CN104901554B - Multimode Modulation Strategy of Matrix Converter based on Mathematics structural - Google Patents

Multimode Modulation Strategy of Matrix Converter based on Mathematics structural Download PDF

Info

Publication number
CN104901554B
CN104901554B CN201510266720.7A CN201510266720A CN104901554B CN 104901554 B CN104901554 B CN 104901554B CN 201510266720 A CN201510266720 A CN 201510266720A CN 104901554 B CN104901554 B CN 104901554B
Authority
CN
China
Prior art keywords
msub
mrow
mtd
mtr
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510266720.7A
Other languages
Chinese (zh)
Other versions
CN104901554A (en
Inventor
粟梅
朱奇
孙尧
但汉兵
杨建�
柳张杰
易梅杰
彭涛
韩华
王春生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201510266720.7A priority Critical patent/CN104901554B/en
Publication of CN104901554A publication Critical patent/CN104901554A/en
Application granted granted Critical
Publication of CN104901554B publication Critical patent/CN104901554B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Ac-Ac Conversion (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The invention discloses a kind of multimode Modulation Strategy of Matrix Converter based on Mathematics structural, for three modular matrix converter MMMC I, in order to maximize input voltage utilization rate, amount of bias x is superimposed respectively to each row of low frequency modulations matrix, y, z, according to the physical constraint condition of switch, obtains the span of amount of bias;By choosing, different amount of bias can obtain the modulator approach of different performance;For the multi-module structure MMMC II cascaded by N number of MMMC I, to obtain more output-voltage levels, each MMMC I desired output voltage is equal, and the method that on off state uses cyclic shift.Modulator approach based on Mathematics structural eliminates the calculating to sector in conventional modulation strategy, and algorithm is simple, it is easy to understands and realizes.Moreover, the building method of the modulation strategy has versatility, there is directive function to the proposition of other converters modulation strategies.

Description

Multimode Modulation Strategy of Matrix Converter based on Mathematics structural
Technical field
The invention belongs to mesohigh AC energy converting means technical field, and in particular to the frequency conversion of mesohigh three-phase alternating current is led The Mathematics structural modulator approach of the multimode matrix converter in domain.
Background technology
Mesohigh high power AC motor is the major impetus in current industry, and its energy consumed accounts for motor total energy More than the 70% of consumption, the application of medium-high voltage frequency converter device causes the motor electricity saving rates such as blower fan, pump class to reach 30%- 60%, energy-saving effect is quite obvious.Meanwhile, medium-high voltage frequency converter realizes stepless speed regulation, meets industrial processes to electricity The speed adjusting performance requirement of machine, improves the yield and quality of product.
Multimode matrix converter as it is currently the only be commercially used be suitable for mesohigh application matrix converter, no The energy in bidirectional flow, sinusoidal input and output, the input power factor that only possess matrix converter are controllable, output voltage amplitude phase It is adjustable, without intermediate energy storage link the characteristics of, and its high modularization structure make it possess hardware design easily, scalability By force, the features such as software portability is strong, maintainable high, failure tolerant scheme is easily designed.
Modulator approach for multi-module cascade type matrix converter mainly has:Direct transfer function method, two voltage Method and space vector modulation method etc..Direct transfer function method is directly solved according to system mathematic model by input/output relation Modulation matrix;Two voltage method synthesizes what is needed using the maximum line voltage and time big line voltage of input by calculating Output voltage and the input power factor requirement for meeting setting;Space vector modulation method is by three modular matrix converter subsystems etc. Effect is transformed into virtual rectification stage and inversion level structure, and uses space vector modulating method to rectification stage and inverse cascade respectively.Before Both modulator approaches, according to common transformer structure, its maximum voltage transfer ratio is only capable of reaching 1.5;According to phase shift transformation Device structure, equivalent maximum voltage transfer ratio increases with the increase of cascade module number.Although the latter can expand voltage transfer ratio Greatly to 1.732, but equivalent process is complicated, computationally intensive.
The content of the invention
The technical problems to be solved by the invention are:A kind of general mathematics of multimode matrix converter MMMC-II is provided Modulator approach is constructed, different amount of bias obtains the modulation strategy of different performance by choosing.Modulation methods based on Mathematics structural Method eliminates the calculating to sector in conventional modulation strategy, and algorithm is simple, it is easy to understands and realizes.
The present invention is adopted the following technical scheme that:
A kind of multimode Modulation Strategy of Matrix Converter based on Mathematics structural, the multimode matrix converter MMM-II Including multiwinding transformer, power model unit;The multiwinding transformer is common transformer, each secondary side three-phase windings point Independent current source is not provided for each power model unit, the power model unit includes input filter capacitor and six groups of bidirectional powers Switch, realizes that three-phase-single-phase direct friendship alternation is changed, each power model unit provides amplitude, frequency by cascade system for load The three-phase symmetrical power of rate and phase-adjustable, for three modular matrix converter MMMC-I, is utilized to maximize input voltage Each row of low frequency modulations matrix are superimposed amount of bias x, y, z, according to the constraints of switch, obtain amount of bias by rate respectively Span, chooses the modulator approach that different amount of bias obtain different performance, takes the switching mode of bilateral symmetry;For by The multi-module structure MMMC-II, each MMMC-I of N number of MMMC-I cascades on off state use cyclic shift technique, export Amplitude, frequency, the three-phase symmetric voltage of phase-adjustable.
The solution of MMMC-I low frequency modulations matrix is obtained according to input and output voltage current relationship, and detailed process is such as Under:
(1) row write input/output relation formula
Assuming that the leakage inductance very little of transformer, is approximately considered filter capacitor voltage and voltage on line side is equal, then it is defeated for inputting Go out voltage, after taking away pass averagely, there is following relation:
Wherein, uAN,uBN,uCNPhase voltage, u are exported for MMMC-Ia,ub,ucFor net side phase voltage, Ns/NpFor the change of transformer Than,The dutycycle of each two-way switch is represented, M is low frequency modulations matrix
It can similarly obtain, the relation of input and output electric current is:
Wherein subscript T represents transposition,Respectively net side input current vector and load-side current phasor, i.e.,:
According to input can not short circuit, output end can not open circuit requirement and physics realization limitation, low frequency modulations matrix M Need to meet following constraints:
(2) solution of low frequency modulations matrix
The relation of above-mentioned input and output Current Voltage, can regard the process that experienced virtual rectification and virtual inversion as, because This low frequency modulations matrix M one group of solution can be described as:
Wherein,Respectively virtual rectification stage and virtual inverse cascade modulating vector, expression formula is such as Under:
Wherein, k is the index of modulation, it can be seen from the constraints of modulation matrix, 0≤k≤1, ωioRespectively input Output voltage angular frequency, φiFor input power factor angle,To input the initial phase angular difference with output voltage;
By above-mentioned modulation matrix and input and output voltage relation, k and input voltage peak value U can obtainimAnd output electricity Voltage crest value UomRelation be:
It is the ratio between MMMC-1 output phase voltages and Circuit Fault on Secondary Transformer phase voltage peak value to define voltage transfer ratio q, then has:
Preferably, the modulation matrix M' of described superposition amount of bias is:
Preferably, the span of amount of bias is:
According to the constraints of modulation matrix, x, y, z restrictive condition is as follows:
X+y+z=0
Wherein,
In order to more intuitively describe the span of amount of bias, above-mentioned restrictive condition is plotted in x, y plane and obtains x, y Feasible value region;
Amount of bias x, y, z is set to have solution, then must be fulfilled for following formula:
Assuming that eAThe > e of > 0B> eC, ra> rbThe > r of > 0c, then have:
Therefore, the condition that amount of bias x, y, z have solution is:
Due to now | ra|≤1,|rb|≤1,|rc|≤1,Therefore k span needs to meet:
So as to as long as biasing selection meets constraints, you can it is 1.732 to realize maximum voltage transfer ratio.
Preferably, the modulator approach that different amount of bias obtain different performance is chosen, building method the simplest is as follows:
X, y are taken, z is the center of its boundary value, i.e.,:
Simplified processing further to above formula can be obtained:
Preferably, cyclic shift modulator approach is:N number of MMMC-I cascaded topologies MMMC-II, from top to bottom adjacent two The on off state difference staggering time T of three modular matrix converterss/N.。
Preferably, bilateral symmetry modulating mode is:
By taking A phase modules as an example, the dutycycle in its corresponding modulating matrix M ' is:
Above formula is handled:First, m is found outA1+x,mA2+ y and mA3Maximum absolute value value in+z, it is assumed that mA1+ x is absolute Value is maximum, and mA1+ x > 0, order:
If mA1+ x > 0, then have:
Bilateral symmetry switching mode is:In a switch periods, the order of the size of module output voltage is:Minimum- It is secondary big-maximum-secondary big-minimum, and on Ts/ 2 is symmetrical;Assuming that input voltage is:uaThe > u of > 0b> uc, with above-mentioned mA1+ x > 0 Exemplified by, the action situation of switch is:Upper switchIt is constantly on,Turn off always;In time, switchConducting, output voltage is 0;In time, switch is switched toConducting, output voltage is uabIn time, switch is switched toConducting, output voltage is uac In time, switch is back switched toConducting, output voltage is uab;Finally, switch is switched toOutput voltage is 0.
Modulator approach of the invention based on Mathematics structural eliminates the calculating in conventional modulation strategy to sector, algorithm letter It is single, it is easy to understand and realize.Moreover, the building method of the modulation strategy has versatility, other converters are adjusted The proposition of system strategy has directive function.
Brief description of the drawings
Fig. 1 is the topological schematic diagrames of multimode matrix converter of embodiment of the present invention MMMC-II.
Fig. 2 is the topological schematic diagrames of the modular matrix converter MMMC-1 of the embodiment of the present invention three.
Fig. 3 is bilateral symmetry switching mode schematic diagram of the embodiment of the present invention.
Fig. 4 is that the embodiment of the present invention is based on cyclic shift technique module output voltage waveforms schematic diagram.
Fig. 5 system construction drawings of the embodiment of the present invention.
Fig. 6 is present example in q=3.0, foExperimental waveform during=60HZ.
Fig. 7 is present example in q=5.2, foExperimental waveform during=60HZ.
Fig. 8 is present example in q=3.0, foExperimental waveform during=30HZ.
Embodiment
The present invention will be done further specifically with reference to accompanying drawing and specific implementation case by taking the building method as an example below It is bright:
As shown in Figure 1 and Figure 2, multimode matrix converter MMMC-II is considered as by N number of three modular matrixs converter MMMC- I cascades are formed.Multimode matrix converter MMM-II includes multiwinding transformer 1, power model unit 2;The Multiple coil becomes Depressor is common transformer (non-phase-shifting transformer), and each secondary side three-phase windings are respectively that each power model unit provides independent electrical Source, the power model unit includes input filter capacitor 3 and six groups of two-way power switch 4, realizes three-phase-single-phase direct friendship Conversion, each power model unit provides the three-phase symmetrical power of amplitude, frequency and phase-adjustable by cascade system for load.
For MMMC-I, in order to maximize input voltage utilization rate, amount of bias is superimposed to each row of low frequency modulations matrix X, y, z, according to the constraints of switch, obtain the span and building method of amount of bias;For MMMC-II, each MMMC-I On off state use cyclic shift technique, output amplitude, frequency, the three-phase symmetric voltage of phase-adjustable.Describe in detail as follows.
Step one:Input voltage, reference input power factor (PF) and the reference output voltage obtained according to detection, calculates low frequency Modulation matrix, i.e.,
Wherein,Expression formula is as follows respectively:
Wherein, k is the index of modulation, it can be seen from the constraints of modulation matrix, 0≤k≤1, ωioRespectively input Output voltage angular frequency, φiFor input power factor angle,To input the initial phase angular difference with output voltage.Wherein, k with Input voltage peak value UimAnd output voltage peak value UomRelation be:
It is the ratio between MMMC-1 output phase voltages and Circuit Fault on Secondary Transformer phase voltage peak value to define voltage transfer ratio q, then has:
Due to k≤1, therefore the maximum voltage transfer ratio that above-mentioned modulation matrix is obtained is 1.5.
Step 2, solves the amount of bias of modulation matrix.
In order to maximize input voltage utilization rate, maximum voltage transfer ratio is improved, low frequency modulations matrix M each row are folded respectively Plus amount of bias x, y, a z, obtaining final modulation matrix M' is:
Obviously, bias matrix M0Addition only change output phase voltage zero-sequence component, without change output line voltage, Load current and input current.
According to the constraints of modulation matrix, x, y, z restrictive condition is as follows:
X+y+z=0
Wherein,
Amount of bias x, y, z is set to have solution, then must be fulfilled for following formula:
Assuming that eAThe > e of > 0B> eC, ra> rbThe > r of > 0c, then have:
According to above-mentioned it is assumed that amount of bias x, y, the condition that z has solution is:
Due to now | ra|≤1,|rb|≤1,|rc|≤1,Therefore k span is extended to:
By above-mentioned analysis, the selection of amount of bias x, y, z in restriction range have countless, choose different inclined The amount of putting can obtain the modulator approach of different performance, and the maximum voltage transfer ratio that MMMC-I can be achieved is 1.732.
Building method:Work as x, y, z takes the center of boundary value, the value that can obtain one group of amount of bias is:
Simplified processing further to above formula can be obtained:
Step 3:The generation of duty cycle of switching.
Element representation in the modulation matrix that above-mentioned different building method is obtained is upper switch and lower duty cycle of switching Only poor, by taking A phase modules as an example, the dutycycle in its corresponding modulating matrix M ' is:
Above formula is handled:First, m is found outA1+x,mA2+ y and mA3Maximum absolute value value in+z, it is assumed that mA1+ x is absolute Value is maximum, and mA1+ x > 0, order:
If mA1+ x > 0, then have:
As shown in figure 3, bilateral symmetry switching mode is:In a switch periods, the size of module output voltage it is suitable Sequence is:It is minimum-secondary big-maximum-secondary big-minimum, and on Ts/ 2 is symmetrical;Assuming that input voltage is:uaThe > u of > 0b> uc, the above State mA1Exemplified by+x > 0, the action situation of switch is:Upper switchIt is constantly on,Turn off always;When In, switchConducting, output voltage is 0;In time, switch is switched toConducting, Output voltage is uabIn time, switch is switched toConducting, output voltage is uacIn time, switch is back switched toConducting, output voltage is uab;Finally, switch is cut Shift toOutput voltage is 0.
For the multi-module structure MMMC-II cascaded by N number of MMMC-I, using cyclic shift technique, it thinks substantially Want for:In N number of MMMC-I cascade systems, the on off state of two adjacent MMMC-I distinguishes staggering time T from top to bottoms/ N.As N=3, phase voltage waveform schematic diagram such as Fig. 4 institutes are exported using cyclic shift modulation technique module output voltage and system Show.
Illustrated below with a case.
In order to verify the validity of put forward Mathematics structural modulator approach, the experiment of 9 modular matrix converters (N=3) is built flat Platform, the parameter of system is as shown in the table,
Parameter Value
Input phase voltage virtual value (VinRMS) 60V
Input voltage frequency (fin) 50Hz
Transformer voltage ratio (Np/Ns) 380/100
Switching frequency (fs) 2kHz
Input filter capacitor (Cf) 66uF
Load resistor value (R) 8.33Ω
Load inductance value (Lo) 6mH
System uses master & slave control structure, and by a central controller controls, central controller is realized by fiber optic communication To the overall control of 9 unit modules, and the working condition of monitoring unit module and system in real time, as shown in Figure 5.
Central controller is read by host computer and used by gathering the information such as transformer primary side input voltage, load current Family control is required, determines system output reference voltage, input power factor, by DSP be responsible for modules low frequency modulations matrix M and The calculating of amount of bias, FPGA realizes distribution, completion and the communication of unit module of each module dutycycle etc., unit module according to The break-make of six two-way switch of Duty ratio control arrived.
Fig. 6, Fig. 7 are respectively that building method is q=3.0 and q=5.2 in voltage transfer ratio, and output frequency is fo= 60Hz experimental waveform figure, is input voltage, input current, output line voltage, output current wave respectively in (a), is divided in (b) Phase voltage, output line voltage and output current wave Wei not exported, it is known that output line voltage is constituted and approached by multiple level Sine, input current and output current are sine, have reached maximum voltage transfer ratio, and voltage transmission is higher, output line electricity The level number of pressure is more, closer to sine.
Fig. 8 is that building method is q=3.0 in voltage transfer ratio, and output frequency is foExperimental waveform under=30Hz, from upper To it is lower be respectively input voltage, input current, output line voltage, output current wave, it is seen that in this case input current and Output current is sine, and shows that multimode matrix converter can realize the output less than incoming frequency.

Claims (6)

1. a kind of multimode Modulation Strategy of Matrix Converter based on Mathematics structural, the multimode matrix converter MMM-II bags Include multiwinding transformer, power model unit;The multiwinding transformer is common transformer, each secondary side three-phase windings difference Independent current source is provided for each power model unit, the power model unit includes input filter capacitor and six groups of bidirectional powers are opened Close, realize that three-phase-single-phase direct friendship alternation is changed, each power model unit provides amplitude, frequency by cascade system for load And the three-phase symmetrical power of phase-adjustable, it is characterised in that:For three modular matrix converter MMMC-I, in order to maximize input Each row of low frequency modulations matrix are superimposed amount of bias x, y, z by voltage utilization respectively, according to the physical constraint condition of switch, The span of amount of bias is obtained, the modulator approach that different amount of bias obtain different performance is chosen, is modulated using bilateral symmetry Pattern;Moved for the on off state by N number of MMMC-I multi-module structure MMMC-II, each MMMC-I cascaded using circulation Position modulation, output amplitude, frequency, the three-phase symmetric voltage of phase-adjustable;Described MMMC-I is by three power model unit groups Into realizing the AC/AC (alternating current) variable-frequency of three-phase-three-phase;The solution of described MMMC-I low frequency modulations matrix is according to input and output voltage electricity What flow relation was obtained, detailed process is as follows:
(1) row write input/output relation formula
Assuming that the leakage inductance very little of transformer, is approximately considered filter capacitor voltage and voltage on line side is equal, then for input and output electricity Pressure, after taking away pass averagely, there is following relation:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>A</mi> <mi>N</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>B</mi> <mi>N</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>C</mi> <mi>N</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <msub> <mi>N</mi> <mi>s</mi> </msub> <msub> <mi>N</mi> <mi>p</mi> </msub> </mfrac> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>B</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>B</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>B</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>B</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>C</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>C</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>C</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfrac> <msub> <mi>N</mi> <mi>s</mi> </msub> <msub> <mi>N</mi> <mi>p</mi> </msub> </mfrac> <mo>&amp;CenterDot;</mo> <mi>M</mi> <mo>&amp;CenterDot;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, uAN,uBN,uCNPhase voltage, u are exported for MMMC-Ia,ub,ucFor net side phase voltage, Ns/NpFor the no-load voltage ratio of transformer,I=A, B, C;J=1,2 ... 6;K=1,2 ... N represent the dutycycle of each two-way switch, and M is low frequency modulations matrix
Similarly, the relation of input and output electric current is:
<mrow> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>N</mi> <mi>s</mi> </msub> <msub> <mi>N</mi> <mi>p</mi> </msub> </mfrac> <msup> <mi>M</mi> <mi>T</mi> </msup> <msub> <mover> <mi>i</mi> <mo>&amp;RightArrow;</mo> </mover> <mi>L</mi> </msub> </mrow>
Wherein subscript T represents transposition,Respectively net side input current vector and load-side current phasor, i.e.,:
According to input can not short circuit, output end can not open circuit requirement and physics realization limitation, low frequency modulations matrix M need Meet following constraints:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>&amp;le;</mo> <msub> <mi>m</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;le;</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced>
(2) solution of low frequency modulations matrix
The relation of above-mentioned input and output Current Voltage, regards the process that experienced virtual rectification and virtual inversion as, therefore low frequency is adjusted Matrix M processed one group of solution is described as:
Wherein, Mrecii),Respectively virtual rectification stage and virtual inverse cascade modulating vector, expression formula is such as Under:
<mrow> <msub> <mi>M</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>c</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>&amp;phi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>r</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>r</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>r</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;phi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;phi;</mi> <mi>i</mi> </msub> <mo>-</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>cos</mi> <mrow> <mo>(</mo> <msub> <mi>&amp;omega;</mi> <mi>i</mi> </msub> <mi>t</mi> <mo>-</mo> <msub> <mi>&amp;phi;</mi> <mi>i</mi> </msub> <mo>+</mo> <mn>2</mn> <mi>&amp;pi;</mi> <mo>/</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow>
Wherein, k is the index of modulation, it can be seen from the constraints of modulation matrix, 0≤k≤1, ωioRespectively input and output Voltage angular frequency, φiFor input power factor angle, it is operated under unity power factor, i.e. φi=0,To input and exporting electricity The initial phase angular difference of pressure;
By above-mentioned modulation matrix and input and output voltage relation, k and input voltage peak value U are obtainedimAnd output voltage peak value UomRelation be:
<mrow> <mi>k</mi> <mo>=</mo> <mfrac> <mn>2</mn> <mn>3</mn> </mfrac> <mfrac> <msub> <mi>N</mi> <mi>p</mi> </msub> <msub> <mi>N</mi> <mi>s</mi> </msub> </mfrac> <mfrac> <msub> <mi>U</mi> <mrow> <mi>o</mi> <mi>m</mi> </mrow> </msub> <msub> <mi>U</mi> <mrow> <mi>i</mi> <mi>m</mi> </mrow> </msub> </mfrac> </mrow>
It is the ratio between MMMC-1 output phase voltages and Circuit Fault on Secondary Transformer phase voltage peak value to define voltage transfer ratio q, then has:
<mrow> <mi>q</mi> <mo>=</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <mi>k</mi> <mi> </mi> <msub> <mi>cos&amp;phi;</mi> <mi>i</mi> </msub> <mo>.</mo> </mrow>
2. the multimode Modulation Strategy of Matrix Converter according to claim 1 based on Mathematics structural, it is characterised in that institute The modulation matrix M' for the superposition amount of bias stated is:
3. the multimode Modulation Strategy of Matrix Converter according to claim 2 based on Mathematics structural, it is characterised in that institute The span for the amount of bias stated is:
According to the constraints of modulation matrix, x, y, z restrictive condition is as follows:
X+y+z=0
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> <mi>i</mi> <msub> <mi>n</mi> <mi>x</mi> </msub> <mo>&amp;le;</mo> <mi>x</mi> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> <mi>a</mi> <msub> <mi>x</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>y</mi> </msub> <mo>&amp;le;</mo> <mi>y</mi> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>max</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>z</mi> </msub> <mo>&amp;le;</mo> <mi>z</mi> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>max</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein,
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>min</mi> <mi>x</mi> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> <mo>;</mo> <mi>m</mi> <mi>a</mi> <msub> <mi>x</mi> <mi>x</mi> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>B</mi> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>C</mi> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>min</mi> <mi>y</mi> </msub> <mo>=</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> <mo>;</mo> <msub> <mi>max</mi> <mi>y</mi> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>B</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>C</mi> <mn>2</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>m</mi> <mi>i</mi> <msub> <mi>n</mi> <mi>z</mi> </msub> <mo>=</mo> <mi>min</mi> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>B</mi> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> <mo>;</mo> <msub> <mi>max</mi> <mi>z</mi> </msub> <mo>=</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>B</mi> <mn>3</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>m</mi> <mrow> <mi>C</mi> <mn>3</mn> </mrow> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
Amount of bias x, y, z is set to have solution, then must be fulfilled for following formula:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mo>-</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> <mi>i</mi> <msub> <mi>n</mi> <mi>x</mi> </msub> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <mi>m</mi> <mi>a</mi> <msub> <mi>x</mi> <mi>x</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>y</mi> </msub> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>max</mi> <mi>y</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>z</mi> </msub> <mo>&amp;le;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>x</mi> </msub> <mo>-</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>min</mi> <mi>y</mi> </msub> <mo>&amp;le;</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>min</mi> <mi>z</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>max</mi> <mi>x</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>max</mi> <mi>y</mi> </msub> <mo>&amp;GreaterEqual;</mo> <msub> <mi>max</mi> <mi>z</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </mtd> </mtr> </mtable> </mfenced>
Assuming that eAThe > e of > 0B> eC, ra> rbThe > r of > 0c, then have:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>min</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>;</mo> <msub> <mi>max</mi> <mi>x</mi> </msub> <mo>=</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <msub> <mi>r</mi> <mi>a</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>min</mi> <mi>y</mi> </msub> <mo>=</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <msub> <mi>r</mi> <mi>b</mi> </msub> <mo>;</mo> <msub> <mi>max</mi> <mi>y</mi> </msub> <mo>=</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <msub> <mi>r</mi> <mi>b</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>min</mi> <mi>z</mi> </msub> <mo>=</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>;</mo> <msub> <mi>max</mi> <mi>z</mi> </msub> <mo>=</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <msub> <mi>r</mi> <mi>c</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
Therefore, the condition that amount of bias x, y, z have solution is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mo>(</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <mo>)</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mo>&amp;le;</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>(</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>-</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <mo>)</mo> <msub> <mi>r</mi> <mi>b</mi> </msub> <mo>&amp;le;</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>(</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <mo>-</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>)</mo> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>&amp;le;</mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <mo>(</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <mo>-</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>)</mo> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>&amp;le;</mo> <mn>3</mn> </mtd> </mtr> <mtr> <mtd> <mo>(</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> <mo>-</mo> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>)</mo> <msub> <mi>r</mi> <mi>c</mi> </msub> <mo>&amp;le;</mo> <mn>3</mn> </mtd> </mtr> </mtable> </mfenced>
Due to now | ra|≤1,|rb|≤1,|rc|≤1,Therefore k span needs to meet:
<mrow> <mi>k</mi> <mo>&amp;le;</mo> <mfrac> <mn>2</mn> <msqrt> <mn>3</mn> </msqrt> </mfrac> <mo>,</mo> </mrow>
So as to which as long as biasing x, y, z meets constraints, that is, realizes maximum voltage transfer ratio 1.732.
4. the multimode Modulation Strategy of Matrix Converter according to claim 3 based on Mathematics structural, it is characterised in that institute That states chooses the modulator approach that different amount of bias obtain different performance, wherein, the easiest building method is as follows:
X, y, z take the 1/2 of its boundary value sum respectively, i.e.,:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mi>x</mi> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <mo>(</mo> <msub> <mi>min</mi> <mi>x</mi> </msub> <mo>+</mo> <mi>m</mi> <mi>a</mi> <msub> <mi>x</mi> <mi>x</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>y</mi> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <mo>(</mo> <msub> <mi>min</mi> <mi>y</mi> </msub> <mo>+</mo> <mi>m</mi> <mi>a</mi> <msub> <mi>x</mi> <mi>y</mi> </msub> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <mi>z</mi> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <mo>(</mo> <msub> <mi>min</mi> <mi>z</mi> </msub> <mo>+</mo> <mi>m</mi> <mi>a</mi> <msub> <mi>x</mi> <mi>z</mi> </msub> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
Obvious such a obtaining value method meets x, and y, z restrictive condition is handled the further simplification of above formula:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <mi>k</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>r</mi> <mi>a</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> </mrow> <mo>)</mo> <mo>+</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>y</mi> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <mi>k</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>r</mi> <mi>b</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> </mrow> <mo>)</mo> <mo>+</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>z</mi> <mo>=</mo> <mo>-</mo> <mn>0.5</mn> <mi>k</mi> <mo>&amp;CenterDot;</mo> <msub> <mi>r</mi> <mi>c</mi> </msub> <mrow> <mo>(</mo> <mi>m</mi> <mi>a</mi> <mi>x</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> </mrow> <mo>)</mo> <mo>+</mo> <mi>m</mi> <mi>i</mi> <mi>n</mi> <mo>(</mo> <mrow> <msub> <mi>e</mi> <mi>A</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>B</mi> </msub> <mo>,</mo> <msub> <mi>e</mi> <mi>C</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow>
5. the multimode Modulation Strategy of Matrix Converter according to claim 4 based on Mathematics structural, it is characterised in that institute The cyclic shift modulator approach stated is:N number of MMMC-I cascades constitute topology MMMC-II, from top to bottom two adjacent three modules The on off state difference staggering time T of matrix converters/N.。
6. the multimode Modulation Strategy of Matrix Converter according to claim 5 based on Mathematics structural, it is characterised in that institute The bilateral symmetry modulating mode stated is:
By taking A phase modules as an example, the dutycycle in its corresponding modulating matrix M ' is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>x</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>y</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>-</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>z</mi> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> <mo>+</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> <mo>&amp;le;</mo> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mi>j</mi> </mrow> <mi>k</mi> </msubsup> <mo>&amp;le;</mo> <mn>1</mn> <mo>,</mo> <mi>j</mi> <mo>&amp;Element;</mo> <mo>{</mo> <mn>1</mn> <mo>,</mo> <mo>...</mo> <mo>,</mo> <mn>6</mn> <mo>}</mo> </mtd> </mtr> </mtable> </mfenced>
Above formula is handled:First, m is found outA1+x,mA2+ y and mA3Maximum absolute value value in+z, it is assumed that mA1+ x absolute values are most Greatly, and mA1+ x > 0, order:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>x</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>y</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>z</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> 3
If mA1+ x > 0, then have:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>4</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>1</mn> </mrow> </msub> <mo>+</mo> <mi>x</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>5</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>2</mn> </mrow> </msub> <mo>+</mo> <mi>y</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>6</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <mn>0</mn> <mo>;</mo> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>d</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> <mi>k</mi> </msubsup> <mo>=</mo> <msub> <mi>m</mi> <mrow> <mi>A</mi> <mn>3</mn> </mrow> </msub> <mo>+</mo> <mi>z</mi> </mrow> </mtd> </mtr> </mtable> </mfenced>
In a switch periods, the order of the size of module output voltage is:It is minimum-secondary big-maximum-secondary big-minimum, and close In Ts/ 2 is symmetrical;Assuming that input voltage is:uaThe > u of > 0b> uc, with above-mentioned mA1Exemplified by+x > 0, the action situation of switch is:On SwitchIt is constantly on,Turn off always;In time, switchConducting, output voltage is 0;In time, switch is switched toConducting, output voltage is uab In time, switch is switched toConducting, output voltage is uacIn time, switch weight Newly switch toConducting, output voltage is uab;Finally, switch is switched toOutput voltage is 0.
CN201510266720.7A 2015-05-22 2015-05-22 Multimode Modulation Strategy of Matrix Converter based on Mathematics structural Active CN104901554B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510266720.7A CN104901554B (en) 2015-05-22 2015-05-22 Multimode Modulation Strategy of Matrix Converter based on Mathematics structural

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510266720.7A CN104901554B (en) 2015-05-22 2015-05-22 Multimode Modulation Strategy of Matrix Converter based on Mathematics structural

Publications (2)

Publication Number Publication Date
CN104901554A CN104901554A (en) 2015-09-09
CN104901554B true CN104901554B (en) 2017-10-24

Family

ID=54034007

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510266720.7A Active CN104901554B (en) 2015-05-22 2015-05-22 Multimode Modulation Strategy of Matrix Converter based on Mathematics structural

Country Status (1)

Country Link
CN (1) CN104901554B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102163925A (en) * 2010-02-17 2011-08-24 株式会社安川电机 Control apparatus for matrix converter
CN102223079A (en) * 2011-06-15 2011-10-19 何必 Method for modulating matrix converter in case of adjustable input power factor
JP5253041B2 (en) * 2008-08-22 2013-07-31 東洋電機製造株式会社 Matrix converter controller
CN103780100A (en) * 2014-01-15 2014-05-07 天津大学 Common-mode-voltage inhibiting method applicable to matrix converter
US8995159B1 (en) * 2011-09-01 2015-03-31 U.S. Department Of Energy High-frequency matrix converter with square wave input

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5253041B2 (en) * 2008-08-22 2013-07-31 東洋電機製造株式会社 Matrix converter controller
CN102163925A (en) * 2010-02-17 2011-08-24 株式会社安川电机 Control apparatus for matrix converter
CN102223079A (en) * 2011-06-15 2011-10-19 何必 Method for modulating matrix converter in case of adjustable input power factor
US8995159B1 (en) * 2011-09-01 2015-03-31 U.S. Department Of Energy High-frequency matrix converter with square wave input
CN103780100A (en) * 2014-01-15 2014-05-07 天津大学 Common-mode-voltage inhibiting method applicable to matrix converter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
一种基于数学构造的矩阵变换器调制策略;粟梅 等;《IEEE Proceedings of the 26th Chinese Control Conference》;20070731;第726-729页 *

Also Published As

Publication number Publication date
CN104901554A (en) 2015-09-09

Similar Documents

Publication Publication Date Title
CN104883071B (en) A kind of same phase towards multimode matrix converter is laminated carrier modulating method
CN105450059B (en) Inhibit the modulator approach of two H bridge cascaded inverter leakage currents
CN105162350B (en) The three-phase micro inverter and its control method of a kind of wide loading range of high efficiency
CN104852583B (en) A kind of more level DC transformers of High Frequency Link for mesolow DC distribution
CN106374528A (en) Microgrid dispersing type control policy model based on improved droop control
CN108923666A (en) Dual output dual stage matrix converter modulator approach based on Carrier-based PWM
CN107204714A (en) Three level indirect matrix converters and control method
CN104836463B (en) Mixing transformation system based on three-phase PWM rectification Yu multiple-unit uncontrollable rectifier
Vahedi et al. A new five-level buck-boost active rectifier
CN106329979A (en) MMC double circulation suppression method for high-speed permanent magnet motor system
CN106452142B (en) A kind of improvement modulation strategy suitable for Modular multilevel converter
CN109586590A (en) Multi purpose space vector modulation method for current source type converter
CN113346764A (en) Medium voltage converter topological structure based on high frequency magnetic coupling module
Elnaghi et al. Development and implementation of two-stage boost converter for single-phase inverter without transformer for PV systems.
CN102082523B (en) Controlling method of compositely controlled cascaded multilevel inverter and multilevel inverter
CN105207503A (en) Power electronic transformer control method based on hybrid pulse width modulation (HPWM)
CN105846688B (en) Five phases, six line matrix converter control method under unbalanced load
CN103078525A (en) Alternative-current direct-current (AC-DC) converter based on exchange link technology
CN106887952A (en) A kind of commutator transformer and its implementation that direct current network is accessed for new energy
CN105186910A (en) Pulse width modulation method for maximum boost and minimum switching frequency of diode-assistant buck-boost inverter
CN111934558A (en) Implementation scheme of novel medium-high voltage variable frequency speed control system without transformer isolation
CN104901554B (en) Multimode Modulation Strategy of Matrix Converter based on Mathematics structural
CN212850283U (en) Novel medium-high voltage variable frequency speed control system without transformer isolation
CN108462419B (en) Become generating voltage lower switch magnetic resistance wind-driven generator high pressure converter system
CN110048623B (en) Line voltage cascade three-phase diode high-power factor converter and control strategy thereof

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant