置的显著特征,并且可以参照获取具有期望精确度的各种认知/心理状态信号而提供有益的感测操作。
例如,在设备100的一些实施例中,记录电极102、接地电极104和参考电极103线性地布置在衬底100上。例如,三个电极的布置可以沿着矢状方向与记录电极成基本上直线地对准。例如,在设备100的其它实施例中,三个电极可以布置成非线性对准,该三个电极包括安置在接地电极104后方的记录电极102,该接地电极104安置在参考电极103后方,其中接地电极104至少部分地在衬底101上的记录电极102与参考电极103之间。
额部电极传感器设备100在电耦合至电路时是可操作的,以获取电生理学数据。在图1A中所示的示例性实施例中,额部电极传感器设备100包括在衬底101上分别通过单个电气互连件111a、111b和111c电耦合至记录电极102、参考电极103和接地电极104的电路110。在一些实施例中,例如,电路110可以包括发射器单元,所述发射器单元例如分别通过导电导管111a、111b和111c与电极102、103和104中的每一个进行电通信。在该实施例中,设备100可以记录生理信号并且向远程电信号处理单元(例如,放大器和/或计算机系统)发射所记录的生理信号。同样,例如,电路110可以包括电耦合至发射器单元的电源模块,以向发射器单元提供电力。
在一些实施例中,例如,如图1B中所示的,额部电极传感器设备100可以包括导电接口(接触)焊盘112a、112b和112,分别耦合至互连件111a、111b和111c,以提供使外部电路与设备100的电极102、103和104电接口的导电表面。例如,外部电路可以是电信号处理单元,例如信号放大器和/或计算机系统。
例如,所获取的记录信号、参考信号和接地信号由信号处理单元接收,所述信号处理单元处理差分放大器中所获取的信号以放大记录电生理信号与参考电生理信号之间的差。由设备100(通过接地电极104)记录的接地信号可以连接至示例性差分放大器的接地通道,例如以同步设备100与放大器之间的信号参数。例如,接地电极104可以最小化可能通过记录系统流过受试者的泄漏电流,并且因此减少任何伪差。例如,接地电极104在电耦合至电路(例如,外部电路)时不需要连接至电路的接地。接地电极的替代作用可以包括充当用于主动抵消干扰的电极。例如,接地电极可以电连接至“右腿驱动”的反馈电路,该“右腿驱动”的反馈电路例如在测量由身体发出的非常小的电信号(例如,EEG、EMG、ECG)的一些生物信号放大系统中使用。例如,额部电极传感器设备100可以在额部区域处获取电生理信号的参考记录。由于将通过将由记录电极102记录的活动相对于由参考电极103记录的活动进行比较来确定感兴趣的记录,因此参考电极103的位置以及其相对于记录电极102(或者,在一些实现中,除记录电极102以外的其它记录电极)的间距非常重要。例如,如果这些信号相同,那么所检测的信号读数将是零。从这个角度来看,例如,人们可以在将允许检测感兴趣的生理信号的部位处安置记录电极102并且在离记录电极102相当大的距离处在不会捕获感兴趣的生理信号(或者显示感兴趣的信号的显著减少)的部位处安置参考电极103。然而,当最小化前额上的设备100的覆盖区(例如,由整个电极阵列所占据的空间面积或者“实际资源”)很重要时,这提出了越来越大的挑战。例如,在图1A和1B所示示例中,电极102、103和104安置并且间隔成使得所捕获的信号显著不同(并且由此是有意义的)的方式,以及占据由电极102、103和104占据的最小总面积。在本专利文件中描述的用于确定位置和间距的最优配置的方法是复杂的并且可以将心理学原理、神经生理学原理和工程原理结合起来。在图1A和1B中所示的示例中,参考电极103的位置位于相对于记录电极102基本上线性地对准中,并且在该示例中,电极102和103以及接地电极104两者也布置在穿过额部区域中心的中矢状线上。将经信号处理的信号作为生理数据提供,随后可以将该生理数据进行处理以提供认知和/或感觉概况。
在一些实现方式中,设备100可以配置为可以直接佩戴在皮肤上或者与额部区域接触的可佩戴物品上的表皮电子学生理传感器设备。在一些实现方式中,例如,设备100可以包括一个或者多个附加电绝缘层,例如配置在设备100的顶侧(例如,不与用户皮肤接触的非检测侧)上。一个或者多个附加层可以为设备100提供进一步的支撑。在一些示例中,一个或者多个附加层可以包括各种艺术设计,使得当由用户直接佩戴在用户皮肤上时,设备100还可以充当(临时)纹身。
在一些实现方式中,设备100可以包括在系统中以提供用户的认知或者感觉评估。在2013年9月27日提交的标题为“SYSTEMSAND METHODS FOR SENSORY AND COGNITIVE PROFILING”的PCT专利申请PCT/US13/62491中提供了这种系统的一些示例,其全部内容出于所有目的通过引用合并为本专利文件的公开的一部分。
在图1C中显示用于获取、分析和评估生理信号以产生单个或者群组认知和/或感觉概况的示例性模块化系统,该示例性模块化系统包括所公开技术的额部电极传感器设备100。例如,系统可以实现为提供指示受试者在评估时的认知和/或感觉能力的认知表现概况、感觉表现概况以及认知和感觉表现概况。例如,可以由用户(例如,受试者或者系统操作员)选择认知和/或感觉概况的类型以提供包括认知和/或感觉表现的定量水平的一组信息,例如,认知和/或感觉表现包括但不限于注意力、记忆力、学习、虚构、模式集成、语义集成、目标检测、情绪效价、偏好和意识状态。系统允许操作者选择要产生的概况类别。在一些实现方式中,系统可以实现为仅使用从受试者获取的生理数据(例如,没有从受试者诱发的明显行为反应)来提供认知和/或感觉概况。在一些实现方式中,系统可以实现为提供包括先前从受试者或者其它受试者获取的生理数据(例如,分组数据)的认知和/或感觉概况。例如,系统可以由此实现为提供关于群组的认知和/或感觉概况。图1C显示配置为包括可以在各种不同实施例中配置的独立模块单元或者设备的示例性系统10的图。
系统10包括刺激呈现模块130以对特定刺激呈现结构131进行配置以实行向受试者呈现刺激或者一系列刺激。在一些示例中,刺激呈现模块130在计算设备(例如,包括处理器和存储器单元)中实现。例如,刺激可以包括任何刺激类型,包括视觉、听觉、嗅觉、触觉和/或味觉刺激介质。视觉刺激的示例可以包括图像、书面单词等等。听觉刺激的示例可以包括口语单词、动物发声、合成声音等等。特定刺激呈现结构131可以配置为包括,但不限于一个或者多个特定类型的刺激、呈现刺激的持续时间、刺激间间隔、每个呈现的重复(如果有的话)次数、与刺激类型相关联的幅度和/或频率参数(例如,亮度或者声音强度或者光的对比度级别)、与每个刺激的呈现相关联的数字标记以及刺激的标签或者类别(例如,目标或者非目标)。
系统10可以包括与刺激呈现模块130连通的刺激传送模块135,以例如基于刺激呈现结构131向受试者呈现刺激或者刺激序列。例如,刺激传送模块135可以包括视觉显示器、听觉扬声器和致动器中的至少一个,以提供嗅觉、触觉和/或味觉刺激。在一些实现方式中,例如,可以在相同设备(例如,计算机或者移动通信和/或计算设备)中配置刺激呈现模块130和刺激传送模块135。
系统10包括可以实现为额部电极传感器设备100的生理数据获取模块140,以在通过刺激传送模块135呈现刺激或者刺激序列之前、期间和/或之后获取受试者的生理信号。例如,额部电极传感器设备100可以实现为从受试者获取电生理信号,例如,包括但不限于脑电图(EEG)信号数据和肌电图学(EMG)信号数据。在一些实现方式中,例如,额部电极传感器设备100可以包括电生理学感测电极(例如,EEG和/或EMG电极)或者其它类型的电生理学感测电极,耦合至信号获取设备(例如,耦合至存储器的模拟或者数字放大器)。
在一些实施例中,例如,可以在标准EEG系统中配置额部电极传感器设备100,标准EEG系统中刚性电极附着于受试者佩戴的帽子。在一些实施例中,例如,可以在使用可以佩戴在受试者身上(例如,直接应用于受试者皮肤上或者由受试者佩戴于可佩戴物品(例如,帽子))的柔性电子装置的便携式EEG系统中配置额部电极传感器设备100,其中额部电极传感器设备100与受试者头皮的额部区域物理接触。例如,可以在具有刚性电极的标准EMG系统或者在使用可以佩戴在受试者身上的柔性电子装置的便携式EMG系统中配置额部电极传感器设备100,其中额部电极传感器设备100与受试者头皮的额部区域物理接触。在该示例性配置中,刚性电极标准EMG系统或者便携式柔性电子装置EMG系统中的额部电极传感器设备100能够检测可以与受试者的睡意或者面部表情相关联的移动。
系统10包括分析预处理模块145以接收所获取的生理信号作为数据,以及在一些实现方式中,对所获取的数据执行预处理分析技术。例如,分析预处理模块145可以实现为在所获取的电生理学数据(例如,EEG数据)中标识示例性开始标记、对电生理学数据进行分段、对原始信号数据进行滤波以增大信噪比等等。在一些实现方式中,例如,可以在与示例性设备100通信的计算机设备中实现分析预处理145。在一些实现方式中,例如,可以在实现生理获取模块140的相同示例性设备(例如,额部电极传感器设备100)中配置分析预处理模块145。
系统10包括概况生成模块150以处理由额部电极传感器设备100获取的生理数据以提供对受试者(或者在一些示例中,群组)的认知或者感觉评估。例如,概况生成模块150处理生理数据以生成包括与所选择的概况类别(例如,认识评估概况或者意识状态概况)相关联的一个或者多个定量值的信息集152。例如,信息集152不只提供心理学和神经生理自然事件的测量。例如,概况可以提供一个人(或者群组)对特定问题的认识(例如,确定给定的人关于特定主题、事件、学习技巧或者甚至偏好的认识)水平和/或自觉(或者无意识)意识状态的个人(或者群组)评估。在系统10的一些实现方式中,例如,概况生成模块150还可以包括处理例如由行为信号数据获取模块(在图1C中未示出)从受试者或者个体群组(包括或者不包括受试者)获取的行为信号数据以提供对受试者或者群组的认知或者感觉评估。
图1D显示示例性方法170的过程图,该方法生成与认知和/或感觉概况相关联的信息集,例如,由概况生成模块150使用由示例性额部电极传感器设备100获取的生理数据实现。在一些实现方式中,例如,方法170还可以包括使用从受试者或者个体群组(包括或者不包括受试者)获取的行为信号数据。可以在方法170的过程中的至少一些或者全部的实现中处理行为信号数据。方法170可以包括过程171,以基于所呈现的刺激和所选择的概况类别标识与生理信号(和/或行为信号数据)相关联的时间间隔。例如,时间间隔可以包括邻近的、不连续的、连续的、离散的或者单个时间点。方法170可以包括过程172,以将与时间间隔相对应的数据(例如,生理和/或行为)分成一个或者多个分组数据集。例如,过程172可以包括基于单个刺激的预分配类型和/或连续刺激的关联关系对生理数据(和/或行为数据)进行分组。方法170可以包括过程173以提供跨分组数据集或者分组数据集内的关系的统计测量,以针对所选择的概况类别生成一个或者多个定量值。在一些实现方式中,例如,方法170可以包括增强分组数据集中的生理数据(和/或行为数据)的信号的过程。
图1E显示使用先前的单个和/或群组信息生成与认知和/或感觉概况相关联的信息集的示例性方法180的过程图,例如,该方法由概况生成模块150使用由示例性额部电极传感器设备100获取的生理数据实现。在一些实现方式中,例如,方法180还可以包括使用从受试者或者个体群组(包括或者不包括受试者)获取的行为信号数据。方法180可以包括过程181,以基于所呈现的刺激和所选择的概况类别标识与生理信号(和/或行为信号数据)相关联的时间间隔。方法180可以包括过程182,以将与时间间隔相对应的数据(例如,生理数据(和/或行为数据))分成一个或者多个分组数据集。例如,过程182可以包括基于单个刺激的预分配类别和/或连续刺激的关联关系对生理数据(和/或行为数据)进行分组。方法180可以包括过程182,以使用先前从受试者和/或其它受试者(例如,包括一个或者多个群组)获取的生理数据(和/或行为数据)提供跨分组数据集或者分组数据集内的关系的统计测量,以针对所选择的概况类别生成一个或者多个定量值。
图1F显示使用引导分类技术生成与认知和/或感觉概况相关联的信息集的示例性方法190的过程图,该方法例如由概况生成模块150使用由示例性额部电极传感器设备100获取的生理数据实现。在一些实现方式中,例如,方法190还可以包括使用从受试者或者个体群组(包括或者不包括受试者)获取的行为信号数据。方法190可以包括过程191,以基于所提供的刺激和所选择的概况类别标识与生理信号(和/或行为信号数据)相关联的时间间隔。方法190可以包括过程192,以将与时间间隔相对应的数据(例如,生理数据(和/或行为数据))分成一个或者多个初始分组数据集。方法190可以包括过程193,以使用涉及初始分组数据集的统计检验对呈现给受试者的刺激序列中的每个刺激进行分类。方法190可以包括过程194,以基于所分类的刺激将与时间间隔相对应的数据(例如,生理数据(和/或行为数据))重新分组成一个或者多个分组数据集。方法190可以包括过程195,以提供跨分组数据集或者分组数据集内的关系的统计测量,以针对所选择的概况类别生成一个或者多个定量值。
在一些示例中,概况生成模块150可以实现具有背景特定的参数的引导分类算法,以引导各种分类和统计方法和从各种分类和统计方法(例如,包括但不限于基于ANOVA的技术151a、基于支持向量机的技术151b和最小描述长度技术151c等等)中进行选择。在一些实现方式中,可以在包括一个或者多个远程计算处理设备(例如,云中的服务器)的计算机系统或者通信网络(称为‘云’)上实现概况生成模块150。
系统10可以配置为包括脑机接口模块155以精炼(refine)所生成的认知和/或感觉概况,和/或致动用户与机器之间的交互。在一个示例中,脑机接口模块155可以基于已经从概况生成模块150(例如,从系统10的在线实现方式中)生成的单个受试者或者群组受试者的认知和/或感觉概况或者先前由系统10生成的概况,来向刺激呈现模块130提供新刺激或者多个刺激的反馈传送。例如,脑机接口模块155可以适应性地改变或者设计从受试者最优地提取信息的刺激范式,该信息被分析地处理以最大化期望目标。例如,脑机接口模块155的一些实现方式可以包括但不限于辅助学习和目标检测应用。
在系统10的一些实现方式中,可以在与生理数据获取模块140(例如,额部电极传感器设备100)交互的单个计算系统(例如,台式计算机、膝上型计算机或者包括智能手机或者平板电脑的移动通信设备)中实现概况生成模块150、刺激呈现模块130、刺激传送模块135和脑机接口模块155。在其它实现方式中,可以在彼此通信并且包括模块150、130、135和155的各种组合的两个或更多个计算设备中配置模块150、130、135和155。在一些实现方式中,系统10可以配置为仅包括生理数据获取模块140和概况生成模块150。在这种示例性实现方式中,系统10可以使用受试者周围当前可用的环境刺激(例如,光、声音、气味、味道和/或触觉接触)。
在一些方面中,使用所公开技术的生理传感器设备提供受试者的认知或者感觉评估的方法包括使用传感器设备从受试者头部的额部区域获取受试者的电生理信号以产生生理数据,和对生理数据进行处理以生成包括与认知-感觉概况类别相关联的一个或者多个定量值的信息集,该认知-感觉概况类别指示认知或者感觉功能的一个或者多个方面。传感器设备包括由电绝缘材料制成并且构造成允许传感器设备与受试者头部的额部区域物理接触的衬底、和三个电极,该三个电极包括记录电极、参考电极和接地电极,以从沿着额部区域的矢状方向布置在衬底上的三个相应位置获取受试者的电生理信号,其中记录电极配置在接地电极和参考电极后方,以及接地电极配置在记录电极与参考电极之间。
在提供认知和/或感觉评估的方法的一些实现方式中,例如,方法还可以包括向受试者呈现刺激序列,刺激序列基于认知-感觉概况类别,其中在呈现刺激序列之前、期间和之后实现生理信号的获取。在一些实现方式中,例如,方法还可以包括从认知表现概况、感觉表现概况以及认知和感觉表现概况之中选择认知-感觉概况类别。例如,基于所选择的认知-感觉概况类别,刺激序列可以包括视觉、听觉、嗅觉、触觉或者味觉刺激介质中的至少一个。例如,一个或者多个定量值可以包括基于受试者的注意力、记忆力、学习能力、虚构特征、模式集成能力、语义集成能力、目标检测能力、情绪效价、偏好或者意识状态中的至少一个描绘认知和感觉表现中的一个或者两者的水平的定量分数,以及其中定量分数描绘在特定时间处的水平。在一些实现方式中,例如,方法还可以包括基于认知-感觉概况类别标识与生理信号相关联的时间间隔,将与时间间隔相对应的生理数据分成一个或者多个分组数据集,以及提供跨分组数据集或者分组数据集内的关系的统计测量,以针对所选择的认知-感觉概况类别生成一个或者多个定量值。
图1G显示描绘确定额部电极传感器的最优空间放置以获取EEG事件相关电位的示例性方法160的说明图。方法160包括使用刺激传送模块135向可以佩戴常规‘全头皮’EEG获取设备的受试者呈现刺激呈现结构131,该常规‘全头皮’EEG获取设备的电极位于跨受试者头部的位置。刺激呈现结构131可以用于实行对受试者进行刺激或者刺激序列呈现。使用‘全头皮’EEG获取设备获取受试者对刺激或者刺激序列的呈现的EEG反应,以从跨大脑的多个区域(例如,包括额部、顶部、枕部和颞部脑区域)的多个电极获取EEG信号数据。可以使用预处理模块145对所获取的数据进行分析以对所获取的数据实现预处理分析技术。在一些示例中,预处理分析技术包括产生电生理学数据的一个或者多个地形电压绘图146(例如,可以在不同时间和/或空间参数上)。例如,预处理模块145可以在数据处理技术中利用一个或者多个地形电压绘图146中产生的数据,对可以包括在额部电极生理传感器设备中的电极的空间布置参数进行优化。例如,空间布置参数可以包括电极的数量、电极类型和大小、每个电极的位置/放置、电极之间的间距等等。例如,电极的位置和/或放置的确定可以基于要记录的信号类型(例如,感兴趣的信号、参考信号和接地信号)。例如,电极位置和/或放置参数可以包括电极的相对距离、电极相对于受试者的头部的额部区域的特定放置等等。例如,所公开技术的示例性生理传感器设备中配置的电极的这种参数(例如,类型、数量、大小、放置、相对位置等等)考虑感兴趣的生理信号(例如,包括事件相关电位大脑标记)的地形、幅度和定位以及特定金属电导、电阻和间距参数。
利用用于描绘认知-感觉功能概况的方法和系统的所公开设备的 示例性实现方式
描述了所公开的额部电极生理传感器设备的示例性实现方式以及使用这种设备用于提供指示认知或者感觉功能的一个或者多个方面的受试者(或者群组)的认知和/或感觉评估的系统和方法。所描述的示例性实现方式包括诱发和提取各种大脑ERP(例如,P300、‘奖励’的意向/感觉(notion/feeling)和失匹配负波)以产生提供与认知表现、感觉表现和/或意识状态概况相对应的定量值的信息集,各种大脑ERP是使用视觉刺激和听觉刺激由EEG记录测量的。在所公开方法和系统的一些示例中,除了由用于提供认知和/或感觉评估的示例性额部电极生理传感器设备获取的示例性EEG记录生理数据以外,还可以使用眼球跟踪数据。
在所描述示例中,当记录来自受试者的EEG信号时,呈现特定刺激集以诱发感兴趣的事件相关电位以及相关的神经频率振荡。用于示例性实现方式的示例性ERP包括,但不限于P300、‘奖励’的意向/感觉和失匹配负波。可以使用所公开技术实现以提供示例性认知-感觉概况的其它示例性ERP可以包括N400等等。如下所述,利用所公开方法和系统的示例性额部电极生理传感器设备的示例性应用使用示例性P300、‘奖励’和失匹配负波ERP作为说明性示例以描述可以如何实现示例性方法,例如,刺激设计和呈现、生理信号(例如,EEG)记录、生理数据(例如,ERP)分析以及认知和/或感觉概况生成(例如,包括推断的认知和/或意识状态)。
尽管所公开的认知和/或感觉概况生成方法和系统可以用于测量大脑标记,但是另外,它还评估该信息并且将该信息转变成创建个体认识评估和/或意识概况状态的新型有意义的数据。另外,在一些实现方式中,例如,所公开的方法和系统可以使用该概况来引导脑机接口系统。
I.P300和“奖励”
P300是以300ms与800ms之间的正向电反应为特征的大脑内源性反应,以中央顶骨为最大值头皮分布。P300与项的主观出现的概率负相关。例如,已经在视觉目标检测任务中使用P300,其中目标比其它项诱发更高幅度的P300。
另外,在此处使用P300描述的示例性实现方式中,创建任意视觉提示(例如,绿色圆),并且指示所测试的受试者将其与“奖励”的概念或者感觉相关联。例如,指示受试者将示例性绿色圆与良好任务表现的提示相关联,并且通知受试者测试期间提示的出现将与测试之后的增大补偿相关,从而创建该任意提示与“奖励”概念的关联。随后分析大脑对该“奖励”刺激的反应。使用P300的所公开方法的示例性图示示出了跨各种EEG记录技术的方法的广泛应用。例如,方法可以应用于使用利用具有所公开的额部电极配置的传统刚性电极EEG系统记录的大脑数据(例如,EEG信号)以及利用使用具有所公开的额部电极配置的可佩戴柔性表皮电子传感器获取的EEG数据,来评估认知和/或感觉概况。
I.1.示例性刺激呈现结构
在P300和“奖励”ERP的一些示例性实现方式中,使用视觉刺激。例如,刺激由多个图像类别组成(例如,包括动物;汽车;脸;花;房子;随机物体;摩托车;飞机;以及建筑物)。从各种资源获得示例性刺激池。
图2显示所呈现的视觉刺激的示例性序列的图。该图描绘了特定呈现的样例的图像和预编程的伪随机呈现顺序。每个解决方案有适当的刺激呈现结构是示例性方法的固有和重要部分。在该示例中,相关方面是表示预定“目标”的图像对比所有其它图像(标记为“干扰项”)与对比先前与“奖励”的指示相关联的绿色圆之间的区别。在示例性方法中,适当的刺激结构(例如,在这种情况下,作为目标嵌入其它图像序列的感兴趣的图像的特定内容、呈现的位置、呈现的时间、刺激间间隔的时间等等)和所描述的专业的后续分析对如何使用相关大脑标记(例如,在该示例性情况下,P300和“奖励”所诱发的ERP)以评估和确定个人的认识、注意力的水平和对特定物品的偏好非常重要。
I.2.示例性刺激传送设备
从各种资源获得示例性刺激池。在获得刺激池之后,使用计算机实现的方法(例如,用MATLAB脚本编程)控制每个样例的相对亮度。例如,计算机实现的方法实现为首先在彩色图像中加载,并且使用下列示例性公式计算其相对亮度,其中Y、R、G和B分别表示相对亮度、红枪值、绿枪值和蓝枪值:
Y=.2126R+.7152G+.0722B    (1)
例如,期望相对亮度设定为等于120的值。在脚本测量每个图像的初始相对亮度之后,其对图像内的每个像素增加或者减去RGB值以实现120的平均相对亮度。然后以100%的质量保存图像。
在控制亮度之后,另一个计算机实现的过程(例如,用MATLAB脚本编程)用于在每个刺激样例上放置居中安置的注视点(fixation dot)。例如,这帮助受试者维持注视并且最小化任何频繁的眼睛扫视。该示例性过程首先测量所上传图像的尺寸。它使用这些测量值计算图像的中心并且随后使用圆的标准方程创建注视点。通过将像素的红枪改变为255、绿枪改变为0以及蓝枪改变为0来修改围绕中心的七个像素长度半径内的像素。
最后,创建了用于注视点的视觉刺激和用于“奖励”的任意视觉提示。例如,对于注视点,计算机实现的过程(例如,使用MATLAB脚本编程的)用于以350个像素的高度和宽度创建灰色背景图像(例如,红枪等于150;绿枪等于150;蓝枪等于150)。然后,示例性脚本使用圆的标准方程运行嵌套循环以将七个像素长度半径内的像素修改为红色(例如,通过将图像的红枪改变为255、绿枪改变为0以及蓝枪改变为0)。对于“奖励”,使用成像软件在350×350像素灰色背景(例如,红枪等于150;绿枪等于150;蓝枪等于150)上创建绿色圆(例如,红枪等于0;绿枪等于255;蓝枪等于0)。
使用Cogent 2000对该示例刺激呈现过程中使用的示例性刺激呈现范式进行编程,并且该示例性刺激呈现范式包括连续地以短暂的呈现持续时间呈现视觉刺激。例如,刺激池(不包括注视点和绿色圆)被分成两个群组,两种记录技术中的每一个对应一个群组。每种技术包括900个刺激,跨记录技术总共1800个刺激。例如,在技术内,每个呈现100ms的900个刺激(包括目标和干扰项)被分成三个呈现块。绿色圆刺激呈现持续1000ms并且在每个呈现块内显示30次。在每个目标试验、干扰项试验和刺激间间隔(ISI)期间,注视点是可见的。
例如,在块1中,目标是人的脸。在块2中,目标是汽车。在块3中,目标是动物。除随机化记录技术的顺序以外,例如,每个技术内的呈现块的顺序也是随机的。从不跨越技术连续地重复呈现块(例如,块1、块2、块3、块3、块2、块1、块1、块3、块2)。由于指示受试者对他/她看到多少次特定目标进行计数,因此对于每个块,目标的正确数量不同。例如,在块1(目标:脸)中,有56个目标和244个干扰项。例如,在块2(目标:汽车)中,有62个目标和238个干扰项。例如,在块3(目标:动物)中,有60个目标和240个干扰项。干扰项由所有非目标物体类别组成。例如,在块1(目标:脸)中,干扰项包括汽车、动物、花、房子等等。示例性MATLAB代码从提示实验者输入受试者的首字母并且选择呈现哪个块开始。根据所选择的块号,脚本计算哪个物体类别将是目标、目标的数量以及干扰项的数量。然后,脚本使用MATLAB randperm()函数随机化刺激呈现的顺序。脚本运行randperm()函数二十次以更好地随机化呈现序列。然后,脚本使用randi()函数为每个试验创建刺激间间隔(ISI)。刺激间间隔的范围为从500ms到600ms。除配置显示器、声卡和并行端口以外,在Cogent 2000内配置和初始化日志文件。该日志文件用于创建关于每个试验的刺激类型(例如,目标、干扰项和绿色圆)的每个试验的历史。随后,将刺激加载到存储器缓冲器中。在刺激呈现之前执行前述步骤例如以减小计算负载以及增大潜伏期精度。刺激呈现包括向下迭代预定呈现顺序的循环(for-loop)。例如,基于按照呈现顺序的当前刺激的值,计算机实现的过程计算其刺激类型并且向日志文件和并行端口发送关于其刺激类型的适当信息,该刺激的触发被发送至EEG记录计算机。然后,程序呈现ISI。在每个呈现结束时,并行端口重置为零以准备下一个试验。
I.3.使用传统全头皮EEG获取的示例性EEG记录
为了为EEG记录准备示例性受试者,使每个受试者坐在记录室中的椅子中以开始EEG带帽过程。对于使用刚性电极模态的示例性实现方式(例如,Brain Products),该过程涉及在受试者头部上放置传统EEG帽子以及用弹性下颏带对其进行固定。在一些示例中,例如基于所估算的受试者头部的大小使用56cm或者58cm直径的帽子。紧接着,使用弯曲的塑料注射器在帽子的电极中的每一个下面注入Signa电极凝胶(例如,来自Parker Laboratories)以在电极本身与受试者头皮之间创建导电桥。此外,例如,使用木制棉签按摩凝胶以通过降低阻抗构建更强的电导。例如,对于每个电极(包括接地电极和参考电极)使用该技术将阻抗水平降低至<5kΩ。
在开始使用EEG记录的示例性实现方式之前,给受试者指示文件来阅读。例如,该文件描述实验范式的一般组织以及他们将查看什么(即目标、干扰项、注视点和绿色圆)。还解释在每个呈现块中,目标将改变。例如,在块1中,任务是对他们看到有一个或者多个人脸的图像进行计数。在块2中,任务是对他们看到有一个或者多个汽车的图像进行计数。在块3中,任务是对他们看到有一个或者多个动物的图像进行计数。指示受试者将所有其它照片看作干扰项并且不对它们进行计数。在每个呈现块之后,要求受试者报告他们看到多少目标。例如,绿色圆指示奖励。受试者坐在呈现监视器的前面并且被要求在整个实验持续时间期间仅将视觉注视维持在红色中央注视点上,并且尽可能地限制他们的运动动作以防止神经生理数据中的运动伪差。后来,接着将记录室的光调暗,并且剌激过程和EEG记录开始。
在这些示例性实现方式中,使用具有刚性电极的传统EEG系统获取脑波。示例性EEG系统包括BrainAmp DC 32通道系统;BrainVision记录器;大小为56cm的Fast n Easy 32通道EEG记录帽;大小为58cm的Fast n Easy 32通道EEG记录帽;具有5k电阻器的BrainCap-MR的PCB Ribbon Cable;以及BrainCap MR Box1.2。
I.4.示例性EEG分析处理和ERP分析
数据分析技术包括多个步骤和过程,例如,包括标记数据的处理和单个的统计分析。
标记数据的处理:例如,在每个记录会话之后,示例性EEG记录系统产生三个文件:数据文件(.eeg)、头文件(.vhdr)和标记文件(.vmrk)。标记文件包括针对每个刺激开始的事件触发。在该示例中,由于并行端口内的输出限制,使用Cogent 2000日志文件容纳更多关于样例的刺激类型(例如,目标、干扰项或者绿色圆)的可读信息。由此,使用过程(例如,使用MATLAB脚本编程的)来用来自日志文件的事件代码以一对一替换的方式替代标记文件(.vmrk)中的事件触发。例如,.vmrk文件中的第一标记由日志文件中的第一标记替代;.vmrk文件中的第二标记由日志文件中的第二标记替代等等。
示例性单个统计分析:使用上述示例性的刺激呈现开始的标记,遵循示例性分析方法执行ERP分析以计算ERP(例如,使用BrainVision Analyzer 2)。例如,针对“目标”、“干扰项”和“奖励”计算ERP波形。随后,例如,根据每个ERP波形确定感兴趣的ERP成分的空间位置和时间。例如,对于每个感兴趣的时窗,使用来自EEG帽(总共32个电极)中的每个电极的可用电压信息计算每个感兴趣的ERP成分的地形电压绘图。在此处描述的示例性实现方式中,使用MATLAB和Statsoft Statistica(版本8.0)软件的组合进行统计分析。
I.5.最优额部电极放置的示例性配置
可以通过集成所有这种信息获得使用我们的方法确定的最优电极放置,例如:(i.)感兴趣的感觉或者认知神经心理学机制;(ii.)设计适当的刺激呈现和传送方法用于诱发感兴趣的神经心理学机制;(iii.)标记与刺激呈现的开始相关联的按时间顺序的标记;(iv.)在剌激期间记录来自受试者的EEG信号;(v.)分析EEG数据并对于每个感兴趣的情况/标记计算ERP;(vi.)标识数据集的每个通道中感兴趣的ERP成分;(vii.)对于每个感兴趣的成分,确定潜伏期(出现时间)和空间分布(哪些电极显示了感兴趣的ERP);(viii.)基于每个感兴趣的成分的潜伏期,确定每个成分出现的时窗并创建地形电压绘图;(ix.)对于每个感兴趣的ERP,研究在头皮的什么地方有明显的“表达”(即,其存在于哪些电极中以及其电压在地形电压绘图中是如何分布的);(x.)使用该信息确定电极放置的最优位置和最好时间,以检测感兴趣的ERP的调制以及其在额部电极中的表达。例如,由此,可以对用于检测感兴趣的ERP的电极的最优放置和配置进行确定。
在示例性额部电极配置中,使用所公开的电极配置最优化方法,以最小化所占据的使用的前额“实际资源”的方式确定空间位置和放置(例如,包括电极之间的距离和电极大小),同时保持足够间距以不妨害沿着头皮表面的每个电极信号完整性并检测感兴趣的大脑活动。通常,例如,远离记录电极并且在“感兴趣的大脑功能”最小或者不提供表达的位置中安置参考电极。以这种方法,当人们将参考信号从记录信号中区分开时,就不会‘减去’任何感兴趣的东西。然而,大间隔在前额上使用相对大量的空间区。在所公开技术的设备中,在受试者额部区域上放置需要最小量空间区的最小电极配置(例如,将记录电极和参考电极紧密地放置在一起),同时仍然提供可靠的生理信号读数和检测。所公开的电极配置最优化方法实现为获得这样的配置。
例如,假定传感器中的加性高斯白噪声,最优分类器的精度(例如,由似然比检验给出)是零假设下的记录电极的头皮电位(例如P300范式中的“干扰项”)与对立假设(alternate hypothesis)下的记录电极的头皮电位(例如P300范式中的“目标”)之间的差中的能量的单调函数。从而,提供用于最大化分类精度的规则,其相当于最大化“目标”设置与“干扰项”设置中的记录电极电位之间的差中的能量。
如果跨等位线(例如,相同的或者同一电压电位值)放置电极对,那么电位差对从高电位区域到低电位区域或者从低电位区域到高电位区域的电流流动敏感。这称为沿着梯度电位放置电极对。然而,如果沿着等位线放置双极对,那么记录的差分电位是零或者接近零。当沿着感兴趣的大脑信号的额部头皮分布的梯度放置额部电极时,对差中能量进行最大化。
根据示例性实现方式中使用的两个ERP(例如P300和“奖励”)中的示例性分析,电压头皮分布的梯度垂直定向。为了更好地检测这些ERP,应当从上到下(例如,从前额上部朝向鼻子)跨等位线放置记录电极、接地电极和参考电极。另外,与该方向(例如,等位线)正交放置记录电极、接地电极和参考电极将导致降低的分类性能-接近偶然(chance)的性能。
另外,例如,除增大所检测电生理信号中的信噪比特征以外,所公开的上下(例如,前额上部朝向鼻子)额部区域电极配置还能够检测基础功能性神经解剖学的相关神经生理信号(例如,人的大脑具有沿着中矢状线的对称半球并且许多感觉和认知过程发生在功能性和解剖学半球不对称时)。例如,代替所公开的前额上部朝向鼻子的取向,沿着大脑轴向(或者横截)平面(例如,沿着前额从左至右)放置电极可能产生对大脑半球假象的显著易损性,这导致错误的EEG/ERP读数。此外,所公开技术的示例性方法还表明额部电压头皮分布中的事件相关电位的表达越大,其分类越容易。
图3A显示图示使用常规EEG系统的示例性额部电极配置和来自其实现方式的用于检测对“目标”和“干扰项”的P300ERP检测的EEG信号反应的示例性结果的图。在图3A中,显示佩戴常规EEG刚性电极检测帽301的示例性受试者的图像300。在图3A中,显示了描绘32个电极在常规EEG刚性电极检测帽301中的位置的三维重建以及顶侧和右侧示意图的图305。在图3A中,显示了描绘32个电极在常规EEG刚性电极检测帽301中的位置的二维视图的图306。如图3A所示,图310显示示例性地形电压绘图(例如,指示了感兴趣的ERP的额部表达,在该示例性情况下,针对示例性分析时窗(例如,344-396ms)中的“目标”的P300ERP)。如图3A所示,数据曲线315显示针对“目标”(-红线)和“干扰项”(-黑线)两者来自额部电极(Fp1)的示例性ERP波形。如地形电压绘图310所示,存在半球形对称分布,其中等位线在横截平面上。因而,跨等位线,与横截平面正交地放置额部电极。
图3B显示图示使用示例性三电极额部传感器设备的示例性额部电极配置和来自其实现方式的用于检测对“目标”和“干扰项”的P300 ERP检测的EEG信号反应的示例性结果的图。图3B显示与受试者头部的额部区域物理接触并且跨等位线对准(例如,其中朝向前额的上部放置记录电极、在前额上朝向鼻子放置参考电极以及在记录电极与参考电极之间放置接地电极)的额部电极传感器设备100的图320。图3B显示针对“目标”-红线和“干扰项”-黑线两者的从额部记录电极(例如,Rec F1-白色圆102)获取的ERP波形的数据曲线325。3电极传感器设备中所公开的额部电极配置可以与全帽传统EEG系统一样可靠地检测感兴趣的ERP(“目标”和“干扰项”)。在该示例中,由于“参考”电极关于“记录”电极的相对位置,ERP(“目标”和“干扰项”)的极性在示例性额部系统与EEG帽额部电极之间相反。例如,在图3A所示全帽系统中,“记录”电极比“参考”电极占据明显更前面的位置,而在图3B所示示例性系统中,“参考”电极处于比“记录”电极低并且稍微更前面的位置。
I.6.用于跨不同技术的ERP检测的额部电极配置的示例性实现方式
在这些示例性实现方式中,跨越不同电极类型和材料实现所公开的额部电极配置,例如,包括使用具有刚性电极的传统全EEG帽的EEG记录技术和包括接地电极、参考电极和记录电极的三类额部电极传感器技术,使用:(1)示例性刚性传感器(例如,从BrainProducts获得);(2)示例性定制设计的刚性传感器;以及(3)具有柔性电子电极的示例性表皮电子传感器设备。
例如,在受试者准备、刺激呈现、EEG记录和标记文件处理之后,如在先前的部分中描述的,使用MATLAB和Statsoft Statistica(版本8.0)软件的组合进行统计分析。例如,在数据处理和分析之后,BrainVision Analyzer导出包括关于情况、受试者、试验、电极通道和平均电压幅度的数据值的文本文件。对于每种记录技术,针对下列感兴趣的时间间隔从额部电极提取平均电压幅度,例如:目标和干扰项,在刺激开始之后400ms至以500ms;奖励刺激,在刺激开始之后456ms至556ms。在所有示例性技术(例如,来自BrainProducts的示例性刚性电极、示例性定制设计的刚性电极和示例性EES柔性电极传感器)中使用相同示例性参数。例如,由BrainVision Analyzer将这些数据写入文本文件并且随后加载到示例性的MATLAB程序中,我们创建MATLAB程序以更容易访问的格式对数据进行排序和组织。具体地,例如,示例性脚本允许例如使用MATLAB的变量编辑器按列进行更容易的数据选择过程。在选择之后,将数据放入Statistica数据电子表格中。在一些示例中,对每个Statistica电子表格执行单向(因素1:情况)重复测量ANOVA以用于针对EEG记录技术中的每一个进行干扰项与目标之间的比较。例如,每个电子表格对下列是特定的:1)EEG技术;以及2)比较:干扰项对比目标。对于奖励条件,例如,执行T-检验,以将奖励所提取的平均幅度值相对于零进行比较。对于奖励情况,例如,每个电子表格对下列是特定的:1)EEG技术;以及2)比较:奖励对比零。
I.6.1.在额部配置中使用刚性EEG传感器
使用示例性刚性EEG电极(Brain Products)实现两个额部配置,包括沿着横向方向(例如,左至右轴)水平解剖学对准的电极和沿着矢状方向(例如,前至后轴)垂直解剖学对准的电极。图4A和4B分别显示使用沿着梯度电位配置和沿着等位线配置的刚性电极的示例性三电极配置。在一个示例中,梯度电位配置(这里称为“垂直-矢状”)使用从前额上部朝向鼻子放置的三个电极,如下:“记录F1”电极、“接地”电极、“参考”电极,如图4A所示。在另一个示例中,等位线配置(这里称为“水平-横向”)使用沿着前额从左向右放置的三个电极,如下:“参考”电极、“接地”电极、“记录F1”电极,如图4B所示。
图5显示针对梯度电位配置和等位线配置两者在刺激呈现之前使用示例性刚性电极(例如,从Brain Products获得的)获取的示例性EEG在线记录的数据曲线。数据曲线510显示针对示例性三电极额部刚性EEG传感器的等位线配置的示例性EEG数据。数据曲线520显示针对示例性三电极额部刚性EEG传感器的梯度电位配置的示例性EEG数据。在该示例中,眨眼用于更好地图示反应的信噪比(SNR)。
图6显示针对梯度电位配置和等位线配置两者在示例性刺激呈现期间使用示例性刚性电极获取的示例性EEG在线记录的数据曲线。数据曲线610显示针对示例性三电极额部刚性EEG传感器的等位线配置的示例性EEG反应数据。数据曲线620显示针对示例性三电极额部刚性EEG传感器的梯度电位配置的示例性EEG反应数据。在该示例中,眨眼用于更好地图示反应的信噪比(SNR)。
如图5和图6所示,注意在两种情况下,与等位线方向相比,眨眼在梯度电位方向上更明显,例如,如所预测的,针对“垂直-矢状”配置,指示更好的性能。
图7A显示使用“垂直-矢状”配置(梯度电位配置,用较粗的线显示)和“水平-横向”配置(等位线配置,用较细的线显示)两者针对“目标”(红线)和“干扰项”(黑线)使用示例性刚性电极从单个受试者获取的ERP波形的示例性数据曲线。
图7B显示使用“垂直-矢状”配置(梯度电位配置,用较粗的线显示)和“水平-横向”配置(等位线配置,用较细的线显示)两者针对“奖励”(蓝线)使用示例性刚性电极从单个受试者获取的ERP波形的示例性数据曲线。
使用示例性刚性电极传感器的示例性实现方式的示例性结果显示了在梯度电位配置中跨等位线对所有检验的ERP的充分检测,例如,目标对比干扰项N=132,F=5.100,p<0.05;以及奖励N=45,T=-3.03,p<0.005。相反地,使用示例性刚性电极传感器的示例性实现的示例性结果显示了沿着等位线配置对所有检验的ERP的不充分检测,例如,目标对比干扰项N=144,F=0.001,p=0.96;以及奖励N=45,T=-1.45,p=0.15。所公开的使用梯度电位配置的三电极额部配置能够使用刚性电极进行高效的ERP检测。
I.6.2.在梯度电位配置中使用定制设计的刚性EEG传感器
在下列示例性实现方式中,将比较使用所公开的最优三电极额部配置的不同刚性电极传感器。例如,制造定制设计的刚性电极传感器。
例如,使用涉及金、聚酰亚胺和Tegaderm的示例性微制造方法制造刚性前额传感器。示例性微制造方法包括通过电子束蒸发或者溅射将Au(例如,200nm)沉积到聚酰亚胺粘胶带上的第一过程。示例性微制造方法包括将聚酰亚胺胶带切成例如纵横比为1:3的小矩形的第二过程。3个正方形部分称为左、中和右,其中粘合剂侧朝上。示例性微制造方法包括朝向中间折叠胶带的左边并且牢固地粘附的第三过程。示例性微制造方法包括将预切割的各向异性导电薄膜(ACF)引线附接到右正方形的中线上的第四过程,其中ACF的导电侧朝上。示例性微制造方法包括朝向中间正方形折叠右正方形并且牢固地粘附的第五过程。到目前为止,例如,制成一个单引线电极。所述示例性微制造方法包括重复第一至第五过程的过程,例如,直到制造了3个单个-引线电极。示例性微制造方法包括将一片Tegaderm剥开至一半的过程。示例性微制造方法包括沿着中线将3个单引线电极附接在Tegaderm的粘合侧上的过程。示例性微制造方法包括将Tegaderm重新附接(例如,缓慢地)回它的蜡纸的过程。示例性微制造方法包括将3个ACF引线锡焊到3个“Deutsches Institut für Normung”(DIN)引线-导线电缆上的过程。
示例性的3个DIN引线-导线电缆充当对EEG记录系统的输入。图8显示示例性的制造的、定制设计的刚性电极的图像801。在图8的图像802中,图示了对示例性受试者应用该示例性额部三电极梯度电位(垂直-矢状)配置。
图9A显示使用“垂直-矢状”配置(梯度电位配置)针对“目标”(红线)和“干扰项”(黑线)使用示例性刚性电极(例如从BrainProducts获得的)从单个受试者获取的ERP波形的示例性数据曲线。图9B显示使用“垂直-矢状”配置(梯度电位配置)针对“奖励”(蓝线)使用示例性刚性电极(例如从Brain Products获得的)从单个受试者获取的ERP波形的示例性数据曲线。图9C显示使用“垂直-矢状”配置(梯度电位配置)针对“目标”(红线)和“干扰项”(黑线)使用示例性定制设计的刚性电极从单个受试者获取的ERP波形的示例性数据曲线。图9D显示使用“垂直-矢状”配置(梯度电位配置)针对“奖励”(蓝线)使用示例性定制设计的刚性电极从单个受试者获取的ERP波形的示例性数据曲线。如图9A-9D所示,在“垂直-矢状”配置(梯度电位配置)中,示例性定制设计的传感器也可以充分地检测所有检验的ERP,例如,目标对比干扰项N=134,F=9.26,p<0.005;以及奖励N=43,T=-2.42,p<0.05。所公开的三电极额部垂直-矢状配置(梯度电位配置)能够使用各种类型的刚性电极进行高效的ERP检测。
I.6.3.在额部配置中使用表皮电子传感器
图10显示示例性EES额部三电极设计1000的示意图。如图1A的图所示,示例性EES额部三电极设计1000可以用于配置设备100的电极。如图10所示,EES额部三电极设计1000包括记录电极1001,记录电极1001构造成包括具有突出的蛇状导线1011的超薄电极岛(island)1010,所有突出的蛇状导线都依靠在生物学上惰性、柔性、可拉伸和/或顺应的衬底(例如,聚合物)上。EES额部三电极设计1000包括接地电极1002,接地电极1002在衬底上与记录电极1001分隔第一距离(例如,在该示例中,12.0mm)并且构造成包括电极岛1010和突出的蛇状导线1011。EES额部三电极设计1000包括参考电极1003,参考电极1003在衬底上与接地电极1002分隔第二距离(例如,在该示例中,12.0mm)并且构造成包括电极岛1010和突出的蛇状导线1011的。记录电极1001、接地电极1002和参考电极1003的布置沿矢状方向对准。在该示例中,电极岛结构1010配置为具有两个垂直端,其中一个端与突出的蛇状导线1011平行对准并且具有3.0mm大小,而另一个端与突出的蛇状导线1011垂直对准并且具有6.3mm大小。示例性EES额部三电极设计1000的其它示例可以包括不同的电极结构间距和大小。
在该示例中,使用柔性EES传感器实现两个示例性额部配置,沿着横向方向的电极的水平解剖学对准和沿着矢状方向的电极的垂直解剖学对准。在垂直-矢状配置(梯度电位配置)中,从前额的上部朝向鼻子放置三个传感器,如下:“记录F1”电极、“接地”电极、“参考”电极,如图11A所示。在水平-横向配置(等位线配置)中,沿着前额从左向右放置三个传感器,如下:“参考”电极、“接地”电极、“记录F1”电极,如图11B所示。
使用表皮电子系统执行所公开的额部电极生理传感器配置的示例性实现方式。例如,在这种实现方式中,首先使用酒精药签和消毒纱布清洁受试者的前额。在让酒精变干之后,将示例性三电极EES柔性传感器设备放置在受试者前额上。三片ACF中的每一个在一端上电耦合至DIN电缆,并且在另一端上电接合至EES设备的接口焊盘,朝向受试者的右手边。例如,当使用弯曲的塑料注射器用自来水弄湿EES设备时,指示受试者向后倾斜他的/她的头部。同时,受试者使用纸巾覆盖他们的眼睛以抵御水。轻轻地摩擦EES设备直到它粘附受试者前额并且与受试者前额齐平。在一些示例中,使用无刺痛液体绷带将EES设备更牢固地接合至前额。当让绷带变干时,使用遮蔽胶带将EES设备的DIN电缆粘贴至受试者头部。例如,这防止电缆落入受试者的视野内并且还防止电缆拉扯EES设备本身。此外,例如,DIN电缆夹至受试者的衬衫领以防止拉扯。随后将DIN电缆插入传统EEG放大系统中。
图12显示针对梯度电位配置和等位线配置两者在刺激呈现之前使用示例性EES柔性电极获取的示例性EEG在线记录的数据曲线。数据曲线1210显示针对示例性三电极额部柔性EES传感器的等位线配置的示例性EEG数据。数据曲线1220显示针对示例性三电极额部柔性EES传感器的梯度电位配置的示例性EEG反应数据。在该示例中,眨眼用于更好地图示反应的信噪比(SNR)。
图13显示针对梯度电位配置和等位线配置两者在示例性刺激呈现期间使用示例性EES柔性电极获取的示例性EEG在线记录的数据曲线。数据曲线1310显示针对示例性三电极EES柔性传感器的等位线配置的示例性EEG数据。数据曲线1320显示针对示例性三电极EES柔性传感器的梯度电位配置的示例性EEG反应数据。在该示例中,眨眼用于更好地图示反应的信噪比(SNR)。
如图12和图13所示,注意在两种情况下,与等位线方向相比,眨眼在梯度电位方向上更明显,例如,如所预测的,针对“垂直-矢状”配置,指示更好的性能。
图14A显示使用“垂直-矢状”配置(梯度电位配置,用较粗的线显示)和“水平-横向”配置(等位线配置,用较细的线显示)两者针对“目标”(红线)和“干扰项”(黑线)使用示例性EES柔性电极从单个受试者获取的ERP波形的示例性数据曲线。
图14B显示使用“垂直-矢状”配置(梯度电位配置,用较粗的线显示)和“水平-横向”配置(等位线配置,用较细的线显示)两者针对“奖励”(蓝线)使用示例性EES柔性电极从单个受试者获取的ERP波形的示例性数据曲线。
使用示例性EES柔性电极的示例性实现方式的示例性结果显示了在梯度电位配置中跨等位线对所有检验的ERP的充分检测,例如,目标对比干扰项N=178,F=12.69,p<0.0005;奖励N=45,T=-3.39,p<0.005。相反地,使用示例性EES柔性电极的示例性实现的示例性结果显示了沿着等位线配置对所有检验的ERP的不充分检测,例如,目标对比干扰项N=178,F=2.39,p=0.12;奖励N=45,T=-1.74,p=0.08。所公开的使用梯度电位配置的三电极额部配置能够使用EES柔性电极进行高效的ERP检测。
II.失匹配负波
失匹配负波(MMN)是可以与广泛的神经和神经精神病学障碍相关的ERP调制。在‘oddball’范式中,MMN被认为反映异常刺激的预注意检测并且可以计算为对异常(例如,罕见的)与标准(例如,常见的)刺激的反应之间的差值波动。例如,对遭受各种精神障碍(例如,包括精神分裂症、阿尔茨海默氏病和孤独性谱群疾病(ASD))的患者的科学研究已经系统地报告这些患者相比健康受试者显示出降低的检测新刺激能力。与该行为缺陷一致,MMN的幅度减小,并且因此MMN可以被看作对这些障碍的进行性病理或者易损性的标志。
I.1.示例性MMN实现
使用刚性和柔性EES电极传感器对受试者执行MMN的示例性实现。例如,刺激由听觉刺激组成,听觉刺激使用持续时间100ms(10ms上升/下降)的1500Hz的变化强度(例如,50和80dB)的纯音,其中音调之间间隔700ms。图15显示针对MMN oddball范式的示例性刺激序列的图。例如,在图15的图中,‘S’表示标准刺激以及‘D’表示异常刺激。在示例性刺激序列中,使用20%的异常刺激,使用80%的标准刺激。示例性实现方式包括两种情况,例如:情况1:标准-低和异常高;以及情况2:标准-高和异常低。每个情况由1040个试验组成(例如,标准刺激和异常刺激(异常刺激与标准刺激的比率是1:4))。
图16A显示示例性刚性EEG电极帽的额部通道中所诱发的MMN(黑线)、异常刺激(红线)和标准刺激(蓝线)的ERP波形的示例性群组平均值(例如,来自5个受试者)的数据曲线(例如,N=1017;F=93.976;p<.001)。图16B显示在受试者前额上使用具有上述矢状(梯度电位)配置的示例性柔性EES 3电极传感器的,所诱发的MMN(黑线)、异常刺激(红线)和标准刺激(蓝线)的ERP波形的示例性群组平均值(例如,来自5个受试者)的数据曲线(例如,N=1251;F=51.520;p<.001)。
图16C显示示例性刚性EEG电极帽的额部通道中所诱发的MMN(黑线)、异常刺激(红线)和标准刺激(蓝线)的来自单个受试者的示例性ERP波形的数据曲线(例如,N=128;F=36.567;p<.001)。图16D显示在受试者前额上使用具有上述矢状(梯度电位)配置的示例性柔性EES 3电极传感器的,所诱发的MMN(黑线)、异常刺激(红线)和标准刺激(蓝线)的来自单个受试者的示例性ERP波形的数据曲线(例如,N=129;F=109.06;p<.001)。
可以在各种系统、数字电子电路中或者在计算机软件、固件或者硬件(包括本说明书中公开的结构和它们的结构等效物)中或者在它们中的一个或者多个的组合中实现本专利文件中描述的主题和功能性操作的实现方式。本说明书中描述的主题的实现方式可以实现为一个或者多个计算机程序产品,即,在有形和非暂时的计算机可读介质质上编码的计算机程序指令的一个或者多个模块,以由数据处理设备执行或者用以控制数据处理设备的操作。计算机可读介质可以是机器可读存储设备、机器可读存储基板、存储器设备、实现机器可读传播信号的物质的组合或者它们中的一个或者多个的组合。术语“数据处理设备”包括用于处理数据的所有设备、装置和机器,例如包括可编程处理器、计算机或者多个处理器或者多个计算机。除硬件以外,设备可以包括,为所讨论的计算机程序创建执行环境的代码,例如,构成处理器固件、协议栈、数据库管理系统、操作系统或者它们中的一个或者多个的组合的代码。
可以以任何形式的程序语言(包括编译语言或者解释语言)编写计算机程序(也称为程序、软件、软件应用、脚本或者代码),并且该计算机程序可以以任何形式部署,包括部署为独立程序或者模块、组件、子例程或者适用于计算环境的其它单元。计算机程序未必与文件系统中的文件相对应。程序可以存储在保存其它程序或者数据(例如,标记语言文件中存储的一个或者多个脚本)的文件的一部分中、专门用于所讨论的程序的单个文件中或者多个协调文件(例如,存储一个或者多个模块、子程序或者部分代码的文件)中。计算机程序可以部署为在一个计算机上执行,或者在位于一个地点的或者在跨多个地点分布的并且由通信网络互连的多个计算机上执行。
本说明书中描述的过程和逻辑流程可以由一个或者多个可编程处理器执行,该可编程处理器执行一个或者多个计算机程序以通过对输入数据进行操作并且生成输出来执行功能。过程和逻辑流程还可以由专用逻辑电路执行,并且装置还可以实现为专用逻辑电路(例如FPGA(现场可编程门阵列)或者ASIC(专用集成电路))。
适合于执行计算机程序的处理器包括例如通用和专用微处理器两者,以及任何类型的数字计算机的任何一个或者多个处理器。通常,处理器将从只读存储器或者随机存取存储器或者它们两者接收指令和数据。计算机的基本元件是用于执行指令的处理器和用于存储指令和数据的一个或者多个存储器设备。通常,计算机还将包括用于存储数据的一个或者多个大量存储设备(例如,磁盘、磁光盘或者光盘)或者操作地耦合以从一个或者多个大量存储设备接收数据或者向一个或者多个大量存储设备传递数据或者接收和传递数据两者。然而,计算机不必具有这种设备。适合于存储计算机程序指令和数据的计算机可读介质包括所有形式的非易失性存储器、介质和存储器设备,例如包括半导体存储器设备,例如,EPROM、EEPROM和闪存设备。处理器和存储器可以由专用逻辑电路补充或者并入专用逻辑电路中。
尽管本专利文件包括许多特定细节,但是这些不应该看作对任何发明的范围或者所要求的范围的限制,而是应看作针对特定发明的具体实施例特有的特征的描述。还可以在单个实施例中的组合中实现在单独实施例的上下文中的本专利文件中描述的某些特征。相反地,还可以单独地在多个实施例中或者在任何合适的子组合中实现单个实施例的上下文中描述的各种特征。另外,尽管上面可能将特征描述为在某些组合中起作用并且甚至最初要求这样,但是在一些情况下来自所要求的组合的一个或者多个特征可以从组合中删除,并且所要求的组合可以指向子组合或者子组合的变型。
类似地,尽管在附图中以特定顺序对操作进行了描绘,但是这不应该被理解为要求以所示特定顺序或者连续顺序执行这种操作,或者要求执行所有图示的操作,以实现期望结果。另外,本专利文件中描述的实施例中的各种系统组件的分隔不应该在所有实施例中都需要这种分隔。
仅描述了一些实现方式和示例,并且可以基于在本专利文件中所描述和图示的来进行其它实现方式、强化和变型。

Claims (30)

1.一种生理传感器设备,包括:
衬底,由电绝缘材料制成并且构造为允许所述设备与用户的头部的额部区域物理接触;
第一电极,配置在所述衬底上的第一位置处以获取所述用户的电生理信号;
第二电极,配置在所述衬底上的第二位置处以获取所述用户的第二电生理信号作为所述电生理信号的参考信号;以及
第三电极,配置在所述衬底上以获取所述用户的第三电生理信号作为电接地信号,
其中所述第三电极配置在所述衬底上的第三位置处,所述第三位置至少部分地在所述第一位置与所述第二位置之间,以及当所述生理传感器设备适当地放置在所述用户的所述额部区域上时,所述第一位置沿着所述额部区域中的矢状方向配置在所述第二位置和所述第三位置的后方,以及
其中当所述设备电耦合至电路时,所述设备是能够操作以检测所述用户的生理信号的。
2.根据权利要求1所述的设备,其中所述第一电极、第二电极、和第三电极线性地布置在所述衬底上。
3.根据权利要求1所述的设备,其中所检测的生理信号是从所述用户的大脑感测的脑电图(EEG)信号。
4.根据权利要求3所述的设备,其中所检测的EEG信号与事件相关电位(ERP)相关联。
5.根据权利要求1所述的设备,其中所检测的生理信号是从所述用户的头部肌肉感测的、与所述用户的眨眼或者面部表情相关联的肌电图学(EMG)信号。
6.根据权利要求1所述的设备,其中所述衬底由构造成粘附至所述用户的皮肤或者可佩戴物品的机械柔性材料制成。
7.根据权利要求6所述的设备,还包括:
电气接口组件,在所述衬底上单独地形成并且通过导电导管分别电耦合至所述第一电极、第二电极和第三电极,
其中所述电路是通过导线电耦合至所述电气接口组件的外部电路。
8.根据权利要求6所述的设备,其中所述电路包括:
在所述衬底上形成的信号处理电路,所述信号处理电路通过导电导管与所述第一电极、第二电极和第三电极电通信,所述信号处理电路用以放大所获取的生理信号,以及
所述衬底上的发射器单元,与所述信号处理电路电通信以向数据处理单元或者远程计算机系统中的至少一个发射所放大的生理信号。
9.根据权利要求8所述的设备,还包括:
电源模块,电耦合至所述电路以向所述发射器单元提供电力。
10.根据权利要求8所述的设备,其中所述生理传感器设备配置为佩戴在所述用户的头皮上的可佩戴贴片。
11.根据权利要求8所述的设备,其中所述生理传感器设备配置在能够与所述用户的头皮物理接触的所述可佩戴物品的区域中。
12.根据权利要求1所述的设备,还包括:
第四电极,配置在所述衬底上的第四位置处以获取所述用户的第二电生理信号;以及
第五电极,配置在所述衬底上的第五位置处以获取所述用户的第三电生理信号,
其中所述第四位置配置在所述第一位置的左边,以及所述第五位置配置在所述第一位置的右边。
13.根据权利要求1所述的设备,在用以提供认知或者感觉评估的系统中实现,其中所述系统包括:
数据处理系统,与所述生理传感器设备通信并且构造成包括一个或者多个存储器单元和一个或者多个处理器,所述一个或者多个处理器配置为将所检测的生理信号处理为生理数据,以生成包括与认知-感觉概况类别相关联的一个或者多个定量值的信息集,所述认知-感觉概况类别指示认知或者感觉功能的一个或者多个方面。
14.根据权利要求13所述的设备,其中所述数据处理单元的所述一个或者多个处理器配置为处理由所述生理传感器设备检测的所述生理信号以通过下列步骤生成所述信息集:
基于所述呈现的刺激和所述认知-感觉概况类别在所述生理数据内选择感兴趣的时间间隔,
将与所选择的感兴趣的时间间隔相对应的所述生理数据分组成一个或者多个分组数据集,以及
提供跨所述分组数据集或者所述分组数据集内的关系的统计测量以生成所述一个或者多个定量值。
15.根据权利要求13所述的设备,其中所述一个或者多个定量值包括基于用户的注意力、记忆力、学习能力、虚构特征、模式集成能力、语义集成能力、目标检测能力、情绪效价、偏好或者意识中的至少一个描绘认知和感觉表现中的一个或者两者的水平的定量分数,以及其中所述定量分数描绘特定时间处的水平。
16.根据权利要求13所述的设备,其中所述系统还包括:
刺激传送设备,基于所述认知-感觉概况类别产生向佩戴所述生理传感器设备的所述用户呈现的刺激的序列,其中所述刺激包括视觉、听觉、嗅觉、触觉或者味觉刺激介质中的至少一个,
其中所述生理传感器设备接口连接至所述用户以在呈现所述刺激的序列之前、期间以及之后检测由所述用户展现的所述生理信号。
17.根据权利要求13所述的设备,其中所述数据处理系统包括:
邻近所述生理传感器设备并且与所述生理传感器设备通信的本地计算机,以从所述生理传感器设备接收所述检测的生理信号,所述本地计算机配置为对所述检测的生理信号进行初始处理以产生初始生理信号数据,以及
通过通信网络或者链路与所述本地计算机通信的远程计算机,以从所述本地计算机接收所述初始生理信号数据,并且处理所述初始生理信号数据以生成包括与所述认知-感觉概况类别相关联的一个或者多个定量值的所述信息集。
18.根据权利要求17所述的设备,其中所述本地计算机是移动通信设备,与所述生理传感器设备无线通信,包括智能手机或者平板电脑。
19.一种可佩戴生理传感器设备,由下列组成:
衬底,由机械地柔性的并且电绝缘的材料制成,并且构造成允许所述设备与用户的头部的额部区域进行物理接触;
三个电极,当所述生理传感器设备适当地放置在所述用户的所述额部区域上时,所述三个电极在所述衬底上沿着所述额部区域中的矢状方向布置,包括:
第一电极,配置在所述衬底上的第一位置处以获取所述用户的电生理信号,
第二电极,配置在所述衬底上的所述第一位置前方的第二位置处以获取所述用户的第二电生理信号作为所述电生理信号的参考信号,
第三电极,配置在所述衬底上至少部分地在所述第一位置与所述第二位置之间的第三位置处以获取所述用户的第三电生理信号作为电接地信号;
在所述衬底上的电路,通过导电导管与所述第一电极、第二电极和第三电极电通信,所述电路包括对所述电生理信号进行放大和信号处理的放大电路和信号处理电路;
在所述衬底上的发射器单元,与所述电路电通信以向数据处理单元或者远程计算机系统中的至少一个发射所述放大的和信号处理的生理信号;以及
电源模块,电耦合至所述发射器单元以向所述发射器单元提供电力。
20.根据权利要求19所述的设备,其中所述第一电极、第二电极、和第三电极线性地布置在所述衬底上。
21.根据权利要求19所述的设备,其中所述电生理信号是从所述用户的大脑感测的脑电图(EEG)信号。
22.根据权利要求21所述的设备,其中所述EEG信号与事件相关电位(ERP)相关联。
23.根据权利要求19所述的设备,其中所述电生理信号是从所述用户的头部肌肉感测的肌电图学(EMG)信号,所述肌电图学(EMG)信号与所述用户的眨眼或者面部表情相关联。
24.根据权利要求19所述的设备,其中所述机械柔性衬底构造成粘附至所述用户的皮肤或者可佩戴物品。
25.一种提供受试者的认知或者感觉评估的方法,包括:
使用传感器设备从所述受试者的头部的额部区域获取所述受试者的电生理信号以产生生理数据,所述传感器设备包括:
衬底,由电绝缘材料制成并且构造为允许所述传感器设备与所述受试者的所述头部的所述额部区域进行物理接触,以及
三个电极,包括记录电极、参考电极和接地电极,以从沿着所述额部区域的矢状方向布置在所述衬底上的三个相应位置获取所述受试者的所述电生理信号,其中所述记录电极配置在所述接地电极和所述参考电极后方,以及所述接地电极配置在所述记录电极与所述参考电极之间;以及
处理所述生理数据以生成包括与认知-感觉概况类别相关联的一个或者多个定量值的信息集,所述认知-感觉概况类别指示认知或者感觉功能的一个或者多个方面。
26.根据权利要求25所述的方法,还包括:
向所述受试者呈现刺激序列,所述刺激序列基于所述认知-感觉概况类别,
其中在呈现所述刺激序列之前、期间以及之后实现获取所述生理信号。
27.根据权利要求26所述的方法,还包括:
从认知表现概况、感觉表现概况以及认知和感觉表现概况之中选择所述认知-感觉概况类别。
28.根据权利要求26所述的方法,其中基于所选择的认知-感觉概况类别,所述刺激序列包括视觉、听觉、嗅觉、触觉或者味觉刺激介质中的至少一个。
29.根据权利要求25所述的方法,其中所述一个或者多个定量值包括基于所述受试者的注意力、记忆力、学习能力、虚构特征、模式集成能力、语义集成能力、目标检测能力、情绪效价、偏好或者意识状态中的至少一个描绘认知和感觉表现中的一个或者两者的水平的定量分数,以及其中所述定量分数描绘特定时间处的水平。
30.根据权利要求25所述的方法,其中所述处理包括:
基于所述认知-感觉概况类别标识与所述生理信号相关联的时间间隔,
将与所述时间间隔相对应的所述生理数据分组成一个或者多个分组数据集,以及
提供跨所述分组数据集或者所述分组数据集内的关系的统计测量以生成针对所述选择的认知-感觉概况类别的所述一个或者多个定量值。
CN201380060011.2A 2012-10-12 2013-10-14 检测生理信号的额部电极传感器的配置和空间放置 Active CN104902814B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261713339P 2012-10-12 2012-10-12
US61/713,339 2012-10-12
PCT/US2013/064892 WO2014059431A2 (en) 2012-10-12 2013-10-14 Configuration and spatial placement of frontal electrode sensors to detect physiological signals

Publications (2)

Publication Number Publication Date
CN104902814A true CN104902814A (zh) 2015-09-09
CN104902814B CN104902814B (zh) 2018-03-02

Family

ID=50478087

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380060011.2A Active CN104902814B (zh) 2012-10-12 2013-10-14 检测生理信号的额部电极传感器的配置和空间放置

Country Status (8)

Country Link
US (1) US10182736B2 (zh)
EP (1) EP2906115B1 (zh)
JP (1) JP6454944B2 (zh)
KR (1) KR102281253B1 (zh)
CN (1) CN104902814B (zh)
BR (1) BR112015008043B1 (zh)
CA (1) CA2887535C (zh)
WO (1) WO2014059431A2 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107126219A (zh) * 2016-02-26 2017-09-05 三星显示有限公司 光敏薄膜器件和含光敏薄膜器件的生物特征信息感测装置
CN108601548A (zh) * 2015-12-31 2018-09-28 布赖恩斯科普公司 用于神经监测以及辅助诊断的系统和方法
CN109350045A (zh) * 2018-09-07 2019-02-19 东南大学 一种心电柔性传感器的制造方法
CN109480827A (zh) * 2018-12-18 2019-03-19 武汉中旗生物医疗电子有限公司 向量心电图分类方法及装置
WO2019178946A1 (zh) * 2018-03-21 2019-09-26 深圳创达云睿智能科技有限公司 电极贴片
CN110572444A (zh) * 2019-08-21 2019-12-13 深圳市普威技术有限公司 一种用于传递神经信号的系统及方法
WO2020056925A1 (zh) * 2018-09-20 2020-03-26 深圳先进技术研究院 皮肤干电极
CN111008610A (zh) * 2019-12-16 2020-04-14 哈尔滨工业大学 一种信息相关脑电位诱发实验方法
CN112842358A (zh) * 2019-11-26 2021-05-28 阿里健康信息技术有限公司 脑部生理数据的处理系统、方法、设备及存储介质

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871160B (zh) 2012-09-28 2018-12-07 加利福尼亚大学董事会 用于感觉和认知剖析的系统和方法
US11229789B2 (en) 2013-05-30 2022-01-25 Neurostim Oab, Inc. Neuro activator with controller
CA2913074C (en) 2013-05-30 2023-09-12 Graham H. Creasey Topical neurological stimulation
US11090003B2 (en) * 2013-09-09 2021-08-17 Healthy.Io Ltd. Systems for personal portable wireless vital signs scanner
JP2017520358A (ja) * 2014-05-29 2017-07-27 ニューロヴァース・インコーポレイテッド 生理学的信号検出および解析システムおよび装置
US9386401B2 (en) * 2014-08-25 2016-07-05 Steven K. Gold Proximity-based sensing, communicating, and processing of user physiologic information
US20180227735A1 (en) * 2014-08-25 2018-08-09 Phyziio, Inc. Proximity-Based Attribution of Rewards
US11077301B2 (en) 2015-02-21 2021-08-03 NeurostimOAB, Inc. Topical nerve stimulator and sensor for bladder control
US10368741B2 (en) * 2015-02-27 2019-08-06 Valorisation-Recherche, Limited Partnership Method of and system for processing signals sensed from a user
US9443409B1 (en) * 2015-03-23 2016-09-13 Elwha Llc Systems to monitor proximity of body portions relative to an environment
US20180184962A1 (en) * 2015-06-26 2018-07-05 BrainMarc Ltd. Methods and systems for determination of mental state
EP3359022A4 (en) * 2015-10-05 2019-03-06 Tata Consultancy Services Limited METHOD AND SYSTEM FOR PRE-PROCESSING AN EEG SIGNAL FOR COGNITIVE LOAD MEASUREMENT
USD809146S1 (en) * 2015-10-16 2018-01-30 Neuroverse, Inc. Frontal sensor device for neural and mental assessment
US10803145B2 (en) 2016-02-05 2020-10-13 The Intellectual Property Network, Inc. Triggered responses based on real-time electroencephalography
US9820670B2 (en) 2016-03-29 2017-11-21 CeriBell, Inc. Methods and apparatus for electrode placement and tracking
WO2018142228A2 (en) 2017-01-19 2018-08-09 Mindmaze Holding Sa Systems, methods, apparatuses and devices for detecting facial expression and for tracking movement and location including for at least one of a virtual and augmented reality system
US10515474B2 (en) 2017-01-19 2019-12-24 Mindmaze Holding Sa System, method and apparatus for detecting facial expression in a virtual reality system
US10943100B2 (en) 2017-01-19 2021-03-09 Mindmaze Holding Sa Systems, methods, devices and apparatuses for detecting facial expression
CN110612060B (zh) * 2017-05-22 2022-09-02 苹果公司 用于生理测量的多元件压电传感器
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
WO2019094365A1 (en) 2017-11-07 2019-05-16 Neurostim Oab, Inc. Non-invasive nerve activator with adaptive circuit
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11478603B2 (en) 2017-12-31 2022-10-25 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11328533B1 (en) 2018-01-09 2022-05-10 Mindmaze Holding Sa System, method and apparatus for detecting facial expression for motion capture
WO2019173558A1 (en) * 2018-03-08 2019-09-12 Olfaxis, Llc Systems and methods for measuring neurologic function via odorant, audible and/or somatosensory stimulation
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US10433756B1 (en) 2018-05-31 2019-10-08 CeriBell, Inc. Adjustable geometry wearable electrodes
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
WO2020086473A1 (en) * 2018-10-22 2020-04-30 Ice Neurosystems, Inc. Systems and methods for optimizing the bedside insertion and recording function of subgaleal electrode arrays for short-term hemispheric brain monitoring
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
CA3144957A1 (en) 2019-06-26 2020-12-30 Neurostim Technologies Llc Non-invasive nerve activator with adaptive circuit
CA3152451A1 (en) 2019-12-16 2021-06-24 Michael Bernard Druke Non-invasive nerve activator with boosted charge delivery
JP7409184B2 (ja) * 2020-03-19 2024-01-09 マツダ株式会社 状態推定装置
EP4039192A1 (en) * 2021-02-04 2022-08-10 Open Mind Innovation SAS Psychological trait detection method based on virtual reality and neuromarkers and associated system
USD1018861S1 (en) 2021-04-07 2024-03-19 Forest Devices, Inc. Headgear
US11266476B1 (en) 2021-04-07 2022-03-08 Forest Devices, Inc. Headgear storage device and method of distribution
USD970019S1 (en) 2021-04-07 2022-11-15 Forest Devices, Inc. Gel distribution module
US11241182B1 (en) 2021-04-07 2022-02-08 Forest Devices, Inc. Gel distribution apparatus and method
TWI817602B (zh) * 2022-07-07 2023-10-01 國立清華大學 閱讀材料適用性之分析方法、系統及其電腦可讀媒介

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101296654A (zh) * 2005-09-23 2008-10-29 布赖恩斯科普公司 电极组
CN101500471A (zh) * 2005-08-02 2009-08-05 脑仪公司 用于评估脑功能的方法和便携式自动脑功能评估设备
US20100041962A1 (en) * 2008-08-12 2010-02-18 Elvir Causevic Flexible headset for sensing brain electrical activity
US20120253163A1 (en) * 2011-03-29 2012-10-04 Nellcor Puritan Bennett Llc Method and system for positioning a sensor

Family Cites Families (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3896790A (en) * 1972-05-01 1975-07-29 Neuronics Inc Alpha brain wave sensor
US4092981A (en) 1976-07-15 1978-06-06 John Paul Ertl Method and apparatus for brain waveform examination
USRE34015E (en) 1981-05-15 1992-08-04 The Children's Medical Center Corporation Brain electrical activity mapping
US4595013A (en) * 1984-08-17 1986-06-17 Neurologics, Inc. Electrode harness
US4987903A (en) 1988-11-14 1991-01-29 William Keppel Method and apparatus for identifying and alleviating semantic memory deficiencies
US5406956A (en) 1993-02-11 1995-04-18 Francis Luca Conte Method and apparatus for truth detection
US6463328B1 (en) 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US6032064A (en) * 1996-10-11 2000-02-29 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
US6394953B1 (en) * 2000-02-25 2002-05-28 Aspect Medical Systems, Inc. Electrode array system for measuring electrophysiological signals
DE19649991A1 (de) * 1996-11-21 1998-06-04 Axon Gmbh Schmalkalden Verfahren zur Ermittlung von Schlaf- und Wachprofilen
US6032065A (en) 1997-07-21 2000-02-29 Nellcor Puritan Bennett Sensor mask and method of making same
US6385486B1 (en) 1997-08-07 2002-05-07 New York University Brain function scan system
US6016449A (en) 1997-10-27 2000-01-18 Neuropace, Inc. System for treatment of neurological disorders
US7277758B2 (en) 1998-08-05 2007-10-02 Neurovista Corporation Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder
WO2002000096A2 (en) * 2000-06-23 2002-01-03 Physiometrix, Inc. Frontal electrode array for patient eeg signal acquisition
US6434419B1 (en) 2000-06-26 2002-08-13 Sam Technology, Inc. Neurocognitive ability EEG measurement method and system
US6757558B2 (en) * 2000-07-06 2004-06-29 Algodyne, Ltd. Objective pain measurement system and method
WO2003013343A2 (en) 2001-08-07 2003-02-20 Lawrence Farwell Method for psychophysiological detection of deception through brain function analysis
US6832110B2 (en) 2001-09-05 2004-12-14 Haim Sohmer Method for analysis of ongoing and evoked neuro-electrical activity
AU785226B2 (en) 2001-09-25 2006-11-16 United States Department Of Veterans Affairs Method and apparatus for diagnosing schizophrenia and schizophrenia subtype
CA2477488A1 (en) 2002-02-04 2003-08-14 Great Lake Biosciences, Llc Treatment of neurological disorders using electrical stimulation
US20100010336A1 (en) 2002-02-07 2010-01-14 Pettegrew Jay W Method and system for diagnosis of neuropsychiatric disorders including attention deficit hyperactivity disorder (adhd), autism, and schizophrenia
US7130673B2 (en) * 2003-04-08 2006-10-31 Instrumentarium Corp. Method of positioning electrodes for central nervous system monitoring and sensing pain reactions of a patient
WO2004112604A2 (en) 2003-06-19 2004-12-29 Neuronetrix, Inc. Device and method for an automated e.e.g. system for auditory evoked responses
WO2005022293A2 (en) 2003-06-20 2005-03-10 Brain Fingerprinting Laboratories, Inc. Method for a classification guilty knowledge test and integrated system for detection of deception and information
US20060293608A1 (en) * 2004-02-27 2006-12-28 Axon Sleep Research Laboratories, Inc. Device for and method of predicting a user's sleep state
US7688816B2 (en) 2004-03-15 2010-03-30 Jinsoo Park Maintaining packet sequence using cell flow control
US20050273017A1 (en) 2004-03-26 2005-12-08 Evian Gordon Collective brain measurement system and method
WO2006009771A1 (en) 2004-06-18 2006-01-26 Neuronetrix, Inc. Evoked response testing system for neurological disorders
CN100387192C (zh) * 2004-07-02 2008-05-14 松下电器产业株式会社 生体信号利用机器及其控制方法
WO2006076543A2 (en) 2005-01-14 2006-07-20 Nonlinear Medicine, Inc. Knowledge determination system
KR20060085543A (ko) * 2005-01-24 2006-07-27 이순혁 휴대 단말기 TTA 규격 24핀 커넥터 부착용 외장형블루투스 모듈을 이용한 무선 뇌파 측정, 훈련,뉴로피드백(Neuro Feedback) 훈련 겸용 시스템.
US20070100214A1 (en) 2005-03-10 2007-05-03 Steinert John W Method and apparatus for stimulating exercise
CN101331490A (zh) 2005-09-12 2008-12-24 埃默迪弗系统股份有限公司 心理状态的检测和使用心理状态的互动
US7647098B2 (en) 2005-10-31 2010-01-12 New York University System and method for prediction of cognitive decline
WO2007084979A2 (en) 2006-01-19 2007-07-26 Drexel University Method to quantitatively measure effect of psychotropic drugs on sensory discrimination
US20090105577A1 (en) * 2006-05-18 2009-04-23 Jianping Wu Device For Detecting Electrical Potentials Using Frontal Electrodes
GB0613551D0 (en) 2006-07-07 2006-08-16 Diagnostic Potentials Ltd Investigating neurological function
USD597676S1 (en) 2006-10-24 2009-08-04 Zeo, Inc. Headband with physiological sensors
US7844324B2 (en) 2007-02-14 2010-11-30 The General Electric Company Measurement of EEG reactivity
US20080221422A1 (en) * 2007-03-08 2008-09-11 General Electric Company Sensor measurement system having a modular electrode array and method therefor
US9402558B2 (en) 2007-04-05 2016-08-02 New York University System and method for pain detection and computation of a pain quantification index
EP2142082A4 (en) 2007-05-01 2015-10-28 Neurofocus Inc NEUROINFORMATIC REFERENCE SYSTEM
ATE538717T1 (de) * 2007-09-21 2012-01-15 Medotech As Elektrodenanordnungen und bruxismusüberwachungsgerät
CN101888875A (zh) 2007-10-04 2010-11-17 纽若尼克斯有限公司 用于治疗与中枢神经系统有关的医学疾病以及用于提高认知功能的系统和方法
JP2011502647A (ja) * 2007-11-06 2011-01-27 ハイドロドット, インク. 脳波記録を実行するための装置及び方法
US8271075B2 (en) 2008-02-13 2012-09-18 Neurosky, Inc. Audio headset with bio-signal sensors
US8684926B2 (en) 2008-02-25 2014-04-01 Ideal Innovations Incorporated System and method for knowledge verification utilizing biopotentials and physiologic metrics
CN101296554B (zh) 2008-06-19 2011-01-26 友达光电股份有限公司 等离子体处理装置及其上电极板
US20100099954A1 (en) 2008-10-22 2010-04-22 Zeo, Inc. Data-driven sleep coaching system
NZ628281A (en) 2008-12-09 2016-05-27 Stephanie Fryar Williams Biomarkers for the diagnosis and/or prediction of susceptibility to mental and neurodegenerative disorders
DE102010003232A1 (de) 2009-04-06 2010-10-07 Continental Teves Ag & Co. Ohg Verfahren zum Betreiben einer Bremsanlage, Bremsanlage und Kraftfahrzeug
EP2442714A1 (en) 2009-06-15 2012-04-25 Brain Computer Interface LLC A brain-computer interface test battery for the physiological assessment of nervous system health
AU2010315468B2 (en) * 2009-10-27 2016-03-10 Neurovigil, Inc. Head harness and wireless EEG monitoring system
WO2011051955A2 (en) 2009-11-02 2011-05-05 Jonathan Bentwich Computerized system or device and method for diagnosis and treatment of human, physical and planetary conditions
US20110109879A1 (en) 2009-11-09 2011-05-12 Daphna Palti-Wasserman Multivariate dynamic profiling system and methods
KR20130051922A (ko) 2010-03-04 2013-05-21 뉴미트라 엘엘씨 심리장애(psychological disorders) 치료를 위한 장치 및 방법
JP5467267B2 (ja) 2010-03-05 2014-04-09 国立大学法人大阪大学 機器制御装置、機器システム、機器制御方法、機器制御プログラム、および記録媒体
US20130127708A1 (en) * 2010-05-28 2013-05-23 The Regents Of The University Of California Cell-phone based wireless and mobile brain-machine interface
WO2011158481A1 (ja) 2010-06-14 2011-12-22 パナソニック株式会社 脳波計測システム、脳波計測方法及びそのプログラム
AU2011269693A1 (en) 2010-06-22 2013-01-24 National Research Council Of Canada Cognitive function assessment in a patient
US8478394B2 (en) * 2010-08-16 2013-07-02 Brainscope Company, Inc. Field deployable concussion assessment device
EP2613695A4 (en) 2010-09-10 2014-06-25 Neuronetrix Solutions Llc ELECTRODE SYSTEM WITH BAND INTERNAL IMPEDANCE DETECTION
KR101218203B1 (ko) * 2011-03-31 2013-01-03 (주)락싸 인체 장착형 센서셋 및 그 동작 방법
US9220436B2 (en) * 2011-09-26 2015-12-29 Covidien Lp Technique for remanufacturing a BIS sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500471A (zh) * 2005-08-02 2009-08-05 脑仪公司 用于评估脑功能的方法和便携式自动脑功能评估设备
CN101296654A (zh) * 2005-09-23 2008-10-29 布赖恩斯科普公司 电极组
US20100041962A1 (en) * 2008-08-12 2010-02-18 Elvir Causevic Flexible headset for sensing brain electrical activity
US20120253163A1 (en) * 2011-03-29 2012-10-04 Nellcor Puritan Bennett Llc Method and system for positioning a sensor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
魏景汉 等: "《事件相关电位原理与技术》", 30 April 2010 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108601548A (zh) * 2015-12-31 2018-09-28 布赖恩斯科普公司 用于神经监测以及辅助诊断的系统和方法
CN107126219A (zh) * 2016-02-26 2017-09-05 三星显示有限公司 光敏薄膜器件和含光敏薄膜器件的生物特征信息感测装置
WO2019178946A1 (zh) * 2018-03-21 2019-09-26 深圳创达云睿智能科技有限公司 电极贴片
CN109350045A (zh) * 2018-09-07 2019-02-19 东南大学 一种心电柔性传感器的制造方法
CN109350045B (zh) * 2018-09-07 2022-02-11 东南大学 一种心电柔性传感器的制造方法
CN110916651A (zh) * 2018-09-20 2020-03-27 深圳先进技术研究院 一种皮肤干电极
WO2020056925A1 (zh) * 2018-09-20 2020-03-26 深圳先进技术研究院 皮肤干电极
CN109480827A (zh) * 2018-12-18 2019-03-19 武汉中旗生物医疗电子有限公司 向量心电图分类方法及装置
CN109480827B (zh) * 2018-12-18 2021-04-16 武汉中旗生物医疗电子有限公司 向量心电图分类方法及装置
CN110572444B (zh) * 2019-08-21 2021-11-19 深圳市普威技术有限公司 一种用于传递神经信号的系统及方法
CN110572444A (zh) * 2019-08-21 2019-12-13 深圳市普威技术有限公司 一种用于传递神经信号的系统及方法
CN112842358A (zh) * 2019-11-26 2021-05-28 阿里健康信息技术有限公司 脑部生理数据的处理系统、方法、设备及存储介质
CN111008610A (zh) * 2019-12-16 2020-04-14 哈尔滨工业大学 一种信息相关脑电位诱发实验方法
CN111008610B (zh) * 2019-12-16 2024-03-22 哈尔滨工业大学 一种信息相关脑电位诱发实验方法

Also Published As

Publication number Publication date
EP2906115B1 (en) 2020-05-06
KR20150098607A (ko) 2015-08-28
WO2014059431A3 (en) 2014-06-19
KR102281253B1 (ko) 2021-07-23
BR112015008043B1 (pt) 2022-05-03
JP6454944B2 (ja) 2019-01-23
BR112015008043A2 (pt) 2017-07-04
WO2014059431A2 (en) 2014-04-17
CN104902814B (zh) 2018-03-02
EP2906115A4 (en) 2016-05-25
US20150313498A1 (en) 2015-11-05
JP2015534842A (ja) 2015-12-07
US10182736B2 (en) 2019-01-22
CA2887535C (en) 2021-03-09
EP2906115A2 (en) 2015-08-19
CA2887535A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
CN104902814B (zh) 检测生理信号的额部电极传感器的配置和空间放置
KR102282961B1 (ko) 감각 및 인지 프로파일링을 위한 시스템 및 방법
US20200085369A1 (en) In-ear sensing systems and methods for biological signal monitoring
Siuly et al. Electroencephalogram (EEG) and its background
KR102388595B1 (ko) 뇌 상태를 판단하고, 디지털 컨텐츠 기반의 치료 정보를 제공하는 장치
Cacioppo et al. Spatio-temporal dynamics of the mirror neuron system during social intentions
Wu et al. Emerging wearable biosensor technologies for stress monitoring and their real-world applications
Smith Electroencephalograph based brain computer interfaces
Cacioppo et al. The speed of passionate love, as a subliminal prime: A high-density electrical neuroimaging study
Sugata et al. Relationship between the spatial pattern of P300 and performance of a P300-based brain-computer interface in amyotrophic lateral sclerosis
Carrillo et al. Processing EEG signals towards the construction of a user experience assessment method
Sellers A P300-based brain-computer interface: Testing an alternative method of communication
Voicikas Investigation of the dependence of brain auditory steady-state responses on stimulation type
Amoss The good, the bad, and the funny: A neurocognitive study of laughter as a meaningful socioemotional cue
Strachan Designing Fabric Based Physiological Sensors for Virtual Reality
Mahmoud et al. MEASURING SPACE-RELATED EMOTIONS Potential usage of modern technologies in the emotional appraisal of spaces
Ghani Development of an objective measure of cognitive workload for rehabilitation using electroencephalography (EEG)
Norton Steady-state visual evoked potentials and their application to brain-computer interfaces
Katlowitz Cortical mechanisms of vocal sequences in birdsong and human speech
Ross Attention-Deficit/Hyperactivity Disorder and General Attention Difficulties Treated by Neurofeedback Therapy through a Learning Theory Lens: A Mixed Methods Study
bin Ahmad Jamil et al. Developing multi degree of freedom control brain computer interface system for spinal cord injury patients
Wang Investigating the neural correlates of successful learning in a classroom environment: The association between course performance and electrophysiological data
King Feasibility and Optimization of a P300-based Brain Computer Interface in Individuals with Amyotrophic Lateral Sclerosis
Bensch Examination and comparison of methods to increase communication speed of paralysed patients by brain-computer interfaces
Javan Self-Referential Processing: An Investigation of the Mediating Role of Alpha Power

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant