CN104901549A - 一种电力系统故障检测装置用恒流节能驱动电源 - Google Patents

一种电力系统故障检测装置用恒流节能驱动电源 Download PDF

Info

Publication number
CN104901549A
CN104901549A CN201510292555.2A CN201510292555A CN104901549A CN 104901549 A CN104901549 A CN 104901549A CN 201510292555 A CN201510292555 A CN 201510292555A CN 104901549 A CN104901549 A CN 104901549A
Authority
CN
China
Prior art keywords
resistance
diode
field effect
effect transistor
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510292555.2A
Other languages
English (en)
Inventor
周云扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Co Ltd Of Hat Shenzhen Science And Technology
Original Assignee
Chengdu Co Ltd Of Hat Shenzhen Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Co Ltd Of Hat Shenzhen Science And Technology filed Critical Chengdu Co Ltd Of Hat Shenzhen Science And Technology
Priority to CN201510292555.2A priority Critical patent/CN104901549A/zh
Publication of CN104901549A publication Critical patent/CN104901549A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

本发明公开了一种电力系统故障检测装置用恒流节能驱动电源,其由二极管整流器U,功率放大器P1,变压器T,串接在二极管整流器U的正极输出端与功率放大器P1的同相端之间的开关滤波电路,与变压器T的原边线圈L1的滑动抽头相连接的滑动调节器,与变压器T的副边线圈L2相连接的电源输出电路,与变压器T的副边线圈L3相连接的变压反馈电路,以及分别与二极管整流器U和开关滤波电路相连接的功率逻辑稳压电路组成;其特征在于:在功率逻辑稳压电路与功率放大器P1的反相端之间还串接有恒流电路;本发明如受到射频电磁干扰时,通过恒流电路的作用可以避免本发明因电磁干扰而引起电流波动,使本发明可以保持恒定的工作电流。

Description

一种电力系统故障检测装置用恒流节能驱动电源
技术领域
本发明涉及一种开关稳压电源,具体是指一种电力系统故障检测装置用恒流节能驱动电源。
背景技术
目前,随着电力行业的飞速发展,人们用于电力系统故障检测的设备也有着极大的发展。由于电力系统的检修往往涉及到几百千伏,甚至上百万千伏的电压线路,因此其检修线路非常长,故而对故障检测设备的供电要求也非常高。然而,目前人们对故障检测设备所提供的移动电源却存在较大的缺陷,即其容易受到电磁干扰,导致其工作电流无法保持恒定值,因此在很大程度上影响了故障检测设备的检测效果,无法满足人们对高精度检测的需求。
发明内容
本发明的目的在于克服目前故障检测设备用电源容易受到电磁干扰,导致其工作电流无法保持恒定值的缺陷,提供一种电力系统故障检测装置用恒流节能驱动电源。
本发明的目的通过下述技术方案实现:一种电力系统故障检测装置用恒流节能驱动电源,其由二极管整流器U,功率放大器P1,变压器T,串接在二极管整流器U的正极输出端与功率放大器P1的同相端之间的开关滤波电路,与变压器T的原边线圈L1的滑动抽头相连接的滑动调节器,与变压器T的副边线圈L2相连接的电源输出电路,与变压器T的副边线圈L3相连接的变压反馈电路,以及分别与二极管整流器U和开关滤波电路相连接的功率逻辑稳压电路组成,为了达到本发明的效果,本发明在功率逻辑稳压电路与功率放大器P1的反相端之间还串接有恒流电路。
进一步的,所述的恒流电路由运算放大器P3,运算放大器P4,场效应管MOS1,场效应管MOS2,场效应管MOS3,三极管Q2,三极管Q3,一端与场效应管MOS1的漏极相连接、另一端接地的电阻R10,P极与场效应管MOS1的源极相连接、N极则顺次经电阻R9和电阻R11后与场效应管MOS2的漏极相连接的二极管D5,正极与电阻R9和电阻R11的连接点相连接、负极接地的极性电容C7,一端与极性电容C7的正极相连接、另一端则与场效应管MOS3的漏极相连接的电阻R12,正极与二极管D5的P极相连接、负极则与三极管Q3的基极相连接的极性电容C8,以及一端与三极管Q3的集电极相连接、另一端接地的电阻R13组成;所述场效应管MOS1的栅极与功率逻辑稳压电路相连接、其源极则与运算放大器P3的正极相连接;运算放大器P3的负极与场效应管MOS2的漏极相连接、其正极则与运算放大器P4的正极相连接、其输出端则与场效应管MOS2的栅极相连接;所述三极管Q2的基极分别与场效应管MOS2的源极以及三极管Q3的发射极相连接、其发射极则与场效应管MOS3的源极相连接、其集电极接地;所述运算放大器P4的输出端与场效应管MOS3的栅极相连接、其负极则分别与场效应管MOS3的漏极以及功率放大器P1的反相端相连接。
所述的功率逻辑稳压电路由功率放大器P2,与非门IC1,与非门IC2,与非门IC3,与非门IC4,N极与功率放大器P2的输出端相连接、P极经电阻R4后接地的二极管D4,一端与与非门IC1的第一输入端相连接、另一端经电容C6后与与非门IC2的输出端相连接的电阻R5,一端与与非门IC1的输出端相连接、另一端与电阻R5和电容C6的连接点相连接的电阻R6,一端与与非门IC3的输出端相连接、另一端与场效应管MOS1的栅极相连接的电阻R7,一端与与非门IC4的输出端相连接、另一端与场效应管MOS1的栅极相连接的电阻R8,以及一端与功率放大器P2的反相端相连接、另一端接地的电阻R3组成;所述与非门IC1的第二输入端经电阻R4后与二极管D4的P极相连接,其输出端还与与非门IC2的第一输入端相连接;与非门IC2的第二输入端与功率放大器P2的同相端相连接,其输出端则分别与与非门IC3的第一输入端和与非门IC4的第二输入端相连接,与非门IC3的第二输入端与与非门IC4的第一输入端相连接;所述功率放大器P2的同相端则与二极管整流器U的负极输出端相连接,同时,功率放大器P2的输出端还与开关滤波电路相连接。
所述开关滤波电路由三极管Q1,电容C1,电容C2,电阻R1,电阻R2及二极管D1组成;所述三极管Q1的基极顺次经电阻R2、二极管D1及电阻R1后与其集电极形成回路,电容C1与电阻R1相并联,电容C2与电阻R2相并联;三极管Q1的集电极与二极管整流器U的正极输出端相连接,其发射极与功率放大器P2的输出端相连接;电阻R2与二极管D1的连接点则与功率放大器P1的同相端相连接;所述原边线圈L1则与二极管D1相并联,而功率放大器P1的输出端则与滑动调节器的输入端相连接。
所述电源输出电路由P极与副边线圈L2的同名端相连接、N极经电容C3后与副边线圈L2的非同名端相连接的二极管D2,以及一端与二极管D2的N极相连接、另一端经电容C4后与副边线圈L2的非同名端相连接的电感L4组成。
所述变压反馈电路由二极管D3和电容C5组成;所述二级管D3的P极与副边线圈L3的非同名端相连接、其N极经电容C5后与副边线圈L3的同名端相连接,所述副边线圈L3的同名端接地;同时,功率放大器P1的输出端还与二极管D3和电容C5的连接点相连接。
本发明较现有技术相比,具有以下优点及有益效果:
(1)本发明采用全新的功率逻辑稳压电路来为变压器T提供高质量的输入电压,不仅能简化电路结构,而且还能降低电路自身和外接的射频干扰,使得制作成本和维护成本有了较大幅度的降低。
(2)本发明能自动的调节变压器原边线圈的匝数,因此能够根据人们的实际需求进行调压。
(3)本发明能有效的克服传统电源电路的延迟效应,能有效的提高电源的质量。
(4)本发明如受到射频电磁干扰时,通过恒流电路的作用可以避免本发明因电磁干扰而引起电流波动,使本发明可以保持恒定的工作电流。
附图说明
图1为本发明的整体结构示意图。
图2为本发明的恒流电路结构示意图。
具体实施方式
下面结合实施例对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例
如图1所示,本发明由二极管整流器U,功率放大器P1,变压器T,串接在二极管整流器U的正极输出端与功率放大器P1的同相端之间的开关滤波电路,与变压器T的原边线圈L1的滑动抽头相连接的滑动调节器,与变压器T的副边线圈L2相连接的电源输出电路,与变压器T的副边线圈L3相连接的变压反馈电路,以及分别与二极管整流器U和开关滤波电路相连接的功率逻辑稳压电路组成,为了达到本发明的效果,本发明在功率逻辑稳压电路与功率放大器P1的反相端之间还串接有恒流电路。
其中,恒流电路为本发明的发明点所在,如图2所示,其包括运算放大器P3,运算放大器P4,场效应管MOS1,场效应管MOS2,场效应管MOS3,三极管Q2,三极管Q3。
为了达到预期的效果,该恒流电路还包括有一端与场效应管MOS1的漏极相连接、另一端接地的电阻R10,P极与场效应管MOS1的源极相连接、N极则顺次经电阻R9和电阻R11后与场效应管MOS2的漏极相连接的二极管D5,正极与电阻R9和电阻R11的连接点相连接、负极接地的极性电容C7,一端与极性电容C7的正极相连接、另一端则与场效应管MOS3的漏极相连接的电阻R12,正极与二极管D5的P极相连接、负极则与三极管Q3的基极相连接的极性电容C8,以及一端与三极管Q3的集电极相连接、另一端接地的电阻R13组成。
其在连接时,该场效应管MOS1的栅极与功率逻辑稳压电路相连接、其源极则与运算放大器P3的正极相连接。运算放大器P3的负极与场效应管MOS2的漏极相连接、其正极则与运算放大器P4的正极相连接、其输出端则与场效应管MOS2的栅极相连接。所述三极管Q2的基极分别与场效应管MOS2的源极以及三极管Q3的发射极相连接、其发射极则与场效应管MOS3的源极相连接、其集电极接地。所述运算放大器P4的输出端与场效应管MOS3的栅极相连接、其负极则分别与场效应管MOS3的漏极以及功率放大器P1的反相端相连接。采用这种连接方式可以使本发明达到最优的实施效果。
其中,运算放大器P3,运算放大器P4,场效应管MOS2以及场效应管MOS3构成一个稳定的恒流器。而电阻R11和电阻R12的阻值设置为相等,本实施例设置为1KΩ,因为电阻R11和电阻R12的阻值相等,所以其所输入到场效应管MOS2和场效应管MOS3的电流相等。同时,由于场效应管MOS1和极性电容C8的稳压作用,使输入到三极管Q3的电压变得稳定。另外,由于三极管Q3和三极管Q2的发射极输出低阻抗,因此恒流器不受电磁干扰的影响,从而可以输出恒定的电流,以保障检测装置可以稳定的工作。
其中,所述的功率逻辑稳压电路由功率放大器P2,与非门IC1,与非门IC2,与非门IC3,与非门IC4,二极管D4,电阻R3,电阻R4,电阻R5,电阻R6,电阻R7,电阻R8和电容C6组成。
连接时,二极管D4的N极需要与功率放大器P2的输出端相连接,其P极经电阻R4后接地。电阻R5的一端与与非门IC1的第一输入端相连接,其另一端则经电容C6后与与非门IC2的输出端相连接。电阻R6的一端与与非门IC1的输出端相连接,其另一端与电阻R5和电容C6的连接点相连接。
所述电阻R7的一端与与非门IC3的输出端相连接,其另一端与场效应管MOS1的栅极相连接;电阻R8的一端与与非门IC4的输出端相连接,其另一端与场效应管MOS1的栅极相连接;电阻R3的一端与功率放大器P2的反相端相连接,其另一端接地。
同时,与非门IC1的第二输入端经电阻R4后与二极管D4的P极相连接,而其输出端则与与非门IC2的第一输入端相连接;与非门IC2的第二输入端与功率放大器P2的同相端相连接,其输出端则分别与与非门IC3的第一输入端和与非门IC4的第二输入端相连接,与非门IC3的第二输入端与与非门IC4的第一输入端相连接。而所述的功率放大器P2的同相端则与二极管整流器U的负极输出端相连接。
所述的开关滤波电路由三极管Q1,电容C1,电容C2,电阻R1,电阻R2及二极管D1组成。连接时,三极管Q1的基极顺次经电阻R2、二极管D1及电阻R1后与其集电极形成回路,电容C1与电阻R1相并联,电容C2与电阻R2相并联。三极管Q1的集电极与二极管整流器U的正极输出端相连接,其发射极与功率放大器P2的输出端相连接;电阻R2与二极管D1的连接点则与功率放大器P1的同相端相连接。
其中,电阻R1、电容C1和二极管D1组成反馈钳位电路,可以提高变换效率和降低功率放大器P1同相端的反向峰值电压。
所述变压器T则由设置在原边的原边线圈L1,设置在副边的副边线圈L2和副边线圈L3组成。本发明在变压器T的原边线圈L1上设有一个滑动抽头,而该滑动抽头由滑动调节器来进行控制,以确保本发明能自动调整变压器T的原边线圈L1与副边线圈L2和副边线圈L3之间的匝数比。
连接时,该原边线圈L1要与二极管D1相并联,而功率放大器P1的输出端则与滑动调节器的输入端相连接。
所述的电源输出电路由P极与副边线圈L2的同名端相连接、N极经电容C3后与副边线圈L2的非同名端相连接的二极管D2,以及一端与二极管D2的N极相连接、另一端经电容C4后与副边线圈L2的非同名端相连接的电感L4组成。而电容C4的两端则形成本驱动电源的输出端。
所述变压反馈电路用于向滑动调节器提供反馈信号和反馈电压,进而确保该滑动调节器能根据输出端所外接的负载自动调解变压器T的匝数比。该变压反馈电路由二极管D3和电容C5组成;所述二级管D3的P极与副边线圈L3的非同名端相连接、其N极经电容C5后与副边线圈L3的同名端相连接,所述副边线圈L3的同名端接地;同时,功率放大器P1的输出端还与三极管D3和电容C5的连接点相连接。
为确保实际的运行效果,本申请中的电容C1、电容C2、电容C3、电容C4、电容C5及电容C6均采用贴片电容来实现。
如上所述,便可以很好的实现本发明。

Claims (5)

1.一种电力系统故障检测装置用恒流节能驱动电源,其由二极管整流器U,功率放大器P1,变压器T,串接在二极管整流器U的正极输出端与功率放大器P1的同相端之间的开关滤波电路,与变压器T的原边线圈L1的滑动抽头相连接的滑动调节器,与变压器T的副边线圈L2相连接的电源输出电路,与变压器T的副边线圈L3相连接的变压反馈电路,以及分别与二极管整流器U和开关滤波电路相连接的功率逻辑稳压电路组成;其特征在于:在功率逻辑稳压电路与功率放大器P1的反相端之间还串接有恒流电路;所述的恒流电路由运算放大器P3,运算放大器P4,场效应管MOS1,场效应管MOS2,场效应管MOS3,三极管Q2,三极管Q3,一端与场效应管MOS1的漏极相连接、另一端接地的电阻R10,P极与场效应管MOS1的源极相连接、N极则顺次经电阻R9和电阻R11后与场效应管MOS2的漏极相连接的二极管D5,正极与电阻R9和电阻R11的连接点相连接、负极接地的极性电容C7,一端与极性电容C7的正极相连接、另一端则与场效应管MOS3的漏极相连接的电阻R12,正极与二极管D5的P极相连接、负极则与三极管Q3的基极相连接的极性电容C8,以及一端与三极管Q3的集电极相连接、另一端接地的电阻R13组成;所述场效应管MOS1的栅极与功率逻辑稳压电路相连接、其源极则与运算放大器P3的正极相连接;运算放大器P3的负极与场效应管MOS2的漏极相连接、其正极则与运算放大器P4的正极相连接、其输出端则与场效应管MOS2的栅极相连接;所述三极管Q2的基极分别与场效应管MOS2的源极以及三极管Q3的发射极相连接、其发射极则与场效应管MOS3的源极相连接、其集电极接地;所述运算放大器P4的输出端与场效应管MOS3的栅极相连接、其负极则分别与场效应管MOS3的漏极以及功率放大器P1的反相端相连接。
2.根据权利要求1所述的一种电力系统故障检测装置用恒流节能驱动电源,其特征在于,所述的功率逻辑稳压电路由功率放大器P2,与非门IC1,与非门IC2,与非门IC3,与非门IC4,N极与功率放大器P2的输出端相连接、P极经电阻R4后接地的二极管D4,一端与与非门IC1的第一输入端相连接、另一端经电容C6后与与非门IC2的输出端相连接的电阻R5,一端与与非门IC1的输出端相连接、另一端与电阻R5和电容C6的连接点相连接的电阻R6,一端与与非门IC3的输出端相连接、另一端与场效应管MOS1的栅极相连接的电阻R7,一端与与非门IC4的输出端相连接、另一端与场效应管MOS1的栅极相连接的电阻R8,以及一端与功率放大器P2的反相端相连接、另一端接地的电阻R3组成;所述与非门IC1的第二输入端经电阻R4后与二极管D4的P极相连接,其输出端还与与非门IC2的第一输入端相连接;与非门IC2的第二输入端与功率放大器P2的同相端相连接,其输出端则分别与与非门IC3的第一输入端和与非门IC4的第二输入端相连接,与非门IC3的第二输入端与与非门IC4的第一输入端相连接;所述功率放大器P2的同相端则与二极管整流器U的负极输出端相连接,同时,功率放大器P2的输出端还与开关滤波电路相连接。
3.根据权利要求2所述的一种电力系统故障检测装置用恒流节能驱动电源,其特征在于,所述开关滤波电路由三极管Q1,电容C1,电容C2,电阻R1,电阻R2及二极管D1组成;所述三极管Q1的基极顺次经电阻R2、二极管D1及电阻R1后与其集电极形成回路,电容C1与电阻R1相并联,电容C2与电阻R2相并联;三极管Q1的集电极与二极管整流器U的正极输出端相连接,其发射极与功率放大器P2的输出端相连接;电阻R2与二极管D1的连接点则与功率放大器P1的同相端相连接;所述原边线圈L1则与二极管D1相并联,而功率放大器P1的输出端则与滑动调节器的输入端相连接。
4.根据权利要求3所述的一种电力系统故障检测装置用恒流节能驱动电源,其特征在于,所述电源输出电路由P极与副边线圈L2的同名端相连接、N极经电容C3后与副边线圈L2的非同名端相连接的二极管D2,以及一端与二极管D2的N极相连接、另一端经电容C4后与副边线圈L2的非同名端相连接的电感L4组成。
5.根据权利要求4所述的一种电力系统故障检测装置用恒流节能驱动电源,其特征在于,所述变压反馈电路由二极管D3和电容C5组成;所述二级管D3的P极与副边线圈L3的非同名端相连接、其N极经电容C5后与副边线圈L3的同名端相连接,所述副边线圈L3的同名端接地;同时,功率放大器P1的输出端还与二极管D3和电容C5的连接点相连接。
CN201510292555.2A 2014-11-23 2015-06-01 一种电力系统故障检测装置用恒流节能驱动电源 Pending CN104901549A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510292555.2A CN104901549A (zh) 2014-11-23 2015-06-01 一种电力系统故障检测装置用恒流节能驱动电源

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014106753283 2014-11-23
CN201410675328.3A CN104410279A (zh) 2014-11-23 2014-11-23 一种电力系统故障检测装置用驱动电源
CN201510292555.2A CN104901549A (zh) 2014-11-23 2015-06-01 一种电力系统故障检测装置用恒流节能驱动电源

Publications (1)

Publication Number Publication Date
CN104901549A true CN104901549A (zh) 2015-09-09

Family

ID=52647882

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410675328.3A Pending CN104410279A (zh) 2014-11-23 2014-11-23 一种电力系统故障检测装置用驱动电源
CN201510292555.2A Pending CN104901549A (zh) 2014-11-23 2015-06-01 一种电力系统故障检测装置用恒流节能驱动电源

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410675328.3A Pending CN104410279A (zh) 2014-11-23 2014-11-23 一种电力系统故障检测装置用驱动电源

Country Status (1)

Country Link
CN (2) CN104410279A (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104410279A (zh) * 2014-11-23 2015-03-11 成都创图科技有限公司 一种电力系统故障检测装置用驱动电源
CN104946834A (zh) * 2015-04-25 2015-09-30 成都中冶节能环保工程有限公司 一种基于高炉超导冷却的电流源反馈式余热发电系统
CN104846138A (zh) * 2015-04-25 2015-08-19 成都中冶节能环保工程有限公司 一种基于高炉超导冷却的反馈式余热发电系统
CN104805245A (zh) * 2015-04-25 2015-07-29 成都中冶节能环保工程有限公司 一种基于高炉超导冷却的余热发电系统
CN104831011A (zh) * 2015-04-25 2015-08-12 成都中冶节能环保工程有限公司 一种基于高炉超导冷却的双极性振荡式余热发电系统
CN104911290A (zh) * 2015-04-25 2015-09-16 成都中冶节能环保工程有限公司 一种基于偏置可调电流源的双极性振荡式余热发电系统
CN104846140A (zh) * 2015-04-25 2015-08-19 成都中冶节能环保工程有限公司 一种基于高炉超导冷却的电流源振荡式余热发电系统
CN117310411A (zh) * 2023-10-08 2023-12-29 保定市安科电气有限公司 开关柜故障检测系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238073A (zh) * 1996-11-15 1999-12-08 汤姆森消费电子有限公司 开关型电源的故障控制电路
CN103812307A (zh) * 2012-11-09 2014-05-21 丰田自动车株式会社 电力变换系统及用于电力变换系统的故障检测方法
CN104113217A (zh) * 2014-06-24 2014-10-22 许继电气股份有限公司 用于故障检测的并联电源系统及其电源模块
CN104410279A (zh) * 2014-11-23 2015-03-11 成都创图科技有限公司 一种电力系统故障检测装置用驱动电源

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238073A (zh) * 1996-11-15 1999-12-08 汤姆森消费电子有限公司 开关型电源的故障控制电路
CN103812307A (zh) * 2012-11-09 2014-05-21 丰田自动车株式会社 电力变换系统及用于电力变换系统的故障检测方法
CN104113217A (zh) * 2014-06-24 2014-10-22 许继电气股份有限公司 用于故障检测的并联电源系统及其电源模块
CN104410279A (zh) * 2014-11-23 2015-03-11 成都创图科技有限公司 一种电力系统故障检测装置用驱动电源

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
佚名: "恒流源电路的特点与应用", 《HTTP://WWW.GZWEIX.COM/ARTICLE/SORT0250/SORT0251/SORT0288/INFO-293943.HTML》 *

Also Published As

Publication number Publication date
CN104410279A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
CN104901549A (zh) 一种电力系统故障检测装置用恒流节能驱动电源
CN104467473A (zh) 一种非线性负反馈的非饱和式开关稳压电源
CN104410281A (zh) 一种基于逻辑保护射极耦合式的光束激发脉冲调宽电源
CN104467476A (zh) 基于光束激发式逻辑放大电路的平衡调制开关稳压电源
CN104953868A (zh) 基于相敏检波电路的脉冲调宽式开关稳压电源
CN104467479A (zh) 一种新型电力系统故障检测装置用逻辑保护放大式驱动电源
CN104467485A (zh) 一种多级功率放大脉冲调宽式开关稳压电源
CN104883080A (zh) 一种电力系统故障检测装置用恒流混合触发式驱动电源
CN104868760A (zh) 一种电力系统故障检测装置用恒流对称触发式驱动电源
CN104467474A (zh) 一种非线性负反馈大电流led恒定开关稳压电源
CN204349824U (zh) 一种基于多级功率放大平衡调制电路的开关稳压电源
CN204304784U (zh) 一种电力系统故障检测装置用驱动电源
CN104953867A (zh) 基于相敏检波电路的平衡调制式开关稳压电源
CN104868711A (zh) 一种基于恒流电路的电力系统故障检测装置用电源
CN104883048A (zh) 基于恒流电路的逻辑控制式电力系统故障检测装置用电源
CN204316362U (zh) 一种新型电力系统故障检测装置用逻辑保护放大式驱动电源
CN104467481A (zh) 一种基于逻辑保护放大电路的混合触发式电源
CN104470093A (zh) 一种激发式大电流led恒定开关稳压电源
CN204316355U (zh) 基于平衡调制电路的开关稳压电源
CN204304816U (zh) 基于光束激发式逻辑放大电路的平衡调制开关稳压电源
CN104467483A (zh) 一种基于多级功率放大平衡调制电路的开关稳压电源
CN104868728A (zh) 一种电力系统故障检测装置用恒流双缓冲触发式驱动电源
CN104467477A (zh) 一种基于光束激发式逻辑放大电路的脉冲调宽电源
CN204316359U (zh) 一种基于光束激发式逻辑放大电路的脉冲调宽电源
CN204304814U (zh) 一种基于逻辑控制电路的电力系统故障检测装置用电源

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150909